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As a well-characterized master player in epigenetic regulatory network, EZH2 is widely implicated in
the development of many malignancies. We previously found that EZH2 promoted Wnt/b-catenin
activation through downregulation of CXXC4 expression. In this report, we demonstrated that
CXXC4 inhibited MAPK signaling through binding to ERK-1/2 and abrogating the interaction of
ERK 1/2 with MEK1/2. L183, the critical residue in CXXC4 ERK D domain, was found to be essential
for CXXC4–ERK 1/2 interaction and the growth inhibitory effect of CXXC4 in human cancer cells. In
summary, CXXC4 directly disrupted MEK1/2–ERK 1/2 interaction to inactivate MAPK signaling. L183
site is indispensable for the binding of CXXC4 to ERK1/2 and growth inhibitory effect of CXXC4.
Therefore, EZH2 can activate MAPK signaling by inhibiting CXXC4 expression.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction to the aberrant activation of Ras/MAPK signaling in addition to
Gastric cancer is one of the most common malignancies and the
second leading cause for cancer-related mortality worldwide [1,2].
Genetic and epigenetic alterations have long been considered as
two essential mechanisms during the multi-step processes of car-
cinogenesis including gastric cancer development, such as onco-
genic activation, inactivation of tumor suppressor genes and
dysregulation of many signaling pathways important to cell prolif-
eration, differentiation, cell cycle and cell fate decision [3].

The mitogen-activated protein kinase (MAPK) signaling path-
way is composed of several key signaling cascades and phosphor-
ylation events pivotal to tumorigenesis. Among them, the RAS–
RAF–MAP kinase (MEK)–extracellular signal-regulated kinase
(ERK)–MAPK (RAS–MAPK) cascade is one of the most frequently
deregulated signaling pathways in human cancers [3]. Like many
other signaling pathways, MAPK signaling is initially triggered by
the ligation of receptor tyrosine kinases (RTKs) with cognate
growth factors [4]. Thus, the aberrant activation of Ras/MAPK path-
way could attribute to overexpression of RTKs such as Her-2 in
addition to gain-of-function mutations in Ras or Raf genes.
Recently, some epigenetic changes have been found to contribute
genetic changes [5–8].
Enhancer of zeste homologue 2 (EZH2) is the core catalytic sub-

unit of Polycomb Repressive Complex 2 (PRC2) and an important
player in the epigenetic regulatory network. It is a highly con-
served histone methyltransferase (HMTase) which functions to
catalyze the lysine-27 trimethylation of histone H3 (H3K27me3)
and repress the transcription of genes closely associated with cell
senescence, differentiation, apoptosis and cancer development
[9–11]. Importantly, overexpression of EZH2 is widely implicated
in many human malignancies including breast cancer, prostate
cancer and gastric cancer [12–14]. Our previous study has demon-
strated that CXXC4 is a novel potential tumor suppressor directly
regulated by EZH2 [15]. EZH2 promoted the activation of Wnt sig-
naling in gastric carcinogenesis through the downregulation of
CXXC4 expression. In the present study, we found that CXXC4 inac-
tivated Ras/MAPK signaling by directly binding to ERK-1/2 to dis-
rupt MEK1/2-ERK1/2 association.

2. Materials and methods

2.1. Cell lines and antibodies

Human gastric epithelial cell line GES-1 and human cancer cell
lines MKN28 (gastric cancer cell line), SGC7901 (gastric cancer cell
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line) and HEK293 cells (Human Embryonic Kidney 293 cells) were
cultured in RPMI 1640 medium or DMEM (Life technologies, Cars-
bad, CA, USA) supplemented with 10% fetal bovine serum and incu-
bated at 5% CO2, 37 �C and 95% humidity as previously described
[6]. The immortalized but non-tumorigenic GES-1 cell line was
established from the fetal stomach cells infected with SV40 virus
[16]. Antibodies to Myc-Tag, EZH2, phosphorylated-ERK1/2,
ERK1/2, phosphorylated-Elk-1, SAPK/JNK, phosphorylated-MEK1/
2 and MEK1/2 were purchased from Cell Signaling Technology
(Boston, MA, USA). Antibodies to GAPDH were obtained from Epit-
omics (Burlingame, CA, USA).

2.2. Plasmid construction and transfection

The open reading frame (ORF) of human CXXC4 was cloned into
pCMV-3Tag-7 using BamHI and XhoI restriction sites [15]. Three
CXXC4 L183A mutants were constructed using QuikChange Site-
Directed Mutagenesis Kit (Agilent, La Jolla, CA, USA). Primers used
are listed in Table 1. X-tremeGENE HP DNA Transfection Reagent
(Roche Applied Science, Mannheim, Germany) were used for plas-
mid transfection.

2.3. SiRNAs and transfection

SiRNAs for EZH2, CXXC4 and b-catenin were synthesized by
GenePharma (Shanghai, China). The sequences of siRNAs are listed
in Table 1. Cells were transfected with siRNA duplexes (10 nM)
using Lipofectamine™ RNAiMAX transfection reagent (Life Tech-
nologies, USA), according to the manufacturer’s instructions.

2.4. Western blotting analysis

Cells were scraped and lysed in Cytobuster™ Protein Extraction
Reagent (Novagen, Darmstadt, Germany) and protein concentra-
tions were determined by Bio-Rad protein assay kit II (Bio-Rad Lab-
oratories, Hercules, CA, USA). Equal amounts of cellular protein
were resolved by SDS–PAGE and transferred to PVDF membrane.
Proteins of interest were detected as previously described [17].

2.5. Immunoprecipitation

Cells were lysed in 1 ml of lysis buffer (20 mM Tris–HCl [pH
7.5], 150 mM NaCl, 20 mg of leupeptin/ml, 20 mg of aprotinin/ml,
1 mM phenylmethylsulfonyl fluoride, 1% Nonidet P-40, and 10%
glycerol). Primary antibodies (normally 1–2 lg) were incubated
with the pre-cleared cell lysates overnight at 4 �C. The immuno-
complexes were precipitated by 30 ll Pure Proteome™ Protein G
Magnetic Beads [18].

2.6. Cell viability assay

Cell viability assay was performed using CellTiter 96� AQueous
Non-Radioactive Cell Proliferation Assay kit (Promega, Madison,
Table 1
Primers or siRNAs used in this study.

Names Sequence

Primers
CXXC4-L183A-F AAAGAAAAAACCTGGCACTTCAGCAGAGAGAACACCTGTTCC
CXXC4-L183A-R GGAACAGGTGTTCTCTCTGCTGAAGTGCCAGGTTTTTTCTTT

siRNAs
CTNNB1 GGACACAGCAGCAAUUUGUTT

ACAAAUUGCUGCUGUGUCCTT
EZH2 CCAUGUUUACAACUAUCAATT

UUGAUAGUUGUAAACAUGGTT
CXXC4 CACAGACAGUGCGUUUCAATT

UUGAAACGCACUGUCUGUGTT
WI, USA). Cell cycle distribution was determined by flow cytome-
try analysis of PI (propidium iodide) staining cells.

2.7. Statistical analysis

Unless specifically indicated, the Student’s t test or non-para-
metric Mann–Whiney test was used for a comparison between
two groups. All statistical analyses were performed using Graph-
Pad Prism software (GraphPad software, San Diego, CA, USA).
P < 0.05 was considered statistically significant.
3. Results

3.1. Potential implication of CXXC4 in MAPK signaling

Our previous study has demonstrated that CXXC4, a novel tar-
get of EZH2, serves as a tumor suppressor gene to inhibit Wnt sig-
naling pathway in human gastric carcinogenesis [15]. To explore
whether CXXC4 exerts its tumor suppressive effects through
Wnt-independent signaling pathways, we analyzed CXXC4 protein
structure and found a ERK D domain located adjacent to Dvl-inter-
action motif (KIXXXU motif) (http://scansite.mit.edu/) (Fig. 1A).
This ERK D domain was conserved among CXXC4 from various spe-
cies and other well-known ERK interaction partners such as MEK1
and Elk1 (right panel, Fig. 1A), suggesting that CXXC4 may function
as an anchor of ERK-1/2. Indeed, co-immunoprecipitation results
confirmed that CXXC4 interacted with ERK 1/2 in vivo (Fig. 1B).
Since leucine (L183) was suggested to be the critical amino acid
residue in the ERK D domain (http://scansite.mit.edu/) [19], we
wondered whether the mutation of this residue could affect the
interaction of CXXC4 with ERK 1/2. As shown in Fig. 1B, L183A
mutant of CXXC4 failed to interact with ERK 1/2, highlighting the
ERK D domain was indeed responsible for the interaction of CXXC4
with ERK 1/2. If this is true, the ERK CD domain mutant defective to
bind the ERK D domain such as sevenmaker mutation should dis-
rupt its interaction with CXXC4 [20,21]. Indeed, CXXC4 can only
bind the wild type ERK 2 but not D319N mutant (Fig. 1C).

3.2. CXXC4 inhibits MAPK signaling independent of Wnt/b-catenin
signaling

Taken together, these findings indicate that CXXC4 might have a
role in the regulation of MAPK signaling. In consistence with such
assumption, the wild-type CXXC4 but not L183A mutant sup-
pressed the phosphorylation of ERK 1/2 in two human cancer cell
lines (Fig. 2A and B). In contrast, phosphorylation of ERK-1/2 was
increased after CXXC4 depletion (Fig. 2C and D). Moreover, in con-
trast to the wild-type CXXC4, L183A mutant failed to inhibit the
viability of human cancer cells (Fig. 2E), indicating that CXXC4
can inactivate ERK-1/2 signaling to inhibit cell viability. Impor-
tantly, CXXC4 siRNA induced phosphorylation of ERK-1/2 was
not attenuated by knockdown of b-catenin (Fig. 2F and G), further
indicating that CXXC4 can inhibit ERK 1/2 signaling independent of
Wnt/b-catenin signaling.

3.3. CXXC4 inhibits MAPK signaling by directly disrupting the
interaction of MEK 1/2 with ERK 1/2

To further investigate how CXXC4 affects the phosphorylation
of ERK 1/2, we analyzed the state of ERK 1/2 phosphorylation at
different time-points after serum stimulation. Wild-type CXXC4
but not L183A mutant inhibited serum-induced ERK 1/2 phosphor-
ylation (Fig. 3A), raising the possibility that CXXC4 functions to
inhibit ERK 1/2 activation. However, neither wild-type CXXC4
overexpression (Fig. 3B) nor CXXC4 knockdown (Fig. 3C) affected
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Fig. 1. Potential implication of CXXC4 in ERK signaling. (A) The structure of CXXC4 protein. The Dvl-interaction motif (KIXXXU motif) locates in its C-terminus and ERK
Docking domain (D domain) locates adjacent to Dvl-interaction motif. The right panel shows the alignment of ERK D domain in CXXC4 from different species and well-known
ERK-interacting proteins such as MEK1 and Elk1. (B) The interaction of wild type CXXC4 and L183A with ERK 1/2 were analyzed by co-immunoprecipitation. (C) The
interaction of wild type CXXC4 with wild type ERK 1/2 or ERK1/2 CD mutant were analyzed by co-immunoprecipitation.

Fig. 2. CXXC4 inhibits MAPK signaling independent of Wnt/b-catenin signaling. (A) The effect of wild-type CXXC4 or L183A mutant on ERK 1/2 phosphorylation in MKN28
and SGC7901 cells were determined by Western blotting. The quantification of relative phosphorylation ERK 1/2 (phosphorylated ERK 1/2/total ERK 1/2) was shown in (B). (C)
ERK 1/2 phosphorylation in GES-1 cells before and after CXXC4 depletion were determined by Western blotting. The quantification of relative phosphorylation ERK 1/2 were
shown in (D). (E) Relative cell viability of MKN28 and SGC7901 cells overexpressed with wild-type CXXC4 or L183A mutant were determined by MTS assay. (F) The amount of
b-catenin or phosphorylated ERK 1/2 in GES-1 cells before and after CXXC4 or b-catenin depletion were determined by Western blotting. The quantification of relative
phosphorylation ERK 1/2 were shown in (G).
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MEK 1/2 phosphorylation, indicating that CXXC4 may abrogate
the activation of ERK 1/2 by MEK 1/2. Indeed, CXXC4 depletion
promoted their association (Fig. 4D) while overexpression
of CXXC4 disrupted the interaction of ERK 1/2 with MEK 1/2
(Fig. 4E).
3.4. EZH2 activates MAPK signaling through downregulating CXXC4
expression

Since CXXC4 was recently identified as a new target of EZH2
[15], we wondered whether EZH2 activated MAPK signaling



Fig. 3. CXXC4 inhibits ERK signaling by disrupting the interaction of ERK 1/2 with MEK 1/2. (A) ERK 1/2 phosphorylation before and after wild-type CXXC4 or mutated L183A
overexpression were determined by Western blotting. Times mean minutes after serum stimulation. (B) The effect of wild-type CXXC4 or L183A mutant on MEK 1/2
phosphorylation in MKN28 cells cultured with or without serum were determined by Western blotting. (C) MEK1/2 phosphorylation before and after CXXC4 depletion in GES-
1 cells was examined by Western blotting. (D) The interaction of MEK 1/2 with ERK 1/2 in the presence or absence of CXXC4 were analyzed by co-immunoprecipitation. (E)
The interaction of MEK 1/2 with ERK 1/2 in the presence of various amounts of CXXC4 were analyzed by co-immunoprecipitation.

Fig. 4. EZH2 activates ERK signaling through downregulating CXXC4 expression. (A) The effect of EZH2 depletion on the phosphorylation of ERK 1/2 in MKN28 and SGC7901
cells were analyzed by Western blotting. (B) ERK 1/2 phosphorylation in GES-1 cells with ectopic EZH2 expression were determined by Western blotting. (C) The effect of
ectopic EZH2 expression in the presence or absence of CXXC4 on the phosphorylation of ERK 1/2 was explored by Western blotting.
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through inhibiting the expression of CXXC4. Indeed, EZH2 deple-
tion led to decreased activation of ERK 1/2 in human cancer cells
with high EZH2 expression (Fig. 4A). Consistently, EZH2 expression
promoted ERK 1/2 phosphorylation in cells with low EZH2 expres-
sion (Fig. 4B). Furthermore, EZH2-increased ERK-1/2 phosphoryla-
tion were attenuated by wild type CXXC4 but not L183A mutant
(Fig. 4C). These results suggest that EZH2 can promote the activa-
tion of ERK/MAPK signaling through downregulation of CXXC4
expression.

4. Discussion

As the first oncogene isolated from human carcinoma tissues,
Ras gene achieved its notoriety by activating oncogenic MAPK sig-
naling in most of human cancer cells. However, oncogenic point
mutations were identified in less than 30% human cancer, indicat-
ing that alternative mechanisms might be responsible for the acti-
vation of Ras/MAPK signaling in the majority of human cancers.
Indeed, epigenetic changes such as epigenetic downregulation of
RASAL or microRNA-204 downregulation contribute to the aberrant
activation of Ras/MAPK signaling [5–8]. In this study, we reported a
new epigenetic regulation of Ras/MAPK in human cancers. EZH2,
the master regulator of chromatin modification, promoted the
activation of Ras/MAPK signaling through downregulating a newly
characterized tumor suppressor gene CXXC4 [15].

CXXC4 was firstly identified as a negative regulator of Wnt sig-
naling in renal cell carcinoma (RCC) [22,23]. Our previous study
has clarified the underlying molecular mechanism of CXXC4-med-
iated inhibition of Wnt signaling [15]. CXXC4 attenuated Wnt/b-
catenin signaling by competitively binding to the PDZ domain of
Dvl and stabilizing the b-catenin destruction complex to promote
the degradation of b-catenin. In addition, CXXC4 inhibited tumor
growth both in vitro and in vivo. However, it remains to further
explore whether CXXC4 exerts its tumor suppressive effects by
regulating Wnt-independent oncogenic signalings. In this study,
we discovered a novel function of CXXC4 through structural pre-
diction and biochemical analyses. CXXC4 can directly interact with
ERK 1/2 to abrogate ERK 1/2-MEK 1/2 association. The ERK D
domain in C terminus of CXXC4 is critical to this function since
L183A mutant unable to bind to ERK 1/2 lost its ability to inhibit
the activation of ERK 1/2. In consistence with our findings, the pla-
nar cell polarity pathway including RhoA and Rac that function
downstream of Ras/MAPK can be activated by the downregulation
of CXXC4 [22].

MAPK pathways consist of a widely and evolutionarily con-
served family of serine/threonine protein kinases essential for con-
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verting extracellular stimuli into a series of important cellular
responses [24]. Although we have demonstrated the potential
influence of CXXC4 in MAPK inactivation through disturbing MEK
1/2–ERK 1/2 association directly, we cannot exclude the possibili-
ties that CXXC4 mediates MAPK inactivation through other mech-
anisms. For example, several recent reports have revealed that the
C-terminal region of Idax shares homology with a putative MAPK
and NF-jB activating protein (Q8TB79) containing the KTXXI motif
that is necessary for Idax–Dvl binding [25,26]. In addition, CXXC
domain might play an essential role in modulating DNA methyla-
tion status. CXXC domain containing proteins such as TET1 (tet
methylcytosine dioxygenase 1) can demethylate genomic DNA by
oxidizing 5-methylcytosine [27–30]. The CXXC domain in TET1
was important to its binding to CpG-rich DNA sequences [31].
However, CXXC4 might be involved in DNA demethylation indi-
rectly through its interaction TET2 that has dioxygenase activity
but lacks CXXC domain [32].

In conclusion, our findings firstly demonstrate that EZH2
activates MAPK signaling to promote gastric carcinogenesis by
suppressing CXXC4 expression. CXXC4 directly disrupts MEK
1/2–ERK 1/2 interaction to mediate MAPK inactivation and L183
in CXXC4 ERK D domain is indispensable to the binding of ERK
1/2 and inhibit gastric cancer cell proliferation. These findings
may provide promising insights into developing novel cancer ther-
apies by targeting CXXC4 to obstruct MAPK cascade activation.
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