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The nuclear receptor related-1 (Nurr1) protein plays an important role in both thedevelopment of neural precur-
sor cells (NPCs) and cognitive functions. Despite its relevance, the effects of Nurr1 on adult hippocampal
neurogenesis have not been thoroughly investigated. Here we used RT-PCR, western blot, and immunocyto-
chemistry to show that adult hippocampal NPCs abundantly express Nurr1. We then examined the effect of
Nurr1 activation on adult hippocampal NPCs using amodiaquine (AQ), an anti-malarial drug that was recently
discovered to be aNurr1 agonist. Cell proliferation assay showed that AQ significantly increased cell proliferation.
AQ-treated NPCs showed increased levels of phosphorylation of Akt and ERK1/2 whereas AQ-treated Nurr1
siRNA-transfected NPCs showed no changes in those levels. Further immunocytochemical and immunohisto-
chemical analyses confirmed the stimulating effect of Nurr1 agonist on the proliferation and differentiation
of adult hippocampal NPCs both in vivo and in vitro. In addition to its effects on proliferation and differentiation
of NPCs, AQ-treatedmice showed a significant enhancement of both short- and long-termmemory in the Y-maze
and the novel object recognition test. These data suggest that activation of Nurr1 may enhance cognitive func-
tions by increasing adult hippocampal neurogenesis and also indicate that Nurr1 may be used as a therapeutic
target for the treatment ofmemory disorders and cognitive impairment observed in neurodegenerative diseases.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neurogenesis is a process characterized by the generation of neu-
rons from neural precursor cells (NPCs) (Kintner, 2002; Kaslin et al.,
2008). Two main brain regions where the neurogenesis persistently
takes place throughout adulthood have been described (Ming and
Song, 2005; Zhao et al., 2008). Many studies have shown adult
neurogenesis, generation and differentiation of neurons from NPCs
occurring in the subventricular zone (SVZ) of the lateral ventricle
and the subgranular zone (SGZ) of the hippocampal dentate gyrus
(DG) (Goritz and Frisen, 2012). Interestingly, adult hippocampal
neurogenesis is responsible for the regulation of cognitive functions, in-
cluding learning and memory. Increasing evidence supports the hy-
pothesis that NPCs-derived newborn neurons may play a key role in
on), hjchung@khu.ac.kr
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long- and short-term spatial memory as well as in object recognition
memory (Deng et al., 2010; Jessberger et al., 2009; Piatti et al., 2013).
Thus, increasing adult hippocampal neurogenesis by stimulating NPCs
has been suggested as a viable strategy for the enhancement of cogni-
tive functions.

Nurr1 (or Nr4a2) is a nuclear receptor acting as an intracellular tran-
scription factor and it is considered to be important for the development
of NPCs (Kim et al., 2002, 2007; Bae et al., 2009; Hong et al., 2014;
Rodriguez-Traver et al., 2015; Zetterstrom et al., 1997; Vergano-Vera
et al., 2015; Wagner et al., 1999; Park et al., 2008; Shim et al., 2007;
Saucedo-Cardenas et al., 1998; Castillo et al., 1998). Previous studies
manipulating the Nurr1 gene have demonstrated that Nurr1 plays key
roles in both the proliferation and differentiation of mouse embryonic
stem cells (Kim et al., 2002; Hong et al., 2014), mouse embryonic olfac-
tory bulb stem cells (Vergano-Vera et al., 2015) and rat NPCs of the ven-
tral midbrain, striatum, cortex, lateral ganglionic eminence, SVZ and
white matter (Kim et al., 2007; Bae et al., 2009; Wagner et al., 1999;
Park et al., 2008; Shim et al., 2007). Consistent with in vitro studies,
Nurr1 was shown to be required for maintaining the development of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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NPCs in vivo. Indeed, Nurr1 knockout mice showed reduced differentia-
tion of NPCs into neurons in the ventral midbrain, including the
substantia nigra and the ventral tegmental area (Zetterstrom et al.,
1997; Saucedo-Cardenas et al., 1998; Castillo et al., 1998), while
transplanted Nurr1-engineered NPCs exhibited an enhanced differenti-
ation of neurons in the striatum (Kim et al., 2002; Shim et al., 2007). In
particular, several studies have focused on the role played by Nurr1 in
promoting neurogenesis from dopaminergic precursors. However, to
date, the role of Nurr1 in the generation of neurons from adult hippo-
campal NPCs has not been thoroughly examined.

In addition to the role played by Nurr1 on the development of NPCs
in the Central Nervous System (CNS), recent studies suggest that Nurr1
may be involved in the regulation of cognitive functions (Hawk et al.,
2012; Hawk and Abel, 2011; Colón-Cesario et al., 2006). Indeed, both
Nurr1 knock-down and heterozygous mice showed an impairment of
hippocampus-dependent memory (Colón-Cesario et al., 2006; Rojas
et al., 2007) and Nurr1 mRNA expression was increased in the hippo-
campus following acquisition of hippocampal-dependent learning task
(Pena de Ortiz et al., 2000). Despite the fact that the underlyingmecha-
nism was not directly examined, it has been suggested that Nurr1 may
play an important role in both neurogenesis and the deficits of spatial
memory observed in juvenile mice (Ibi et al., 2008). Nurr1 was consid-
ered as an orphan nuclear receptor (Wang et al., 2003; Law et al., 1992)
until a very recent study identified a selective and potent agonist for
Nurr1: an anti-malarial drug amodiaquine (AQ) which stimulates
Nurr1's transcriptional function via a direct interaction with its ligand-
binding domain (Moon et al., 2015). To date, effects of AQ on adult
hippocampal neurogenesis have not been investigated. Taking advan-
tage of AQ's agonistic effect on the activation of Nurr1, we examined
whether Nurr1 can regulate cognitive functions via the induction of
adult hippocampal neurogenesis.

In the present study, we aimed to address twomain questions. First,
using a Nurr1-specific agonist, we studied the effect of Nurr1 activation
on adult hippocampal neurogenesis. Second, we examined the effect of
the neurogenic Nurr1 agonist on cognitive functions in mice. Here we
show for thefirst time that agonist-mediatedNurr1 activation enhances
adult hippocampal neurogenesis and increases learning and memory
processing via a direct neurogenic action of Nurr1.

2. Materials and methods

2.1. Rat adult hippocampal NPCs culture

Rat adult hippocampalNPCswere purchased fromChemicon (Catalog
no. SCR022, Billerica, MA). These are ready-to-use primary NPCs isolated
from the DG of adult Fisher 344 rats. These self-renewing NPCs have a
potential to differentiate into neurons and express markers representing
the stages of adult hippocampal neurogenesis such as Ki67, doublecortin
(DCX), neuronal nuclear antigen (NeuN) likewise NPCs of mice
(Marschallinger et al., 2015; Jarvinen et al., 2010; Jin et al., 2011;
Rabenstein et al., 2015). They were grown in a neural stem cells expan-
sion medium containing Dulbecco's modified Eagle's medium (DMEM)/
F12 medium (Gibco/Invitrogen, Carlsbad, CA) with B27 supplement, L-
glutamine, 1× solution of penicillin, fungizone, streptomycin, and basic
FGF (bFGF, 20 ng/mL). Tissue culture glass or plastic wares that were
used to culture hippocampal NPCs were coated with laminin (5 μg/mL)
and poly-L-ornithine (10 μg/mL). These cells were maintained at 37 °C
in a 5% CO2 humidified incubator and passaged once every 3–4 days.
All the in vitro experiments were performed with passage 6–8 rat adult
hippocampal NPCs, and those passaged cells did not show any features
in issues of aging/maturity/differentiation.

2.2. Reverse transcription polymerase chain reaction (RT-PCR)

Total RNA from cortical neuronal cells was extracted using the
Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer's instructions and was reverse transcribed using the Su-
perscript II reverse transcriptase (Life Technologies, Rockville, MD). An
RNAcontrol tube containing all RT reagents except reverse transcriptase
was included as a negative control tomonitor genomic DNA contamina-
tion. To confirm the Nurr1 expression in rat adult hippocampal NPCs,
the resultant cDNA was amplified using primers specific for Nurr1
(sense: 5′-GAC ACT TCA CAA CTT CCA CCA GAA CT-3′ and antisense:
5′-ACT GCG ATG CGT GGC CGA TCT GC-3′) and the GeneAmp PCR Sys-
tem StepOnePlus (Applied Biosystems, Helios, Singapore). The thermal
cycling profile was as follows: 95 °C for 5 min, 38 cycles of 95 °C for
30 s, 60 °C for 1 min, and 72 °C for 1 min.
2.3. Western blot

For the determination of Nurr1 protein levels, hippocampuswas dis-
sected and homogenized in lysis buffer (150mMNaCl, 20mMTris–HCl,
10% glycerol, 5 mM EDTA, and 1% Nonidet P-40) supplemented with
protease and phosphatase inhibitors (50 μg/mL phenylmethylsulfonyl
fluoride, 10 μg/mL aprotinin, 25 μg/mL Leupeptin, and 100 nM
orthovanadate). Rat adult hippocampalNPCswere lysed in a buffer con-
taining 20 mM Tris–HCl (pH 7.4), 1 mM EDTA, 140 mM NaCl, 1% (w/v)
Nonidet P-40, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride,
50 mM NaF, and 10 μg/mL aprotinin. Protein samples were separated
by 12% SDS-PAGE and electrotransferred to a polyvinylidene difluoride
membrane (Bio-Rad, Hercules, CA). The membranes were soaked in
blocking buffer (1× Tris-buffered saline, 1% BSA, 1% nonfat dry milk)
for 1 h and incubated overnight at 4 °C with the primary antibody
against Nurr1 (Santa Cruz Biotechnology, Dallas, TX; 1:500). Blots
were developed using a peroxidase-conjugated anti-rabbit IgG and
a chemiluminescent detection system (Santa Cruz Biotechnology,
Dallas, TX). The bands were visualized using a ChemicDoc XRS system
(Bio-Rad, Hercules, CA) and quantified usingQuantity One imaging soft-
ware (Bio-Rad, Hercules, CA).
2.4. Immunocytochemistry

Rat adult hippocampal NPCs were fixed with 4% paraformaldehyde
(Sigma-Aldrich, St. Louis, MO) in PBS for 10 min at room temperature.
After blocking with 3% normal goat serum (Vector Laboratories,
Burlingame, CA) and 1% BSA (Sigma-Aldrich, St. Louis, MO), the slides
were incubated with primary antibodies to Nurr1 (Santa Cruz Biotech-
nology, Dallas, TX, 1:200) overnight at 4 °C. After washes, the slides
were incubated with a secondary Cy3-goat anti-rabbit IgG (Jackson
Immunoresearch, West Grove, PA; 1:400) at room temperature for
4 h. Cells were counterstained with 4–6-diamidino-2-phenylindole
(DAPI) before mounting and images were acquired by the Carl Zeiss
LSM 700Meta confocal microscope (Carl Zeiss, Oberkochen, Germany).
2.5. Cell proliferation assay

For the evaluation of effect of Nurr1 agonist AQ (Amodiaquin
dihydrochloride dehydrate, Sigma-Aldrich, St. Louis, MO) on cell prolif-
eration, the proliferation index of each group was determined using the
cell counting kit-8 (CCK-8) method (Enzo Life Science Inc., Lausen,
Switzerland) according to the manufacturer's instructions. Cells in the
exponential phase of growth were seeded in 24-well plates at a density
of 3 × 105 cells/well, and cultured in F12/DMEM (500 μL) supplemented
with 0.1% B27 (24wells per group). Cells were treatedwith AQ (10, 100
and 1000 nM) for 24, 48 and 48 h. In brief, 20 μL of CCK-8 solution was
added into each well (containing 200 μL of medium), and further cul-
tured for 2 h at 37 °C. The absorbance of each group at 450 nm was de-
tected (n = 3) using an absorbance microplate reader (Molecular
Devices, Sunnyvale, CA) and it was directly proportional to the number
of living cells.
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2.6. Evaluation of cell proliferation and differentiation

Cell proliferation and differentiation were assessed by performing
immunocytochemical staining for BrdU and counting the number of
BrdU and DCX-positive cells, respectively. For immunocytochemical de-
tection of BrdU in hippocampal NSCs, the fixed cells were incubated in
2 M HCl and 0.3% Triton X-100 for 30 min followed by incubation in
0.1 M boric acid (pH 8.0) for 10 min, after which cells were treated
with AQ 10 nM for 24 h, 48 h and 48 h. Cells were incubated in a
blocking solution (0.3% Triton X-100, 1% BSA, and 3% normal goat
serum in PBS) for 2 h. After overnight incubation with a primary anti-
body (mouse anti-BrdU, 1:400; Santa Cruz Biotechnology, Dallas, TX)
at 4 °C, cells were rinsed with PBS, followed by incubation with a
secondary antibody (Alexa Fluor 488 goat anti-mouse IgG, 1:400,
Gibco/Invitrogen, Carlsbad, CA) for 4 h at room temperature. BrdU-
labeled cells were visualized by the Carl Zeiss LSM 700 Meta confocal
microscope (Carl Zeiss, Oberkochen, Germany).

2.7. RNA interference

Rat Nurr1 small interfering RNA (siRNA duplexes (SR513154)) was
purchased from Origene (Rockville, MD), three different strands of
siRNA were pooled in this siRNA reagent in order to target different
parts of the Nurr1 mRNA to improve knockdown efficiency. The siRNA
sequences targeting Nurr1, as the manufacturer provided, were the fol-
lowing. SR513154A – rGrCrArGrUrUrArArGrArCrArArArUrGrUrArArGr
GrCrAAA, SR513154B – rGrGrArArGrArUrUrGrCrArArArUrGrUrArUrGr
ArUrGrGGA, and SR513154C – rArGrArUrGrArUrArCrUrCrArArCrAr
UrArUrCrCrArGrCAG. Scrambled siRNA (Origene, Rockville, MD) was
used as a control. Adult rat hippocampal NPCs were transfected using
Lipofectamine® 2000 siRNA Transfection kit (Life Technologies, Rock-
ville,MD), afterwhich these cellswere utilized for the functional studies
24 h later then treatedwith AQ10 nM for 0 h, 2 h, 4 h, 8 h, 12 h and 24 h.

2.8. Animals and administration

Adult (8 weeks) male C57BL/6 mice were purchased from Koatech
(Pyeongtaek, South Korea) and acclimatized for 1 week before the
experiment. All animals were housed in accordance with the Guide
to Care and Use of Experimental Animals. Experimental procedures
were approved and reviewed by the regulation of the Institutional
Animal Care and Use Committee in Konyang University. For activation
of Nurr1, mice injected intraperitoneally with AQ at concentration of
20 mg/kg, 2 times per day at 12 h intervals, for 14 days. The AQ dose
(20mg/kg) used in this studywas referred fromprevious report regard-
ing the activating effect of AQonNurr1 in rodent (Moon et al., 2015). AQ
was diluted in 0.9% saline and prepared before administration. Two
weeks after the last AQ injection, mice were sacrificed and analyzed.

2.9. Immunohistochemistry and quantification

For immunohistochemical analysis, brain sectionswere rinsed brief-
ly in phosphate buffered saline and treated with 1% hydrogen peroxide
for 15min. The sectionswere incubatedwithmouse anti-Ki67 antibody
(1:500; Abcam, Cambridge, UK) or goat anti-doublecortin (DCX) anti-
body (1:1000; Santa Cruz Biotechnology, Dallas, TX) overnight at 4 °C.
The sections were then incubated with biotinylated horse anti-mouse
IgG or biotinylated horse anti-goat IgG (1:200; VECTOR, Burlingame,
CA) and avidin-biotin-peroxidase complex solution, and then visualized
with a SIGMA FAST™ 3.3′-Diaminobenzidine tablet (Sigma-Aldrich, St.
Louis, MO) as a chromogen. For the double-labeling of Ki67 and DCX,
brain sections were incubated with mouse anti-Ki67 antibody and
goat anti-DCX 16 h at room temperature in the presence of 0.3% Triton
X-100. After rinsing in PBS buffer, the sections were then incubated
with Alexa 488-conjugated donkey anti-mouse IgG (1:200; Jackson
ImmunoResearch, West Grove, PA) and Alexa 594-conjugated donkey
anti-goat IgG (1:200; Jackson ImmunoResearch, West Grove, PA) for
2 h at room temperature. Stained sections were mounted on gelatin
coated slides and coverslipped using fluorescent mounting medium
with DAPI. To quantify numbers of Ki67 and DCX-positive cells in the
DG, the images were processed and analyzed using Image-Pro Plus 6.0
program (Media Cybernetics, Rockville, MD). The analysis was per-
formed blindly in both hemispheres of six brain sections per animal.

2.10. Y maze

The Y-maze apparatus has three arms separated by 120° angles
(30 cm long and8 cm wide with 15 cm high) extending from a central
space (8 × 8 cm). Eachmousewas placed in one arm and allowed to ex-
plore freely for 5 min to assess their rates of spontaneous alternation.
Spontaneous alternation is defined as successive entries into three dif-
ferent arms consecutively without repetition (i.e. ABC, BCA but not
ABA). Spontaneous alternation percentage was calculated by equation
[successive entries / (total arm entries − 2) × 100].

2.11. Novel object recognition test

The novel object recognition test (NORT) was performed in an open
field box (45 × 45× 45 cm). Prior to the test, micewere allowed a habit-
uation period of 5min in the test box without any objects for three con-
secutive days. After habituation, mice were placed into the test box and
allowed to explore two identical objects for 3 min. The objects used in
this study were wooden blocks of the same size but of different shape
(defined as a familiarization session). 24 h after the familiarization ses-
sion, mice were allowed to explore with one familiar object and one
novel object for 3 min (defined as a test session). All sessions were re-
corded and analyzed using a video tracking system (EthoVision
XT 10.0, Noldus Information Technology, Wageningen, Netherlands).
The time that themice spent exploring each of the objects, or object rec-
ognition time, was measured for each session. The object recognition
timewas defined as the timewhenmicewere facing, sniffing, and biting
the object or staying within 2 cm of it. Results were expressed as
percentage of novel object recognition time [discrimination index =
tnovel/(tnovel + tfamiliar) × 100].

2.12. Statistical analysis

The experiments were repeated three times and were performed in
triplicate. The results are shown asmean± SEM. Statistical significance
between groups were analyzed by Student's unpaired t-test using
GraphPad Prism 5 (GraphPad Software, La Jolla, CA). A p-value b0.05
was considered statistically significant.

3. Results

3.1. Expression of Nurr1 in adult rat hippocampal precursor cells

The expression of Nurr1 has been characterized in several NPCs and
regions of the rodent brain (Bae et al., 2009; Moon et al., 2015; Xiao
et al., 1996). However, there is no evidence of the presence of Nurr1 in
adult hippocampal NPCs. Therefore, to detect the expression of Nurr1
in adult hippocampal NPCs, we measured the mRNA and protein levels
of Nurr1 using RT-PCR, western blot and visualized the Nurr1 using im-
munocytochemistry. Since the rodent brain exhibits abundant expres-
sion of Nurr1 (Zetterstrom et al., 1996), we used the rat brain as a
positive control to detect Nurr1 expression. The result of the RT-PCR
analysis indicated that Nurr1mRNA is expressed in adult hippocampal
NPCs, adult rat hippocampus, and whole rat brain (Fig. 1A and Supple-
mentary Fig. 1A). The results of the western blot analysis also revealed
the presence of Nurr1 protein in adult hippocampal NPCs and the rat
brain (Fig. 1B). Furthermore, both immunocytochemistry and western
blot analysis confirmed the expression of Nurr1 proteins in adult rat



Fig. 1. Expression of Nurr1 in adult rat hippocampal NPCs. (A) RT-PCRwasperformed to detect themRNA expression ofNurr1 in rat hippocampal NPCs. Result showed comparative level of
Nurr1 mRNA in both rat brain and adult hippocampal NPCs. (B) Western blot was carried out to compare the protein level of Nurr1 in the rat brain and adult hippocampal NPCs. Data
showed similar expression level of Nurr1 protein in both samples. (C) Immunocytochemistry was conducted to confirm the Nurr1 protein expression in rat hippocampal NPCs. We
observed abundant expression of Nurr1 in nucleus of adult hippocampal NPCs. Scale bar = 10 μm.
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hippocampal NPCs (Fig. 1C, Supplementary Fig. 1B and Supplementary
Fig. 2). Thus, our data clearly show that adult rat hippocampal NPCs ex-
press the nuclear receptor Nurr1.

3.2. Nurr1 agonist stimulates proliferation and differentiation of adult rat
hippocampal NPCs

It has been shown that Nurr1 plays a critical role in the development
of neural precursor/stem cells. (Bae et al., 2009; Park et al., 2006; Kim
et al., 2003; Chung et al., 2002). In addition, a recent study has shown
that AQ stimulates the generation of dopaminergic neurons from neural
progenitors isolated from E14.5 rat cortex (Moon et al., 2015). To inves-
tigate the effect of Nurr1 on the proliferation of adult hippocampal NPCs
we treated the cells with the Nurr1 agonist AQ and performed CCK-8 as
a cell proliferation assay. AQ significantly increased cell proliferation in
adult rat hippocampal NPCs, showing a time-, but not dose-dependent
increase (Fig. 2A). In addition to CCK-8 assay, we further performed a
double-staining immunocytochemistry to evaluate the effect of AQ on
adult hippocampal NPCs. An increased number of DCX/BrdU co-
labeled cells demonstrate that AQ stimulates both proliferation and dif-
ferentiation of adult hippocampal NPCs, and BrdU-positive newborn
cells are differentiated to DCX-positive neuroblasts (Fig. 2B). AQ-
treated NPCs showed the phenotype of differentiating neuroblast
stained with DCX (Supplementary Fig. 2). The present study is the first
to examine whether AQ stimulates the proliferation and differentiation
of adult rat hippocampal NPCs.

3.3. The proliferative effect of Nurr1 stimulation is possiblymediated via ac-
tivation of ERK1/2 and Akt signaling pathways

In order to further characterize the molecular mechanisms underly-
ing the proliferative effects of Nurr1 activation, we investigated themo-
lecular signaling pathways activated during Nurr1 agonist-dependent
proliferation of NPCs. It has been shown by previous studies that
MAPK/ERK1/2 and PI3K/Akt signaling pathways are very important for
both the proliferation and neurogenesis of neural progenitor/stem
cells (Hao et al., 2004; Shioda et al., 2009; Le Belle et al., 2011).We con-
firmed the activation of ERK1/2 and Akt signaling pathways using
western blot analysis. As shown in Fig. 3, we observed increased
band intensity of p-ERK1/2 and p-Akt after AQ treatment in adult
hippocampal NPCs. These data indicate that the phosphorylation of
ERK1/2 and Akt signalingmolecules occurs during AQ-induced prolifer-
ation of adult hippocampal NPCs. To more clarify the significance of
Nurr1 in proliferation of adult hippocampal NPCs by activating ERK1/2
and Akt signaling pathway, we studied the effects of decreased Nurr1
expression on activation of signaling molecules by using siRNA treat-
ment. A pharmacological inhibition of Nurr1 using Nurr1 antagonists
that were yet to be developed was not available, and therefore RNA in-
terference was used to evaluate the contributions of Nurr1 in prolifera-
tion of NPCs. Phosphorylation of ERK1/2 andAktwere not changed after
AQ treatment in Nurr1 siRNA-transfected NPCs (Fig. 3). The result indi-
cates that limited levels of Nurr1 expression were not sufficient to acti-
vate ERK1/2 and Akt signaling pathways in spite of treatment of AQ, a
known agonist of Nurr1 receptor. Taken together, our data suggest
that the Nurr1 agonist AQ significantly promotes the proliferation of
rat adult hippocampal NPCs via, in part, activation of ERK1/2 and Akt
signaling pathways.

3.4. Administration of Nurr1 agonist enhances adult hippocampal
neurogenesis in mice

To confirm the proliferative effect of Nurr1 activation on adult hip-
pocampal NPCs in vivo, we conducted immunohistochemistry with a
proliferationmarker in themouse hippocampus. Ki67 has been a gener-
ally used as a proliferation marker of adult neurogenesis (Kee et al.,
2002). The result of the immunohistochemistry for Ki67 revealed that
AQ-injected mice have a significantly increased number of Ki67-
positive cells in the DG of the hippocampus compared to vehicle-
injected mice (Fig. 4). Thus, these findings confirm the proliferative ef-
fect of Nurr1 activation induced by AQ administration on adult rat hip-
pocampal NPCs. In addition, to examine the neurogenic effect of Nurr1
activation in adult hippocampal cells, we performed immunohisto-
chemistry with a marker of neuronal differentiation. Since DCX is a
marker of neuronal fate specification, it reflects the differentiation step
of adult neurogenesis, and can be a marker for adult neurogenesis
(Couillard-Despres et al., 2005). The DCX immunohistochemical analy-
sis revealed that AQ-injected mice have a significantly increased num-
ber of DCX-positive cells in the DG of hippocampus compared to
saline-injected control mice (Fig. 5). In addition to single-staining of
two separate markers representing different stages of neurogenesis,



Fig. 2. (A) Increased proliferation of adult rat hippocampal NPCs after treatment with
amodiaquine (AQ), Nurr1 agonist. The CCK-8 method was used to analyze the
proliferation of cells. The treatment with AQ (10, 100, and 1000 nM) resulted in time-
dependent increase of proliferation of hippocampal NPCs. (B) Quantitative analysis
showed that the number of BrdU and DCX-double labeled cells was increased by AQ
treatment at concentrations of 10 nM when compared with the control. All values are
indicated as mean ± SEM. ***p b 0.001 and *p b 0.05 compared to the saline-treated
control group.
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double-staining immunohistochemistry was done to further confirm
the increment of neurogenesis in DG (Jin et al., 2006; Wojtowicz and
Kee, 2006; Luzzati et al., 2006; Zonis et al., 2015). AQ-administered
mice showed increased number of cells expressing both Ki67 in the nu-
cleus and DCX in the cytoplasm (Fig. 6). Moreover, these double stained
cells exhibited a migratory morphology from SGZ to granular cell layer
(Fig. 6). Thus, it could be interpreted that AQ administration may result
in neuronal differentiation of newborn progenitors in DG. Taken togeth-
er, these immunohistochemical data suggest that the administration
of the Nurr1 agonist AQ significantly enhances adult hippocampal
neurogenesis in vivo.

3.5. Enhanced adult hippocampal neurogenesis by Nurr1 activation results
in cognitive improvement in mice

Several lines of evidence suggest that enhanced neurogenesis pro-
motes cognitive improvement in animals (Deng et al., 2010; Sahay
et al., 2011). Therefore, to examine the impact of Nurr1 neurogenic ac-
tivity on cognitive performance, AQ and saline-treated mice were
subjected to two behavioral tests. AQ-treatedmice showed a significant
increase in spontaneous alteration in the Y maze test but no significant
differences in total arm entry (Fig. 7A). This suggests that AQ-induced
Nurr1 activation improves cognitive memory without affecting motor
functions. We then tested AQ- and saline treated mice in the NORT.
AQ-treated mice spent more time exploring the novel object than the
familiar object while saline-treated mice spent an equal amount of
time exploring the novel and the familiar objects during the test session
(Fig. 7B). Mice from both groups showed no significant differences in
object exploration during the habituation session (Fig. 7B). Taken to-
gether, the present findings suggest that the neurogenic Nurr1 agonist
AQ improves learning and memory in mice.

4. Discussion

The role played by Nurr1 in the regulation of NPCs across several
brain regions has been extensively investigated. It has been suggested
that Nurr1 may exert a strong control on both the proliferation and dif-
ferentiation of NPCs into neurons. These results prompted us to further
investigate the role played byNurr1 in adult hippocampal neurogenesis.
Thefindings reportedhere suggest that Nurr1 activationmay induce the
proliferation and differentiation of adult hippocampal NPCs both in vitro
and in vivo. Moreover, we have identified two signaling pathways,
MAPK/ERK1/2 and PI3K/Akt involved in the proliferation of adult hippo-
campal NPCs. We also showed in mice that the administration of Nurr1
agonist significantly increases the expression of neurogenesis markers
in the hippocampus. Our data clearly indicate that Nurr1 can regulate
adult hippocampal neurogenesis.

Nurr1 expression has been well characterized in several NPCs but
not in adult hippocampal NPCs (Kim et al., 2002, 2007; Bae et al.,
2009; Hong et al., 2014; Rodriguez-Traver et al., 2015; Zetterstrom
et al., 1997; Vergano-Vera et al., 2015; Wagner et al., 1999; Park et al.,
2008; Shim et al., 2007; Saucedo-Cardenas et al., 1998; Castillo et al.,
1998). Thus, we investigated the expression of the nuclear receptor
Nurr1 in adult hippocampal NPCs using three independent methods:
RT-PCR, western blotting and immunohistochemistry, because effects
of an agonist that activates specific receptor should be examined
under presence of receptor (Chung et al., 2013). We found that Nurr1
is abundantly expressed in adult hippocampal NPCs (Fig. 1). To our
knowledge, this is the first study to report Nurr1 expression in hippo-
campal NPCs. Although Nurr1 has been considered an orphan nuclear
receptor, many studies have tried to identify the ligands that bind and
activate Nurr1 (Moon et al., 2015; Dubois et al., 2006). The Nurr1 ago-
nist (AQ) used in this study is an anti-malaria drug that has the potential
to activate the nuclear receptorNurr1. One recent study showed that AQ
physically binds to the ligand-binding domain of Nurr1 and it activates
theNurr1 transcriptional pathways. This result was corroborated by five
independent approaches: [3H]-CQ radioligand-binding assay, Biacore
S51 SPR sensor, fluorescence quenching analysis, nuclear magnetic res-
onance analysis and site-directed mutagenesis (Moon et al., 2015).
These experimental evidences strongly support the hypothesis that
AQ is a selective and potent Nurr1 agonist.

To our knowledge, this is the first study to investigate the effect of
AQ on adult hippocampal neurogenesis. A recent study reported that
the Nurr1 agonist AQ promotes the proliferation of dopaminergic pre-
cursor cells in vitro (Moon et al., 2015). Moreover, it has been shown
that several CNS-derived NPCs can be efficiently differentiated into neu-
rons by overexpressing Nurr1 (Bae et al., 2009; Park et al., 2006; Kim
et al., 2003; Chung et al., 2002). As we predicted, AQ significantly en-
hances both the proliferation and differentiation of neurons in the hip-
pocampal dentate gyrus. Thus, the data presented in this study suggest
that AQ treatment is sufficient to enhance adult hippocampal
neurogenesis. Interestingly, there are reports that microRNA (miRNA)
regulates self-renewal of neural stem cells and neurogenesis (Shi
et al., 2010). Recent study identified that miR-124, one of miRNAs
enriched in the brain, regulates adult neurogenesis in the subventricular



Fig. 3. Changes of phosphorylation of ERK1/2 and Akt signaling pathways after AQ treatment or siRNA transfection in adult rat hippocampal NPCs. (A) Efficiency of siRNA silencing was
determined by western blot. In adult rat hippocampal NPCs, the Nurr1 receptor was knocked-down by transfection of siRNA. (B) Phosphorylation of both ERK1/2 and Akt were
increased by treatment with 10 nM of AQ in adult rat hippocampal NPCs while those in Nurr1 siRNA transfected showing decreased expression of Nurr1 receptor were not changed.
All values are indicated as mean ± SEM. *p b 0.05 compared to the control group.
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zone by downregulation of Sox9 translation (Shen and Temple, 2009). It
could be applicable to use such miRNAs as markers of neurogenesis to
support the data from analysis of neurogenic markers expression, espe-
cially in in vitro studies. Further studies are needed to identify miRNAs
regulating the adult hippocampal neurogenesis.

In addition to the direct evidence suggesting that AQ may promote
proliferation of adult hippocampal NPCs in vitro, phosphorylation of
Akt and ERK1/2 were found to be increased after AQ treatment. More-
over, RNA interference test showed that phosphorylation of ERK1/2
and Akt were not changed after AQ treatment that is certain levels of
Fig. 4. Proliferative effect of Nurr1 activation induced by AQ on NPCs of dentate gyrus of hip
withdrawal period was taken. Immunohistochemistry with Ki67, a proliferation marker, was
administration of AQ significantly increased the number of Ki67-positive cells of dentate gyr
saline-treated control group.
Nurr1 expression are required for activation of ERK1/2 andAkt signaling
molecules. Consistently, it is reported that phosphorylation of signaling
pathways such asMEK1/2-ERK1/2 and PI3K-Akt pathways is affected by
Nurr1 expression level (Jacobsen et al., 2008; Do, 2014). Both PI3K/Akt
and MAPK/ERK pathways are major signaling pathways responsible
for adult hippocampal neurogenesis (Chung et al., 2013; Garcia-Yague
et al., 2013; Fan et al., 2009; Sacchetti et al., 2006; Jiang et al., 2015;
Peltier et al., 2007; Vithayathil et al., 2015). Although it is not examined
the role of other pathways except two pathways, PI3K/Akt pathway and
MAPK/ERK, these data propose important intimations. Previous studies
pocampus. C57BL/6 mice were administered with AQ for 2 weeks, and then 2 weeks of
conducted in the sacrificed brain tissue, especially including hippocampal formation. The
us in C57BL/6 mice. All values are indicated as mean ± SEM. *p b 0.05 compared to the



Fig. 5. Neurogenic effect of Nurr1 activation induced by AQ on hippocampal NPCs. AQ-administered C57BL/6 mice were sacrificed after two weeks of treatment and withdrawal each.
Immunohistochemistry with doublecortin (DCX), a marker of neuronal fate specification in adult neurogenesis, was conducted in the sacrificed brain tissue, especially hippocampus
part. The immunoreactivity of DCX showed that AQ significantly increased the number of DCX-positive cells of dentate gyrus in C57BL/6 mice. All values are indicated as mean ± SEM.
*p b 0.05 compared to the saline-treated control group.
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reported that the proliferation of adult hippocampal NPCs requiresmul-
tiple signaling pathways such as ERK1/2, PI3K/Akt and STAT3 signaling
pathways. These signalingmolecules were found to be necessary for the
increase in neurogenesis induced by the treatment with valproic acid
(Hao et al., 2004), ghrelin (Chung et al., 2013), hexarelin (Johansson
et al., 2008), basic fibroblast growth factor-2 and sonic hedgehog
(Peltier et al., 2007). In addition, little is established on the related path-
ways involving Nurr1 activation induced by Nurr1 agonist. Therefore,
future study should be aimed at unraveling these signaling pathways.
Nevertheless, our findings indicate that AQ treatment may promote
adult hippocampal neurogenesis and also suggest that this effect may
be mediated by Nurr1 activation and the phosphorylation of Akt and
ERK1/2 signaling pathways.

It has been hypothesized that neurogenesis in DG may play an im-
portant role in learning and memory and especially in spatial memory
(Deng et al., 2010; Jessberger et al., 2009; Piatti et al., 2013). In the pres-
ent study, mice with AQ treatment showed an increased percentage of
spontaneous alternation in Y-maze task and an improved discrimina-
tion index in the test session of the novel object recognition task, sug-
gesting that AQ administration enhances both short- and long-term
learning and memory in mice. A previous study has shown that both
faster acquisition and longer retention in the Morris water maze are
Fig. 6. Immunoreactivity of Ki67 and DCX in the DG of adult hippocampus. Sections were dou
showed significantly increased numbers of Ki67-positive cells, DCX-positive cells and DCX/K
subgranular zone to granular cell layer. All values are indicated as mean ± SEM. *p b 0.001 com
associated with exercise-induced increase in adult hippocampal
neurogenesis in mice (van Praag et al., 2005). Other studies also ob-
served that mice with decreased adult hippocampal neurogenesis
show impaired cognitive behaviors (Li et al., 2013; Lee et al., 2015). In-
terestingly, one placebo-controlled study reported that the intermittent
preventive treatment of AQ improves the cognitive ability of semi-
immune schoolchildren (Clarke et al., 2008). Therefore, we can specu-
late that AQ-induced cognitive enhancement may occur via a Nurr1-
dependent modulation of adult hippocampal neurogenesis.

While neuronal stem cells including neural stem cells (NSCs) in CNS
and neural crest stem cells (NCSCs) in peripheral nervous system (PNS)
have been successfully achieved to study developmental or degenera-
tive neuronal disease with adequate cell types (Lee et al., 2009;
Lafaille et al., 2012), still it is challenging to control transplanted cells
in the specific region without various risks. Since adult neural stem
cells were first identified in the mammalian brain (Ming and Song,
2005), the characterization of their functional properties allowed signif-
icant insights into the biology of stem cells and the mechanistic studies
of brain disease (Tabar et al., 2005). This population of cells has been de-
scribed as a reserve of endogenous stem cells with limited differentia-
tion potential in comparison to other types of neuronal stem cells
derived from embryonic stem cells (Lee et al., 2007; Kim et al., 2014).
ble-stained with Ki67 and DCX and co-stained cells were counted. AQ-administered mice
i67 co-labeled cells in the DG. Co-labeled cells exhibited a migratory morphology from
pared to the saline-treated control group.



Fig. 7. Effects of Nurr1 activation induced by AQ on cognitive ability of learning andmemory. After two weeks of AQ treatment and withdrawal each, the AQ-administered mice had two
behavioral tests: Y-maze test and novel object recognition test (NORT). (A) In the Y-maze test, AQ-treated group showed significant increase in spontaneous alteration compared to the
saline-treated control group. However, therewas no significant difference between the saline and AQ-treated groups. (B) In theNORT, AQ-treated group showed significant preference for
the novel object than the familiar object in the test session compared to the saline-treated control group. During the familiarization session, there was no significant preference.
(C) Representative tracing of mouse center point during test session of NORT was detected with Ethovision software. Novel and familiar object is shown as a symbol ‘N’ and ‘F’,
respectively. Values are expressed as the mean with SEM. ⁎p b 0.05 as compared to the saline-injected control group in test session.
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Current studies have shown that the direct regulation of cellular fate is
possible through the manipulation of environmental conditions (Najm
et al., 2015). In addition, more advanced technologies, including phar-
macological approaches, have been reported to increase our ability to
control cell activity, including its differentiation and cellular functions
(Kim and Lee, 2013) both in vitro and after in vivo transplantation.
Moreover, it has been suggested that promoting the differentiation of
endogenous neural stem cells, rather than introducing exogenous
cells, might be amore effective strategy tomodulate adult hippocampal
neurogenesis.

Here we showed that activation of Nurr1 induces hippocampal
neurogenesis in the mouse brain by stimulating neural stem cells. Fur-
thermore, the direct stimulation of neural stem cells exerted by AQ is
a viable pharmacological approach to regulate gene activation and to
control the differentiation of NPCs into neuronal cells. Indeed, the obser-
vation that this endogenous stem cell activation enhances cognitive
functions suggests that novel concept for pharmacological regulation
of endogenous NSC control for future studies related to stem cell regu-
lation and memory failure diseases. However, there were reports that
the discrepancies in the duration of cell maturation and the amount of
new granule cells after stimulation of NPCs in DG between two different
species; rat andmice (Snyder et al., 2009; Ray andGage, 2006). Sincewe
compared the in vivo results using C57BL/6 mice with in vitro results
using NPCs derived from fisher 344 rats, there may be a discrepancy
in effectiveness of AQ on neuronal maturation between two different
species. Thus, conclusion based on comparison between two different
species should be limited to adult hippocampal neurogenesis. Further
in vitro studies using mice adult hippocampal NPCs are needed to fur-
ther elucidate the effects of pharmacological stimulation of Nurr1 on
adult hippocampal neurogenesis and cognitive functions.

In summary, using the Nurr1 agonist AQ we first showed that Nurr1
plays an important role in the regulation of adult hippocampal
neurogenesis. AQ may increase adult hippocampal neurogenesis via, in
part, an up-regulated phosphorylation of Akt and ERK1/2. Moreover,
the Nurr1 agonist enhances both short- and long-term memory, the
cognitive processes strongly associated with adult hippocampal
neurogenesis. Taken together, these findings suggest that Nurr1
can be used as a therapeutic target for the treatment of memory disor-
ders or neurodegenerative diseases associated with impaired adult
neurogenesis. In conclusion, AQ is a viable candidate as a pharmacolog-
ical compound for treating the impairedmemory functions described in
many cognitive diseases.

Supplementary data to this article can be found online at doi:10.
1016/j.scr.2016.09.027.
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