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Abstract

Let H be a self-adjoint operator on a separable Hilbert space H; cAH; jjcjj ¼ 1: Given

an orthonormal basis B ¼ feng of H; we consider the time-averaged moments /jX jpcSðTÞ of
the position operator associated to B: We derive lower bounds for the moments in terms

of both spectral measure mc and generalized eigenfunctions ucðn; xÞ of the state c:
As a particular corollary, we generalize the recently obtained lower bound in terms of

multifractal dimensions of mc and give some equivalent forms of it which can be useful in

applications. We establish, in particular, the relations between the Lq-norms ðq41=2Þ of the
imaginary part of Borel transform of probability measures and the corresponding multifractal

dimensions.
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1. Introduction

Let H be a self-adjoint operator on a separable Hilbert space H: Let
cAH; jjcjj ¼ 1: The time evolution of the state c is given by ct ¼ expð�itHÞc:
Consider an orthonormal basis B ¼ feng of H (in fact, one can also take any
orthonormal basis of the cyclic subspace of c). The vectors en are labelled by nAN or

by nAZd (in the specific caseH ¼ l2ðZdÞ and en ¼ dn; where dn is the canonical basis

of l2ðZdÞ).
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We define the time-averaged moments of order p of abstract position operator
(associated to the basis B) as

/jX jpcSðTÞ ¼ 1

T

Z T

0

dt
X

n

ðjnj þ 1Þpj/ expð�itHÞc; enSj2:

These quantities describe the spreading of the wave packet over the basis B: Many
recent papers were devoted to the following problem: what is the relation between
the transport properties of the operator H (represented by the behaviour of

/jX jpcSðTÞ;T-þN) and its spectral properties (represented by the spectral

measure mc and the generalized eigenfunctions ucðn; xÞ associated to the state c).
The problem is to establish the links between the growth exponents

aþc ðpÞ ¼ lim sup
T-þN

log/jX jpcSðTÞ
log T

; a�c ðpÞ ¼ lim inf
T-þN

log/jX jpcSðTÞ
log T

and the spectral properties of H: Most general results obtained so far deal with the

lower bounds for a7c ðpÞ: The results obtained in 1989–1999 can be summarized as

follows: the lower bounds for a7c ðpÞ are determined by ‘‘the most continuous’’ part

of the spectral measure mc: Namely, it was shown [1,8,14,15,21] that

a�c ðpÞX
p

d
dimHðmcÞ ð1:1Þ

and [16] that

aþc ðpÞX
p

d
dimPðmcÞ: ð1:2Þ

Here d ¼ 1 for abstract basis labelled by nAN and dX1 in the special case l2ðZdÞ;
and dimHðmÞ; dimPðmÞ are the Hausdorff and packing dimension of the measure m;
respectively (for definitions, see Appendix A).
In [20] it was shown that bound (1.1) can be improved if one has some additional

information about the decay of generalized eigenfunctions ucðn; xÞ as jnj-N: One

can then take smaller value of d (in the case of a-continuous mc).
As to general upper bounds for a7c ðpÞ; there are no results available (except from

trivial ballistic upper bound in most cases where /c; enS is fast decaying in n). In
available examples with nontrivial upper bounds [5,9] one uses rather the methods
specific to the considered quantum system.
Bounds (1.1) and (1.2) clearly are not optimal in many cases. Let the measure mc

be pure point, so that dimHðmcÞ ¼ dimPðmcÞ ¼ 0: While for many models with pure

point spectrum one has dynamical localization (so that a7c ðpÞ ¼ 0 for any p40), it is

possible that a7c ðpÞ40: In the well-known ‘‘pathological’’ example of [10] one even

has aþc ðpÞ ¼ p for c ¼ d0 for any p40 (quasiballistic behaviour on the sequence of

times).
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Further, bounds (1.1) and (1.2) are always linear in p: At the same time, numerical
calculations show that for some quantum systems [9,22,23] a7c ðpÞ grow faster than
linearly (i.e. a7c ðpÞ=p is growing with p). This phenomenon is called by
physicists ‘‘quantum intermittency’’.
It was thus clear that one should find some new general lower bounds, improving

(1.1) and (1.2). In particular, the nature of the spectrum (pure point or singular
continuous) should not be so important as in (1.1) and (1.2). Some intermediate
results were obtained in [6]. Probably, most important in [6] was the understanding
that one should optimize the lower bound for a given time T rather than for all T

simultaneously. The developement of the ideas of [6] allowed to achieve a significant
breakthrough [2,3], where the new lower bounds were obtained (similar result was

simultaneously obtained in [11] in the special case l2ðNÞ by different methods and
under more restrictive assumptions). Namely, under some assumptions on mc
(in particular, for any mc with compact support),

a7c ðpÞXp

d
D7

mc
ð1=ð1þ p=dÞÞ: ð1:3Þ

Here D7
m ðqÞ are the nonincreasing functions called multifractal dimensions (or

generalized fractal dimensions) defined for any Borel probability measure m for qa1
as follows:

Dþ
m ðqÞ ¼ lim sup

e-0

log Imðq; eÞ
ðq � 1Þ log e; D�

m ðqÞ ¼ lim inf
e-0

log Imðq; eÞ
ðq � 1Þ log e; ð1:4Þ

where

Imðq; eÞ ¼
Z
R

ðmð½x � e; x þ e
ÞÞq�1
dmðxÞ:

It was pointed out in [3] that one cannot expect better general bound of this kind

(for example, (1.3) with p
d

D7ð1� p=dÞ on the r.h.s.).

The bound like (1.3) was expected to hold, because the multifractal dimensions
earlier appeared in upper bounds for dynamics for Julia matrices [5] and in heuristic
form in [22,23]. The importance of this theoretical result follows from three
observations:

1. For any qAð0; 1Þ one has [3] D�
m ðqÞXdimHðmÞ; Dþ

m ðqÞXdimPðmÞ; so that (1.3)

implies (1.1) and (1.2). At the same time it is possible that

limq-1;qo1 D�
m ðqÞ4dimHðmÞ; and similarly for Dþ and dimPðmÞ:

2. There exist pure point measures whose dimensions are positive for some or even
all qAð0; 1Þ:

3. If D�
m ðqÞ or Dþ

m ðqÞ is nonconstant on ð0; 1Þ (i.e. strictly decaying), then the

corresponding lower bound (1.3) is nonlinear in p:

At the moment when [3] was written, bounds (1.3) were rather of theoretical
interest. Now, 3 years later, the things are different. There are actually some
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examples [12,27] where one obtains nontrivial lower bounds using (1.3) in one of its
equivalent forms (our Theorem 4.3).
The first is the Schrödinger operator with barrier sparse potentials (this model was

suggested in [19]), where one gets [27] nonlinear lower bound for a�c ðpÞ: Together
with the upper bound of Combes–Mantica [9], it gives the first example of quantum
system where the phenomenon of quantum intermittency is rigorously proved. Next,
in [12] one considers Schrödinger operators with random slowly decaying potential.
In the case of pure point spectrum, one obtains a quasiballistic lower bound for the
moments of high order. One shows also in [12] for the famous ‘‘pathological’’

example of [10] that Dþ
m ðqÞ ¼ 1 for any qAð0; 1Þ; and thus bound (1.3) yields the

quasiballistic behaviour for the moments of any order p40 on some sequence of
times (the result proved by different methods in [10]). All these results in preparation
cannot be obtained using ‘‘classical’’ lower bounds (1.1) and (1.2).
What has also changed in last years, is the better understanding of multifractal

dimensions D7
m ðqÞ: In particular, the basic properties and many equivalent

definitions of D7
m ðqÞ were established in [4] (see also Theorem 4.3), which appeared

very useful in applications.
In the present paper we go further and obtain lower bounds for the time-averaged

moments which take into account not only the properties of the spectral measure mc
but also of the generalized eigenfunctions ucðn; xÞ associated to c: For this reason we
call them mixed lower bounds.
The paper is organized as follows. In Section 2 we show our basic lower bound

(Theorem 2.2) which takes into account both the spectral measure and generalized
eigenfunctions:

/jX jpcSðTÞXCðr; pÞ
Z
R

dmcðxÞðNðx;TÞ þ 1Þr;

where 0orop;

Nðx;TÞ ¼ sup fN40 j bðx;TÞSNðxÞp1=16g;

SNðxÞ ¼
X
jnjpN

jucðn; xÞj2; bðx;TÞ ¼
Z
R

dmcðyÞRðTðx � yÞÞ;

and RðuÞ is some fast decaying function such that RðuÞ ¼ 1 for any u : jujp1 (one
should think to bðx;TÞ as mcð½x � 1=T ; x þ 1=T 
Þ).
In Section 3 we derive some simplified versions of this general lower bound, where

the functions SNðxÞ do not appear explicitly. First, for any s40 let UsðxÞ ¼
supN40ððN þ 1Þ�s

SNðxÞÞ; so that SNðxÞpUsðxÞðN þ 1Þs (it is possible that
UsðxÞ ¼ þN). Then Theorem 3.1 states that

/jX jpcSðTÞXCðr; p; dÞ
Z
R

dmðxÞðbðx;TÞUsðxÞðxÞÞ�r=sðxÞ; ð1:5Þ
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where 0orop and sðxÞ is any Borel positive function such that sðxÞXd40: Bound
(1.5) can be considered (to some extent) as the generalization of the result of Kiselev
and Last [20] established for a-continuous spectral measures.
Next, we improve the bounds of [2,3]. We show that whatever the spectral measure

mc is, for any T40 the following bound holds:

/jX jpcSðTÞXCðp; qÞðImcðq; 1=TÞÞ1=q; ð1:6Þ

where q41=ð1þ p=s0Þ and s0 is some positive number depending on c;B: (One
always has s0pd; so that (1.6) holds for any q41=ð1þ p=dÞ:) Bounds (1.6) are
obtained as a direct corollary of (1.5). The proof of (1.6) we give is simpler rather
than the technical proof of [3].
In Section 4 we recall definition (1.4) of multifractal dimensions of Borel measures

and establish the lower bounds (1.3) without any assumptions on the measure mc:
We give also in Theorem 4.3 many quantities equivalent to Imðq; eÞ which give rise to
the same multifractal dimensions D7

m ðqÞ: In particular, for q41=2 one can take

instead of Im the integrals

eq�1
Z
R

dxðIm Fmðx þ ieÞÞq;

where dx is Lebesgue measure and FmðzÞ is the Borel transform of m:
If m is some integer, then for any q41=ð2mÞ one can take

e2qm�1
Z
R

dxjjRmðx þ ieÞcjj2q;

where RmðzÞ ¼ ðH � zÞ�m and the measure m is the spectral measure associated to
the state c and self-adjoint operator H: As an interesting corollary of Theorem 4.3
we show in Theorem 4.4 that the lower bound

mð½x � e; x þ e
ÞXCðxÞeg; gX1; CðxÞ40; xAA

uniform in eAð0; 1Þ on the set A of positive Lebesgue measure yields nontrivial
dynamical information about the moments of order p high enough. Such a
possibility was never investigated before.
We establish also some related (but more general) result concerning the behaviour

of D7
m ðqÞ as q-0: Namely, assume that there exist two finite positive constants C;A

such that

mð½x � e; x þ e
ÞXCeA for all xAsupp m; eAð0; 1Þ: ð1:7Þ

Then Theorem 4.5 yields

lim
q-0þ0

D7
m ðqÞ ¼ dim7

B ðsupp mÞ;
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where dim7
B are the box-counting dimensions of the support of the measure. Thus,

under condition (1.7), these quantities give information about the behaviour of the
moments of high order p:
In Appendix A we discuss relations between the multifractal dimensions and the

Hausdorff and packing dimensions of finite Borel measures. In Theorem A.1 we
generalize some result of [10] and give the lower bounds for the lower Hausdorff and
packing dimensions in terms of the Lq-norms ðq41Þ of the imaginary part of the
Borel transform of the measure.
In Appendix B we consider the lower bounds of Sections 2 and 3 in the case of

pure point spectrum and discuss their relation with the problem of dynamical
localization.
Finally, in Appendix C we derive from Theorem 2.2 some lower bounds in the case

of uniformly a-Hölder continuous measures. These bounds show that the nonlinear

behaviour of a7c ðpÞ may come from the generalized eigenfunctions even if the

multifractal dimensions are constant.

2. General mixed lower bounds

Let H be a self-adjoint operator on separable Hilbert space H and c some vector
from H with jjcjj ¼ 1: We denote by Hc the cyclic subspace spanned by H and c
and by Pc the orthogonal projection on Hc: Let B ¼ feng be any orthonormal

system in H such that HcCLðBÞ; where LðBÞ is the subspace spanned by B: For

example, one can take as B any orthonormal basis of H: Remark that jjfjj2 ¼P
n j/f; enSj2 for any fAHc: Most of the time, we shall assume that the system B

is labelled by nAN: However, in the particular case H ¼ l2ðZdÞ where B ¼
fdng; nAZd ; is the canonical basis of l2ðZdÞ; we shall use the labelling nAZd : In the
first case we shall define the dimension of the orthonormal system B equal to 1, and
in the second case equal to d: The moments of the abstract position operator
associated to the vector c and the system B are defined by

jX jpcðtÞ ¼
X

n

ðjnj þ 1Þpj/exp ð�itHÞc; enSj2; p40;

where jnj is the Zd-norm of vector n in the case of Zd-labelling and the summation is

carried over N or Zd : We shall be interested by the lower bounds for the Cesaro
averages of the position operator. At the beginning we follow the same strategy as in

[3]. Let h be some positive function from CN

0 ð½0; 1
Þ such that
R 1
0 hðzÞ dz ¼ 1: The

constants in the estimates we shall obtain will depend on h: As the function h is fixed,
we omit it in notations. For any zA½0; 1
 we have hðzÞpjjhjj

N
; so for T40

/jX jpcSðTÞX 1

jjhjj
N

1

T

Z þN

0

jX jpcðtÞhðt=TÞ dt: ð2:1Þ
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For any couple of vectors c;f and any N40 define

Dc;fðT ;NÞ ¼ 1

T

Z þN

0

X
jnjpN

/exp ð�itHÞc; enS/exp ð�itHÞf; enShðt=TÞ dt:

In particular, if f ¼ c; consider

BfðT ;NÞ � Df;fðT ;NÞ ¼ 1

T

Z þN

0

X
jnjpN

j/exp ð�itHÞf; enSj2hðt=TÞ dt

Clearly,X
n

ðjnj þ 1Þpj/exp ð�itHÞc; enSj2XðN þ 1Þp
X
jnj4N

j/exp ð�itHÞc; enSj2 ð2:2Þ

for any t40;N40: Since
R
N

0 hðzÞ dz ¼ 1 and jj expð�itHÞcjj ¼ jjcjj ¼ 1; bounds

(2.1) and (2.2) yield

/jX jpcSðTÞXCðN þ 1Þpð1� BcðT ;NÞÞ: ð2:3Þ

Let us take f ¼ POðHÞc where OCR is some Borel set and POðHÞ is the
corresponding spectral projector of operator H: Obviously, c ¼ fþ w; where
f; wAHc and /f; wS ¼ 0: It is easy to see that

BcðT ;NÞ ¼BfðT ;NÞ þ BwðT ;NÞ þ 2 ReDw;fðT ;NÞ

¼ � BfðT ;NÞ þ BwðT ;NÞ þ 2 ReDc;fðT ;NÞ

pBwðT ;NÞ þ 2ReDc;fðT ;NÞ: ð2:4Þ

As 1=T
RþN

0 hðt=TÞdt ¼ 1 and hðzÞX0;

BwðT ;NÞpjjwjj2 ¼ 1� jjfjj2: ð2:5Þ

Finally, inequalities (2.3)–(2.5) give the following lower bound for the time-averaged
moments:

/jX jpcSðTÞXCðN þ 1Þpðjjfjj2 � 2 Re Dc;fðT ;NÞÞ

XCðN þ 1Þpðjjfjj2 � 2jDc;fðT ;NÞjÞ: ð2:6Þ

Suppose that T ;N are such that

jDc;fðT ;NÞjpjjfjj2=4: ð2:7Þ
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Then (2.6) yields

/jX jpcSðTÞXCðN þ 1Þpjjfjj2=2 ð2:8Þ

with some positive constant C: To obtain a good lower bound for the Cesaro
averaged moments, one should first estimate from above Dc;fðT ;NÞ and then

optimize bound (2.8) choosing f;N depending on c and T :
Some estimate of Dc;fðT ;NÞ was obtained in [3, Theorem 3.2]. This result,

however, will not be sufficient for our purposes. To derive a better bound for
Dc;fðT ;NÞ; we shall use again the standard spectral Theorem for a self-adjoint

operator H: Namely, there exist a Borel measure mc (spectral measure of vector c)
and a unitary map Wc fromHc to L2ðR; dmcÞ such that ðWcðgðHÞcÞÞðxÞ ¼ gðxÞ for
any Borel bounded function g: In particular, ðWcðexp ð�itHÞcÞÞðxÞ ¼ exp ð�itxÞ
and for any Borel set OCR;

ðWcðfÞÞðxÞ ¼ wOðxÞ; f ¼ POc; ð2:9Þ

where wOðxÞ is the characteristic function of the set O: Recall that we denote by Pc

the orthogonal projection on Hc: For any n define

ucðn; xÞ ¼ ðWcðPcenÞÞðxÞ: ð2:10Þ

Later on in this section, the state c is fixed and we shall omit it in notations (so that
m � mc and uðn; xÞ � ucðn; xÞ). Since for a fixed n each function uðn; xÞ is defined m-
everywhere, the sequence fuðn; xÞg is well defined for m-a.e. xAR: One calls uðn; xÞ
generalized eigenfunctions of H corresponding to the vector c and the energy x in
the representation B ¼ feng: Two choices of B and thus of uðn; xÞ are of particular
interest.

1. In the case H ¼ l2ðZdÞ; H ¼ �Dþ QðnÞ; where �Df ðnÞ ¼
P

m:jm�nj¼1 f ðmÞ;
one takes as B the canonical basis of l2ðZdÞ: Then for a fixed x the function uðn; xÞ is
a solution to the generalized eigenvalue equation

�Duðn; xÞ þ QðnÞuðn; xÞ ¼ xuðn; xÞ: ð2:11Þ

One should make here an important observation. Typically, the eigenvalue equation
(2.11) has many linearly independent solutions, some growing as jnj-N; and
moreover any solution can be multiplied by some constant KðxÞ: On the other hand,
given c; the functions uðn; xÞ are uniquely defined due to (2.10). Therefore, for
m-a.e.x; uðn; xÞ is some solution to (2.11) depending on c but not any solution. In
particular, since

jjuðn; �ÞjjL2ðR;dmÞ ¼ jjPcenjjp1 ð2:12Þ
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for any n; one can easily show, integrating with m; thatX
n

ðjnj þ 1Þ�dðln2jnj þ 1Þ�1juðn; xÞj2oþN

for m-a.e. x: Therefore, uðn; xÞ cannot have power growth as jnj-N:

2. Suppose that the linear combinations of fHkcg are dense in Hc (this is

always true if H is bounded). Then one can construct the basis B of Hc

by orthonormalization of fHkcg: This basis consists of vectors en ¼
W�1

c ðRnðxÞÞ; nAN; where RnðxÞ ¼ uðn; xÞ are the orthogonal polynomials of the

spectral measure m: The restriction of H on Hc has a tridiagonal matrix

representation in this basis.
Let us continue the estimation of DðT ;NÞ: As the map Wc is unitary, we have

/exp ð�itHÞc; enS ¼ /exp ð�itHÞc;PcenS

¼/Wcðexp ð�itHÞc;WcðPcenÞSL2ðR;dmÞ ¼
Z
R

dmðxÞe�itxuðn; xÞ ð2:13Þ

and in the similar manner using (2.9),

/exp ð�itHÞf; enS ¼
Z
O

dmðxÞe�itxuðn; xÞ; ð2:14Þ

It follows directly from definition of Dc;fðT ;NÞ and (2.13)–(2.14) that

Dc;fðT ;NÞ ¼
Z
O

Z
R

dmðxÞ dmðyÞĥðTðx � yÞÞSNðx; yÞ; ð2:15Þ

where ĥ is the Fourier transform of h and

SNðx; yÞ ¼
X
jnjpN

uðn; xÞuðn; yÞ:

Consider the following positive function on R:

RðuÞ ¼ 1; jujp1 and RðuÞ ¼ sup
z:jzjXjuj

jĥðzÞj2; juj41:

Since hACN

0 ð½0; 1
Þ; the function R is bounded, even, monotonous in juj and fast

decaying at infinity. Since jĥðuÞjp1;

jĥðuÞj2pRðuÞp1 ð2:16Þ

for any uAR: Define the function

bðx;TÞ ¼
Z
R

dmðyÞRðTðx � yÞÞ; xAR; T40: ð2:17Þ
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It is clear from definition of R that bðx;TÞ is decaying in T and mð½x � 1=T ;
x þ 1=T 
Þpbðx;TÞp1 for all x;T :

Lemma 2.1. Let

SNðxÞ ¼
X
jnjpN

juðn; xÞj2:

For any f ¼ POc the following estimate holds:

jDc;fðT ;NÞjp
Z
O

dmðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx;TÞSNðxÞ

p
: ð2:18Þ

Proof. Applying the Cauchy–Schwartz inequality to the integral over y for a fixed x

and using (2.16), we obtain:

jDc;fðT ;NÞjp
Z
O

dmðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx;TÞGNðxÞ

p
; ð2:19Þ

where

GNðxÞ ¼
Z
R

dmðyÞjSNðx; yÞj2:

For any xAR;N40 consider the following vector in H:

f ðx;NÞ ¼
X
jnjpN

uðn; xÞen:

Let gðyÞ ¼ WcðPcf ðx;NÞÞðyÞ: One can easily check that

gðyÞ ¼
X
jnjpN

uðn; xÞWcðPcenÞðyÞ ¼
X
jnjpN

uðn; xÞuðn; yÞ ¼ SNðx; yÞ:

Therefore,

GNðxÞ ¼ jjgjj2L2ðR;dmÞ ¼ jjPcf ðx;NÞjj2pjj f ðx;NÞjj2: ð2:20Þ

The system feng being orthonormal in H;

jj f ðx;NÞjj2 ¼
X
jnjpN

juðn; xÞj2 � SNðxÞ: ð2:21Þ

The result of the lemma follows from (2.19)–(2.21). &

We can obtain now the basic lower bound for the moments.
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Theorem 2.2. For any T ;N40 consider the set

OðT ;NÞ ¼ fx j bðx;TÞSNðxÞp1=16g:

For any xAR; T40 define the numbers

Nðx;TÞ ¼ sup fN40 j xAOðT ;NÞg:

We set Nðx;TÞ ¼ 0 if xeOðT ;NÞ for all N40:
For all p40; 0orop the following estimates hold with positive constants Cðr; pÞ:

/jX jpcSðTÞXCðr; pÞ
Z þN

0

dNðN þ 1Þr�1mðOðT ;NÞÞ; ð2:22Þ

/jX jpcSðTÞXCðr; pÞ
Z
R

dmðxÞðNðx;TÞ þ 1Þr: ð2:23Þ

Proof. One first proves that

/jX jpcðTÞSXCðN þ 1ÞpmðOðT ;NÞÞ ð2:24Þ

for any N40;T40: If the set OðT ;NÞ is of measure 0 (in particular, this is the case if
OðT ;NÞ is empty), the inequality is trivially true. If mðOðT ;NÞÞ40; then consider

f ¼ wOðT ;NÞc; jjfjj
2 ¼ mðOðT ;NÞÞ: The definition of OðT ;NÞ and Lemma 2.1 yield

jDc;fðT ;NÞjp1=4mðOðT ;NÞÞ ¼ 1=4jjfjj2:

Bound (2.24) then follows directly from (2.7)–(2.8). Define now the function

LpðTÞ ¼ sup
N40

ððN þ 1ÞpmðOðT ;NÞÞÞ:

It follows from (2.24) that

/jX jpcSðTÞXCLpðTÞ ð2:25Þ

with C40 uniform in p;T : From definition of LpðTÞ we have

mðOðT ;NÞÞpðN þ 1Þ�p
LpðTÞ

for any N40: Therefore, if rop;Z þN

0

dNðN þ 1Þr�1mðOðT ;NÞÞpLpðTÞ
Z þN

0

dNðN þ 1Þr�p�1

¼Cðp � rÞLpðTÞ; ð2:26Þ

where Cðp � rÞoþN: The first bound of the theorem follows from (2.25)–(2.26).
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To prove the second bound, we write the integral in (2.22) as

IrðTÞ ¼
Z
R

dmðxÞ
Z þN

0

dNðN þ 1Þr�1wOðT ;NÞðxÞ:

Since SNðxÞ are growing with N; it is clear from the definition of Nðx;TÞ that
xAOðT ;NÞ for all NA½0;Nðx;TÞÞ: Therefore,

IrðTÞX
Z
R

dmðxÞ
Z Nðx;TÞ

0

dNðN þ 1Þr�1

¼CðrÞ
Z
R

dmðxÞððNðx;TÞ þ 1Þr � 1Þ

¼CðrÞ
Z
R

dmðxÞðNðx;TÞ þ 1Þr � 1

� �
: ð2:27Þ

Since /jX jpcSðTÞX1; bound (2.23) follows from (2.22) and (2.27). &

Remark 2.1. One can obtain slightly better bounds taking ðN þ 1Þp�1ðlogðN þ
2ÞÞ�1�d; d40; instead of ðN þ 1Þr�1 in (2.26).

Remark 2.2. It follows from the results of [7,20] that the spectral measure and the
generalized eigenfunctions are not completely independent. Therefore, there is also
some relation between bðx;TÞ and SNðxÞ:

Remark 2.3. One can give the following (not rigorous) interpretation of the numbers
Nðx;TÞ: Consider the part of the wave packet c with the energy x: Then for tA½0;T 

this part of the wave packet spends at least half a time outside the ball of radius
Nðx;TÞ:

Remark 2.4. The proof can be adapted to obtain the lower bounds for more general
quantities like

1

T

Z T

0

dt
X

n

f ðjnjÞj/exp ð�itHÞc; enSj2;

where f ðzÞ is some growing function such that limz-N f ðzÞ ¼ þN: The particular

choices of interest different from f ðzÞ ¼ ðz þ 1Þp are f ðzÞ ¼ logpz or f ðzÞ ¼ expðpzÞ;
where p40:
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3. Simplified lower bounds

Let uðn; xÞ be the functions defined for a given vector c and an orthonormal

family B in the previous section: uðn; xÞ ¼ ðWcðPcenÞÞðxÞ; and SNðxÞ ¼P
jnjpN juðn; xÞj2: For any s40 define two functions

UsðxÞ ¼ sup
N40

ððN þ 1Þ�s
SNðxÞÞ; YsðxÞ ¼

X
n

ðjnj þ 1Þ�sjuðn; xÞj2;

where it is possible that UsðxÞ ¼ þN and YsðxÞ ¼ þN for some (or even all) xAR:
The functions UsðxÞ;YsðxÞ are finite for some s40 if the generalized eigenfunctions
uðn; xÞ have sufficiently fast decay at infinity (it was pointed out in the previous
section that they cannot grow faster than logarithmically). It is clear that

SNðxÞpðN þ 1Þs
UsðxÞ ð3:1Þ

for any N; x: One can easily see that

YsðxÞX
X
jnjpN

ðjnj þ 1Þ�sjuðn; xÞj2XðN þ 1Þ�s
SNðxÞ

for any N40; so that

UsðxÞpYsðxÞ: ð3:2Þ

It is also straightforward to show that YsðxÞpCðdÞUs�dðxÞ for any d40: Therefore,
considering YsðxÞ or UsðxÞ is virtually equivalent.
Since Z

R

dmðxÞjuðn; xÞj2 ¼ jjPcenjj2p1

for all n; we get for any s4dZ
R

dmðxÞYsðxÞ ¼
X

n

ðjnj þ 1Þ�sjjPcenjj2p
X

n

ðjnj þ 1Þ�soþN: ð3:3Þ

We see that if s4d; then YsðxÞoþN for a.e. x: As the growth of SNðxÞ as N-N

(determined by the rate of decay of uðn; xÞ) may depend on x; it will be convenient to
take s depending on x: Assume that sðxÞ is some positive Borel function such that
sðxÞXd40 for m-a.e. x: In principle, it is reasonable to define for any x

snðxÞ ¼ inffs40 j YsðxÞoþNg

and to take sðxÞ slightly bigger than snðxÞ: But one can also take as sðxÞ any value,
even such that YsðxÞðxÞ ¼ þN: One particular choice is to take sðxÞ constant: sðxÞ ¼
a; a40: If a4d; then one is sure that YaðxÞoþN for m-a.e. x: It is possible,
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however, that for some aod the function YaðxÞ is also finite, at least on some set of
positive measure. In this case the bound of the theorem below remains nontrivial.

Theorem 3.1. Let p40 and the function bðx;TÞ defined by (2.17). Let sðxÞ be the

positive function defined above. For any 0orop the uniform in T estimate holds:

/jX jpcSðTÞXCðr; p; dÞ
Z
R

dmðxÞðbðx;TÞGðxÞÞ�r=sðxÞ; ð3:4Þ

where Cðr; p; dÞ40 and GðxÞ is one of the two functions UsðxÞðxÞ;YsðxÞðxÞ (we adopt the

convention that ðþNÞ�g ¼ 0; g40).

Proof. Let us prove the statement of the theorem for GðxÞ ¼ UsðxÞðxÞ: For YsðxÞðxÞ
the result will then follow from (3.2). For any T40; xAR define

Mðx;TÞ ¼ ð16bðx;TÞUsðxÞðxÞÞ�1=sðxÞ � 1; Mðx;TÞX� 1:

Consider the set

AðTÞ ¼ fx j Mðx;TÞ40g:

If xAAðTÞ; then for any NA½0;Mðx;TÞ
 by (3.1),

bðx;TÞSNðxÞp bðx;TÞðN þ 1ÞsðxÞ
UsðxÞðxÞ

p bðx;TÞðMðx;TÞ þ 1ÞsðxÞ
UsðxÞðxÞ ¼ 1

16
:

Therefore, xAOðT ;NÞ for all NA½0;Mðx;TÞ
 and thus Nðx;TÞXMðx;TÞ for all
xAAðTÞ ðOðT ;NÞ and Nðx;TÞ were defined in Theorem 2.2). The second bound of
Theorem 2.2 yields:

/jX jpcSðTÞXCðr; pÞ
Z

AðTÞ
dmðxÞðMðx;TÞ þ 1Þr; 0orop: ð3:5Þ

On the other hand, it follows directly from definition of the set AðTÞ thatZ
R\AðTÞ

dmðxÞð16bðx;TÞUsðxÞðxÞÞ�r=sðxÞp1p/jX jpcSðTÞ: ð3:6Þ

Since sðxÞXd40; the result of the theorem follows from definition of Mðx;TÞ and
(3.5)–(3.6). &

Remark 3.1. If GðxÞ ¼ þN for m-a.e. x for some choice of sðxÞ; the theorem is
empty.

Remark 3.2. The result can be considered as a generalization of the result of [20],
established for a-continuous measures m: In fact, if the measure is a-continuous, then
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mð½x � e; x þ e
ÞpKðxÞea with some finite KðxÞ for m-a.e. x and any eAð0; 1Þ: One
can easily see that bðx;TÞpLKðxÞT�a with some uniform L40: Assume that
UaðxÞoþN for some a40 for all xAO; mðOÞ40: Then (3.4) immediately yields
for any 0orop

/jX jpcSðTÞXCðp; r; aÞL�r=aTr=a

Z
O

dmðxÞðKðxÞUaðxÞÞ�r=a

¼Dðp; r; aÞTr=a; D40: ð3:7Þ

This is virtually the bound of [20]. In fact, in [20] it is proved for r ¼ p; which is
slightly better than (3.7). However, the result of Theorem 3.1 is more general.

Remark 3.3. Eliminating N in bounds (3.4), we may lose the intermittency due to the
generalized eigenfunctions (see the discussion in Appendix C).
We shall derive now the lower bounds where the kernels uðn; xÞ and thus the

functions YsðxÞ;UsðxÞ do not appear explicitly. In particular, are of interest the
bounds independent of the choice of the orthonormal family B (we shall call them
‘‘basis-independent bounds’’). The results we obtain below as a direct corollary of
Theorem 3.1, improve the recent results of [2,3,17]. One can note that the proof we
present is simpler than that of [3].
Let

s0 ¼ inf s40

Z
R

dmðxÞYsðxÞoþN

				

 �

¼ inf s40
X

n

ðjnj þ 1Þ�sjjPcenjj2oþN

					
( )

:

The constant s0 depends on c and B: As it was mentioned above, one always has
s0pd: IfLðBÞ ¼ Hc; then jjPcenjj ¼ 1 for all n and it is clear that s0 ¼ d: However,

if the vector c is not cyclic andLðBÞ is considerably ‘‘bigger’’ thanHc; it is possible

that s0od; because jjPcenjj-0 as jnj-N: One can expect that it may happen if the

subspace Hc is ‘‘thin’’ and B is, for example, a basis of H: Thus, one could have

s0 ¼ 1 for some operators with absolutely continuous spectrum of infinite

multiplicity in l2ðZdÞ; d41; which could give the ballistic lower bounds for the
moments.
One should stress that the condition

Z
R

dmðxÞYsðxÞoþN ð3:8Þ

is stronger than YsðxÞoþN for m-a.e. x:
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For any qAR; e40 and any Borel measure m define the integrals

Imðq; eÞ ¼
Z
R

dmðxÞðmð½x � e; x þ e
ÞÞq�1:

In fact, it is sufficient to integrate over supp m and it is possible that Iðq; eÞ ¼ þN:

Theorem 3.2. Let cAH; jjcjj ¼ 1 and m the corresponding spectral measure. Let s0
be the positive number defined above, p40; q0 ¼ 1

1þp=s0
: For any qAðq0; 1Þ the uniform

in T estimate holds:

/jX jpcSðTÞXCI1=q
m ðq;T�1Þ: ð3:9Þ

In particular, this is always true for q41=ð1þ p=dÞ (basis-independent lower bounds),
and in this case the constant C depends only on p; q but not on c and m:

Proof. Let qAðq0; 1Þ; b ¼ 1=q � 1: Since bop=s0; one can represent it as b ¼ r=s

with some rop; s4s0: Consider the integrals

Jmðq; eÞ ¼
Z
R

dmðxÞðbðx; e�1ÞÞq�1: ð3:10Þ

Let e ¼ 1=T : Applying the Hölder inequality, one can estimate

ðJmðq; eÞÞ1þbp
Z
R

dmðxÞðbðx;TÞYsðxÞÞ�b
Z
R

dmðxÞYsðxÞ
� �b

pCðs; bÞ
Z
R

dmðxÞðbðx;TÞYsðxÞÞ�b; ð3:11Þ

since s4s0 and thus
R
R

dmðxÞYsðxÞoþN: The result of Theorem 3.1 with sðxÞ � s

and (3.11) yield

/jX jpcSðTÞXCJ1=q
m ðq;T�1Þ: ð3:12Þ

The integral Jmðq; eÞ can be written as

Jmðq; eÞ ¼
Z
R

dmðxÞðrðx; eÞÞq�1;

where

rðx; eÞ ¼
Z
R

dmðxÞR x � y

e

� �
:

Recall that the function RðuÞ is positive, fast decaying at infinity and RðuÞ ¼ 1 for all
u : jujp1: Recent result of [4] established the equivalence of integrals Imðq; eÞ and
Jmðq; eÞ for qAð0; 1Þ in full generality (i.e. for any Borel probability measure m).
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Namely, the two integrals are either both finite or both equal to þN: Moreover,
there exist finite positive constants (depending only on q and on the choice of the
function R; i.e. of h) such that

C1Imðq; eÞpJmðq; eÞpC2Imðq; eÞ ð3:13Þ

for any eAð0; 1Þ: The statement of the theorem follows from (3.12) and (3.13). &

Remark. One can see that the r.h.s. of (3.9) decays in q for a fixed T : Therefore, one
has interest to take q close to q0:

4. Multifractal dimensions of spectral measures

The growth exponents of integrals Imðq; eÞ are closely related with the multifractal

dimensions of probability measures. One defines them for any qAR; qa1 as follows:

Dþ
m ðqÞ ¼ lim sup

e-0

log Imðq; eÞ
ðq � 1Þlog e;

D�
m ðqÞ ¼ lim inf

e-0

log Imðq; eÞ
ðq � 1Þlog e:

In fact, one can adopt this definition for any finite measure m; and the dimensions of
m are identical with the dimensions of probability measure n ¼ m=mðRÞ:
Defined in such a way, the quantities Dþ

m ðqÞ; D�
m ðqÞ are decreasing with q and

0pD�
m ðqÞpDþ

m ðqÞpþN for any q: Some basic properties of the functions D7
m ðqÞ;

such as continuity on the set of q’s where they are finite (except maybe q ¼ 1), are
established in [4].
Let f ðqÞ be some monotonous function. We define

f ðr þ 0Þ ¼ lim
q-r;q4r

f ðqÞ

and in the similar way for f ðr � 0Þ: As an immediate consequence of Theorem 3.2,
we obtain the following.

Corollary 4.1. Under the conditions of Theorem 3.2, for any p40

a7c ðpÞXp

s0
D7

m ð1=ð1þ p=s0Þ þ 0Þ: ð4:1Þ

In particular, the following basis-independent bounds hold:

a7c ðpÞXp

d
D7

m ð1=ð1þ p=dÞ þ 0Þ: ð4:2Þ
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Proof. The bound of Theorem 3.2 and the definitions of a7c ðpÞ;D7
m ðqÞ yield

a7c ðqÞXð1=q � 1ÞD7
m ðqÞ

for any q4q0 ¼ 1=ð1þ p=s0Þ: Taking the limit q-q0; q4q0; we obtain the
result. &

The result of this corollary generalizes the bounds

a7c ðpÞXp

d
D7

m ð1=ð1þ p=dÞÞ ð4:3Þ

obtained in [3] under the assumption that the moments of m of order high enough are
finite (which is always true if supp m is compact). The proofs of [3] can be generalized
to obtain (4.3) with s0 instead of d: Bounds (4.3) were also obtained by different

methods in [17] in the special case H ¼ l2ðNÞ; en ¼ dn under rather restrictive

assumptions that Dþ
m ðqÞ ¼ D�

m ðqÞ ¼ DðqÞ for all qAR and DðqÞoþN for some

qo1: One should stress that the result of our corollary holds in any Hilbert space for
any orthonormal family B and any spectral measure m: In particular, it is possible

that D7
m ðqÞ ¼ þN for some or even for all qo1:

As it was pointed out in [3,17], one can obtain better bound under assumption that

SNðxÞpCNs ð4:4Þ

for some s40 with constant C uniform in x;N: This condition implies UsðxÞpC:
Taking sðxÞ ¼ s in Theorem 3.1, we obtain immediately that

/jX jpcSðTÞXCðr; pÞJmð1� r=s;T�1Þ;

where Jmðq; eÞ was defined in the previous section. As we said above, the integrals

Jmðq; eÞ are equivalent to Imðq; eÞ for q40 in full generality. In the case qp0 this

equivalence can be easily established (the proof is the same as in [3]) for q4q̃; where

q̃ ¼ inffqAR j Dþ
m ðqÞoþNg:

If q̃ ¼ �N; then we obtain for any p40; using the continuity [4] of D7
m ðqÞ on ðq̃; 1Þ:

a7c ðpÞXp

s
D7

m ð1� p=sÞ:

These bounds may be better than (4.3) (even if s4d) provided D7
m ðqÞ are essentially

nonconstant for qo1:
Let us return to bounds (4.1) and (4.2). In fact, under the assumptions of [3] the

dimensions are always finite and continuous at q ¼ q0; so in this case our bound (4.2)
is identical with (4.3). Let m be any Borel probability measure on R: Define the
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following number qnA½0; 1
:

qn ¼ inf q40
X
kAZ

ðmð½k; k þ 1ÞÞqoþN

					
( )

:

If supp m is compact, then always qn ¼ 0: For measures with noncompact support qn

may take any value from ½0; 1
: It was shown in [4] that the dimensions D7
m ðqÞ are

continuous on ðqn;þNÞ\f1g and there 0pD7
m ðqÞp1: On the other hand, if qoqn;

then Imðq; eÞ ¼ þN for e small enough, in particular, D7
m ðqÞ ¼ þN: The next

statement follows directly from what is said above, Theorem 3.2 and Corollary 4.1.

Theorem 4.2. (1) Assume that qno1: Then for any pAð0; s0ð1=qn � 1ÞÞ (any p40 if

qn ¼ 0),

a7c ðpÞXp

d
D7

m ð1=ð1þ p=dÞÞ ð4:3Þ

(2) Assume that qn40: Then for any p4s0ð1=qn � 1Þ for T large enough

/jX jpcSðTÞ ¼ þN:

Remark 4.1. We do not control the upper bounds for the moments. Therefore, it is
possible that in the second case the moments are infinite from the beginning, i.e. for
the state c itself.

Remark 4.2. If p ¼ s0ð1=qn � 1Þ; one always has bound (4.1), but one cannot say
whether the moments are finite or not. This case is more delicate.

Remark 4.3. In some cases one has a priori ballistic upper bound for the moments

jX jpcðtÞ for any p40: It follows from Theorem 4.2 that qn ¼ 0 for the corresponding

measure mc:
To apply the results of Theorem 3.2, Corollary 4.1 and Theorem 4.2 to concrete

models, one should be able to calculate or rather to estimate from below the integrals
Imðq; eÞ: In fact, these quantities can be represented in many equivalent forms. We

hope that the following theorem will be useful in applications (its first statement is
used in [12,27]). Let f ðeÞ; gðeÞ be two functions from ð0; 1Þ to ½0;þN
: We shall say
that fBg if they are either both finite or both equal to þN and there exist two finite
positive constants C1;C2 such that

C1f ðeÞpgðeÞpC2f ðeÞ:

Theorem 4.3. Let m be any Borel probability measure. The following statements

hold, where the constants C1;C2 depend on the parameters such as q;m; d but do not
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depend on the choice of m:
1. For any q40

Lmðq; eÞ �
1

e

Z
R

dxðmð½x � e; x þ e
ÞÞqBImðq; eÞ;

Smðq; eÞ �
X
jAZ

ðmð½je; ðj þ 1ÞeÞÞqBImðq; eÞ:

2. Let RðuÞ be some Borel positive function on R such that inf ½�1;1
 RðuÞ ¼ d40 and

RðuÞp C

jujm þ 1

for some real m41: Define

rðx; eÞ ¼
Z
R

dmðyÞR x � y

e

� �
:

Then for any q41
m

LðRÞ
m ðq; eÞ � 1

e

Z
R

dxðrðx; eÞÞqBImðq; eÞ:

3. For any q41
2

Kmðq; eÞ � eq�1
Z
R

dxðIm Fmðx þ ieÞÞqBImðq; eÞ;

where FmðzÞ is the Borel transform of m:

FmðzÞ ¼
Z
R

dmðyÞ
y � z

; Im z40:

4. Let H be a self-adjoint operator on H;cAH; jjcjj ¼ 1 and m the corresponding

spectral measure. Let mAN: For any q4 1
2m
;

Mcðq; eÞ � e2qm�1
Z
R

dxjjRmðx þ ieÞcjj2qBImðq; eÞ;

where RmðzÞ ¼ ðH � zÞ�m:

Proof. The first statement is proved in [4]. The proof for q41 is trivial and well
known. It was conjectured many years ago that the result should also hold for
qAð0; 1Þ: However, unlike it was stated in many physicist’s papers, the proof for
qAð0; 1Þ is not the same (except the case of the measures verifying the doubling
condition) and rather nontrivial. Only in [4] it was rigorously proved in all generality
(for any Borel probability measure).
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The third statement follows from the second if one takes RðuÞ ¼ ðjuj2 þ 1Þ�1;
because

Im Fmðx þ ieÞ ¼ 1

e

Z
R

dmðyÞ
ððx � yÞ=eÞ2 þ 1

:

The same is true for the fourth statement, where one takes RðuÞ ¼ ðjuj2m þ 1Þ�1:
Let us show the second statement of the theorem. First, as R is positive and

RðuÞXd40 for uA½�1; 1
;

rðx; eÞXdmð½x � e; x þ e
Þ:

Therefore, using the first statement,

LðRÞ
m ðq; eÞXdqLmðq; eÞBImðq; eÞ: ð4:5Þ

It is thus sufficient to show that L
ðRÞ
m ðq; eÞpCImðq; eÞBSmðq; eÞ; Let Ij ¼ ½je; ðj þ 1ÞeÞ

and aj ¼ mðIjÞ; so that Smðq; eÞ ¼
P

jAZ a
q
j : One can write L

ðRÞ
m ðq; eÞ as follows:

LðRÞ
m ðq; eÞ ¼ 1

e

X
j

Z
Ij

dxðrðx; eÞÞq; ð4:6Þ

where

rðx; eÞ ¼
X

k

Z
Ik

dmðyÞR x � y

e

� �
:

As RðuÞp C
jujmþ1; it is easy to see that for any xAIj; yAIk the bound holds:

R
x � y

e

� �
p

K

jj � kjm þ 1

with some uniform constant K : Therefore, if xAIj; one can estimate

rðx; eÞpK
X

k

ak

jj � kjm þ 1
:

Since jIjj ¼ e; we obtain from (4.6)

LðRÞ
m ðq; eÞpKq

X
j

X
k

ak

jj � kjm þ 1

 !q

: ð4:7Þ
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Consider first the case when 1
m
oqp1: Using the elementary bound

ð
P

k bkÞqp
P

k b
q
k; we get

LðRÞ
m ðq; eÞpKq

X
j;k

a
q
k

ðjj � kjm þ 1Þq ¼ DKqSmðq; eÞ; ð4:8Þ

where D ¼
P

n 1=ðjnj
m þ 1ÞqoþN: Bounds (4.5) and (4.8) yield the second

statement of the theorem.
Let now q41: One can write the r.h.s. of (4.7) as

X
j

X
n

ajþn

jnjm þ 1

 !q

:

Using the bound jj
P

n hnjjp
P

n jjhnjj; where jj � jj is the lqðZÞ norm, one sees that

ðLðRÞ
m ðq; eÞÞ1=qpK

X
n

1

jnjm þ 1

X
j

a
q
jþn

 !1=q

¼ KDS1=q
m ðq; eÞ; ð4:9Þ

where D ¼
P

n

1

jnjm þ 1
oþN: Bounds (4.5) and (4.9) give the statement of the

theorem for q41: &

Remark. In [25] the behaviour of Lq-norms of Borel transform was related to the
absolute continuity of the measure ðq41Þ or the absence of the a.c. part for m (if
qAð0; 1Þ). The third statement of Theorem 4.3 shows the relation of such Lq-norms
(for q41=2) with multifractal dimensions and thus their importance (especially for
qAð1=2; 1Þ) in quantum dynamics.
As an example of application of this theorem we shall prove that the lower bound

for the measure of intervals ½x � e; x þ e
 may give some nontrivial dynamical
information. It is well known that the upper bound

mð½x � e; x þ e
ÞpCðxÞea; CðxÞoþN; aA½0; 1
 ð4:10Þ

is important for dynamics. If bound (4.10) uniform in eAð0; 1Þ holds for any x from
the set A of positive measure mðAÞ; then it is easy to show that dimHðmÞXa; and thus
we have bound (1.1) for the moments. If (4.10) holds for any xAA for some sequence
ek-0 (may be depending on x), then the similar bound is true for dimPðmÞ: What is
surprising, is the fact that the lower bound uniform in eAð0; 1Þ

mð½x � e; x þ e
ÞXCðxÞeg; CðxÞ40; gX1; ð4:11Þ

on the set of positive Lebesgue measure also yields rather nontrivial dynamical
information for the moments of high order of position operator (and the

corresponding lower bounds for a7c ðpÞ are always nonlinear in p). Such a possibility

S. Tcheremchantsev / Journal of Functional Analysis 197 (2003) 247–282268



was never supposed before. One can observe that bound (4.11) may hold for pure
point measures.

Theorem 4.4. Let m be a Borel probability measure. Assume that for some gX1 bound

(4.11) holds for any xAA; where A is a set of positive Lebesgue measure and CðxÞ is

strictly positive Borel function. Then for any qAð0; 1gÞ;

D�
m ðqÞX

1� qg
1� q

: ð4:12Þ

If the spectral measure of some state c verifies the conditions of this theorem, then

a�c ðpÞX
p

s0
� ðg� 1Þ

for all p4s0ðg� 1Þ: In particular, in one dimension one always has a�c ðpÞXp � ðg� 1Þ
and thus the behaviour of the moments of high order is quasiballistic.

Bound (4.12) also holds for q41=m if the function rðx; eÞ from the second statement

of Theorem 4.3 verifies the same lower bound (4.11).

Proof. The definition of Lmðq; eÞ and the first statement of Theorem 4.3 yield

Imðq; eÞBLmðq; eÞX
1

e

Z
A

dxðmð½x � e; x þ e
ÞÞq
Xeqg�1

Z
A

dxCqðxÞ ¼ Keqg�1;

where K40 because the set A has positive Lebesgue measure and CðxÞ40 for all

xAA:The definition of D7
m ðqÞ and Corollary 4.1 give the result. For rðx; eÞ the proof

is the same. &

Remark. One cannot have (4.11) with go1 on the set of positive Lebesgue measure
because m is finite.
To understand better this result, consider the sums Smðq; eÞ; which are equivalent

to Imðq; eÞ and thus also yield lower bounds for the moments of position operator:

Smðq; eÞ ¼
X
jAZ

a
q
j ; aj ¼ mð½je; ðj þ 1ÞeÞÞ;

X
j

aj ¼ 1:

The behaviour of Smðq; eÞ as e-0 and thus the multifractal dimensions D7
m ðqÞ are

determined by the distribution of numbers aj depending on e for small e: In

particular, the upper and the lower bounds for aj imply some lower bounds for

Smðq; eÞ: Assume, for example, that ajpCea with uniform constant C (uniformly a-
continuous measure). Then, as q � 1o0; one can estimate:

Smðq; eÞ ¼
X

j

a
q�1
j ajXðCeaÞq�1 X

j

aj ¼ CðqÞeaðq�1Þ;

thus, D�
m ðqÞXa:
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Assume now that for all IjC½0; 1
 the uniform in e; j lower bound holds ajXCeg:
Then immediately

Smðq; eÞXCðqÞeqg�1

and D�
m ðqÞX

1�qg
1�q

: That is how one can interpret the result of Theorem 4.4. To obtain

a good lower bound for D7
m ðqÞ for any qAð0; 1Þ; in general, however, the whole

statistics of the numbers aj is necessary.

An interesting question related to the result of Theorem 4.4 is the following: what

properties of the measure m determine the behaviour of D7
m ðqÞ as q-0 (which gives

lower bound for the moments for large values of p)? We provide below a partial
answer to it. Let us recall the definition (one of two equivalent) of the support of the
measure:

supp m ¼ fxAR j 8e40; mð½x � e; x þ e
Þ40g:

One notes that mðR\supp mÞ ¼ 0:
We define also the box-counting dimensions of the set OCR (see [11]):

dimþ
B ðOÞ ¼ lim sup

e-0

log NðeÞ
log ð1=eÞ

and similarly for dim�
B ðOÞ; where

NðeÞ ¼ cardfjAZ j ½je; ðj þ 1ÞeÞ-Oa|g:

The following statement follows from more general results of [13]. However, for the
sake of completeness, we shall give below a simple direct proof of it.

Theorem 4.5. Assume that there exist two positive constants C;A such that

mð½x � e; x þ e
ÞXCeA ð4:13Þ

for all xAsupp m: (This is possible [13] only if supp m is compact). Then for all qAð0; 1Þ

dim7
B ðsupp mÞ � qA

1� q
pD7

m ðqÞpdim7
B ðsupp mÞ
1� q

:

In particular,

lim
q-0

D7
m ðqÞ ¼ dim7

B ðsupp mÞ:

Proof. Consider the sums

Sðq; eÞ ¼
X
jAZ

a
q
j ; aj ¼ mðIjÞ; Ij ¼ ½je; ðj þ 1ÞeÞ;
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where qX0 and the summation is carried only over j such that aj40: For q40 these

sums are equivalent to Imðq; eÞ due to Theorem 4.3. One observes that

Sð0; eÞXSðq; eÞ; q40; eAð0; 1Þ ð4:14Þ

and

Sð0; eÞ ¼ cardðLÞ; L ¼ fjAZ j mðIjÞ40g:

Consider the set

M ¼ fjAZ j Ij-supp ma|g;

where NðeÞ ¼ cardðMÞ is the number in the definition of dim7
B ðsupp mÞ: Let jAL: It

is clear that Ij-supp ma|; thus, jAM and LCM: Define

L� ¼ fjAZ j j � 1ALg ¼ L þ 1:

Let jAM: Due to the definition of supp m and the fact that Ij ¼ ½je; ðj þ 1ÞeÞ; one of
the number aj�1; aj is positive. Therefore, jAL�,L and thus MCðL�,LÞ: We see

that cardðLÞpcardðMÞp2 cardðLÞ: Therefore, one can take cardðLÞ instead of

cardðMÞ ¼ NðeÞ in the definition of dim7
B ðsupp mÞ: Finally, we obtain

dimþ
B ðsupp mÞ ¼ lim sup

e-0

log Sð0; eÞ
log 1=e

ð4:15Þ

and similarly for the lower limits.
Let us minorate now Sðq; eÞ for some qAð0; 1Þ: Let j be such that aj40: Then

½je; ðj þ 1ÞeÞ-supp ma| and thus one can find x0A½je; ðj þ 1ÞeÞ-supp m: Since
½x0 � e; x0 þ e
CðIj�1,Ij,Ijþ1Þ; condition (4.13) implies

aj�1 þ aj þ ajþ1XCeA:

Therefore, taking the q’s power and summating over j such that aj40;

CqeqASð0; eÞp
X

j:aj40

ðaj�1 þ aj þ ajþ1Þq

p
X
jAZ

ðaj�1 þ aj þ ajþ1Þq

p
X
jAZ

ðaq
j�1 þ a

q
j þ a

q
jþ1Þ

¼ 3Sðq; eÞ: ð4:16Þ

Finally, (4.14) and (4.16) yield

CðqÞeqASð0; eÞpSðq; eÞpSð0; eÞ ð4:17Þ

S. Tcheremchantsev / Journal of Functional Analysis 197 (2003) 247–282 271



with some constant CðqÞ uniform in e: The definition of D7
m ðqÞ; the first statement of

Theorem 4.3, (4.17) and (4.15) prove the statement of the theorem. &

Remark 4.4. Without condition (4.13) the result of the theorem may be not true.
One can give an abstract example, but we prefer to consider an example from
quantum mechanics. Let H be a self-adjoint operator with dense pure point
spectrum on some interval ½a; b
 (for example, this is the case for some random
Schrödinger operators). Assume that for some cyclic state c from the subspace of the

pure point spectrum the dynamical localization holds. Then a7c ðpÞ ¼ 0 for all p40

and thus D7
mc
ðqÞ ¼ 0 for all qAð0; 1Þ: On the other hand, ½a; b
Csupp mc; therefore

dim7
B ðsupp mcÞ ¼ 1: It is clear that the result of Theorem 4.5 is not true in this case

and, condition (4.13) fails for mc:

Remark 4.5. Condition (4.13) plays an important role [13] in the behaviour of

multifractal dimensions D7
m ðqÞ for qo0: In particular, under this condition the

dimensions are finite for all qo0 and limq-�N D7
m ðqÞpAoþN:

Remark 4.6. One says that the measure m is doubling if there exist e040;K40 such
that

mð½x � 2e; x þ 2e
ÞpKmð½x � e; x þ e
Þ

for all xAsupp m; eoe0: One can show [13] that any doubling measure with compact
support verifies (4.13) (the converse in general being not true).

Appendix A. Hausdorff and packing dimensions of measures

In this appendix we shall discuss the relations between multifractal dimensions
and Hausdorff and packing dimensions of Borel measures. For any Borel set S we
denote by dimðSÞ and DimðSÞ the Hausdorff and packing dimension of S;
respectively (for the definition of Hausdorff and packing measures and dimensions
see, for example, [11]). Let m be some finite Borel measure. We define the lower and
upper Hausdorff dimensions of m by

dim
*
ðmÞ ¼ inffdimðSÞ j mðSÞ40g;

dimnðmÞ � dimHðmÞ ¼ inffdimðSÞ j mðSÞ ¼ 1g

and similarly for the packing dimensions

Dim
*
ðmÞ ¼ inffDimðSÞ j mðSÞ40g;

DimnðmÞ � dimPðmÞ ¼ inffDimðSÞ j mðSÞ ¼ 1g:

S. Tcheremchantsev / Journal of Functional Analysis 197 (2003) 247–282272



All these dimensions lie in ½0; 1
: One can interpret them in the following way: the
measure m gives zero weight to any set S with dimðSÞodim

*
ðmÞ and is supported by

a set with Hausdorff dimension less than dimnðmÞ þ e for any e40: Similarly for the
packing dimensions.

The following inequalities hold: dim
*
ðmÞpdimnðmÞ; Dim

*
ðmÞpDimnðmÞ;

dim
*
ðmÞpDim

*
ðmÞ and dimnðmÞpDimnðmÞ (the two last follow from the fact that

dimðSÞpDimðSÞ for any set S). The dimensions dimnðmÞ � dimHðmÞ and DimnðmÞ �
dimPðmÞ are often called by physicists Hausdorff and packing dimension of m;
respectively (we adopt this definition in this paper). Mathematicians have a different

definition. They say that the measure is of exact Hausdorff dimension a if dim
*
ðmÞ ¼

dimnðmÞ ¼ a and in the same way for packing dimensions. It is clear that not all
measures have exact Hausdorff or packing dimensions.
Define now the local exponents of the measure m:

g�ðxÞ ¼ lim inf
e-0

log mðx � e; x þ eÞ
log e

; gþðxÞ ¼ lim sup
e-0

log mðx � e; x þ eÞ
log e

;

where xAsupp m: Obviously, 0pg�ðxÞpgþðxÞ for any x: It is known [1] that

g7ðxÞA½0; 1
 for m-a.e. x: It was proved in [11,18] that

dim
*
ðmÞ ¼ m� essinf g�ðxÞ ¼ sup fa j g�ðxÞXa; m-a:s:g;

dimHðmÞ ¼ dimnðmÞ ¼ m-esssup g�ðxÞ ¼ inffa j g�ðxÞpa; m-a:s:g;

Dim
*
ðmÞ ¼ m� essinf gþðxÞ ¼ sup fa j gþðxÞXa; m-a:s:g;

dimPðmÞ ¼ DimnðmÞ ¼ m-esssup gþðxÞ ¼ inffa j gþðxÞpa; m-a:s:g:

The Hausdorff and packing dimensions of the measure are related with its
multifractal dimensions in the following way: for any qo1; r41;

D�
m ðqÞXdimHðmÞ ¼ dimnðmÞXdim

*
ðmÞXD�

m ðrÞ; ðA:1Þ

Dþ
m ðqÞXdimPðmÞ ¼ DimnðmÞXDim

*
ðmÞXDþ

m ðrÞ: ðA:2Þ

It follows from the results of [4] and the expressions of Hausdorff and packing
dimensions of the measure in terms of local exponents. In particular, (A.1) implies
that if the measure m is not of exact Hausdorff dimension, then D�

m ðqÞ is always
discontinuous at q ¼ 1; and similarly for the packing dimension.
It is interesting to note that the multifractal dimensions of measures appeared in

the hidden form many years ago in the proof of absolute continuity of the spectrum
of self-adjoint operators. Let us consider the well-known sufficient condition for the
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absolute continuity of the spectral measure m [24]:Z
R

dxjIm Fmðx þ ieÞjqpCðqÞoþN ðA:3Þ

for some q41 uniformly in eAð0; 1Þ: Due to Theorem 4.3, (A.3) is equivalent to

Iðq; eÞpCeq�1: ðA:4Þ

Bound (A.4) implies that D7ðqÞX1; q41; so that D7
m ðqÞ ¼ 1 for any q4qn (see

previous section for definition of qn). In fact, condition (A.3) or (A.4) contains more

information than D7ðqÞ ¼ 1: It implies directly the absolute continuity of the
measure.
One can generalize condition (A.3) in local form if the integrals over some interval

ða; bÞ are bounded by some negative power of e: The result we prove below
generalizes one of the results of [10].

Theorem A.1. Let ða; bÞ be some interval of R such that mðða; bÞÞ40 and n is the

restriction of m on ða; bÞ: We denote by FmðzÞ the Borel transform of m:
1. Suppose that

Z b

a

dxjIm Fmðx þ ieÞjqpCe�sðq�1Þ ðA:5Þ

for some q41; sAð0; 1Þ uniformly in eAð0; 1Þ: Then

dim
*
ðnÞX1� s;

so that n gives zero weight to sets of Hausdorff dimension less than 1� s:
2. Suppose that for some q41; sAð0; 1Þ there exists a sequence en-0 such that

(A.5) holds for all e ¼ en with uniform constant C: Then

Dim
*
ðnÞX1� s;

so that n gives zero weight to sets of packing dimension less than 1� s:

Proof. Let us estimate the integrals Inðq; eÞ: Due to the third statement of Theorem
4.3,

Inðq; eÞBeq�1
Z
R

dx gqðxÞ; ðA:6Þ

where

gðxÞ � Im Fnðx þ ieÞ ¼ e
Z
ða;bÞ

dmðyÞ
ðx � yÞ2 þ e2

pIm Fmðx þ ieÞ: ðA:7Þ
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The condition of the theorem and (A.7) imply that

Z b

a

dx gqðxÞpCe�sðq�1Þ: ðA:8Þ

Let us estimate the integral over R\ða; bÞ: First, one observes that for any x; yAða; bÞ;

1

ð2b � x � yÞ2 þ e2
p

1

ðx � yÞ2 þ e2
;

so that

gð2b � xÞpgðxÞ; xAða; bÞ:

Therefore,

Z 2b�a

b

dx gqðxÞ ¼
Z b

a

dt gqð2b � tÞp
Z b

a

dt gqðtÞpCe�sðq�1Þ: ðA:9Þ

Next, it is obvious that gðxÞp e

ðx � bÞ2
for all x4b; so that

Z þN

2b�a

dx gqðxÞpCða; bÞeq ðA:10Þ

As eAð0; 1Þ; q41; bounds (A.9) and (A.10) yield

Z þN

b

dx gqðxÞpCe�sðq�1Þ: ðA:11Þ

The similar considerations give

Z a

�N

dx gqðxÞpCe�sðq�1Þ: ðA:12Þ

Finally, (A.6), (A.8), (A.11) and (A.12) imply

Inðq; eÞpCeð1�sÞðq�1Þ: ðA:13Þ

If bound (A.5) holds for all eAð0; 1Þ; then (A.13) and the definition of D�
n ðqÞ yield

D�
n ðqÞX1� s ðA:14Þ
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and if (A.5) holds for some sequence en-0; then

Dþ
n ðqÞX1� s: ðA:15Þ

Bounds (A.1)–(A.2) and (A.14)–(A.15) yield the result. &

Remark. The first statement of the theorem was proved for q ¼ 2 in [10].

Appendix B. Operators with pure point spectrum

In this appendix we shall see how the general lower bounds of the paper work in
the particular case of pure point spectrum. Assume that c belongs to the subspace of
point spectrum of operator H: For simplicity we consider the particular case of

H ¼ l2ðZdÞ; B ¼ fdng; nAZd : One can write c as

c ¼
XM
k¼1

gkgk; gk ¼ /c; gkSa0; MAN or M ¼ þN;

where Hgk ¼ xkgk; jjgkjj ¼ 1 and xkaxm for kam: It is clear that the orthonormal

system fgkgM
k¼1 is the basis of the cyclic subspaceHc of c: The spectral measure of c

is pure point:

m ¼
XM
k¼1

akdxk
; ak ¼ jgkj240:

It is easy to verify that the unitary map Wc from Hc to L2ðR; dmÞ is given by

ðWcf ÞðxkÞ ¼
1

gk

/f ; gkS; kA½1;M
:

Further, the kernels uðn; xÞ are given by

uðn;xkÞ ¼
1

gk

gkðnÞ;

and the function bðx;TÞ by

bðxk;TÞ � bkðTÞ ¼
XM
m¼1

amRðTðxk � xmÞÞ:

One can observe that bkðTÞ is decreasing in k and limT-þN bkðTÞ ¼ ak: Next, we
have

YsðxkÞ ¼
1

ak

X
n

ðjnj þ 1Þ�sjgkðnÞj2:
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The function Nðx;TÞ of Theorem 2.2 is given by

Nðxk;TÞ � NkðTÞ ¼ sup N40
X
jnjpN

jgkðnÞj2p
ak

16bkðTÞ

						
8<
:

9=
;; kA½1;M
: ðB:1Þ

The lower bound (2.23) of Theorem 2.2 reads as

/jX jpcSðTÞXCðr; pÞ
XM
k¼1

akðNkðTÞ þ 1Þr; ðB:2Þ

where 0orop: This bound, of course, is of interest only if the r.h.s. of (B.2) tends
to þN as T-N; which may happen only if M ¼ þN: As limT-N bkðTÞ ¼ ak;
one has

Nk ¼ lim
T-þN

NkðTÞ ¼ sup N40
X
jnjpN

jgkðnÞj2p
1

16

						
8<
:

9=
;:

Therefore,

lim inf
T-þN

/jX jpcSðTÞXCðr; pÞ
XN
k¼1

akðNk þ 1Þr: ðB:3Þ

If the sum in (B.3) is infinite, then limT-þN/jX jpcSðTÞ ¼ þN and so the dynamical

localization for the moment of order p (i.e. supt jX jpcðtÞpCoþN) fails. It is

interesting to compare (B.3) with the lower bound established in [26]:

lim inf
T-þN

/jX jpcSðTÞX
XN
k¼1

akdkðpÞ; ðB:4Þ

where dkðpÞ ¼
P

n ðjnj þ 1ÞpjgkðnÞj2: One can easily see from definition of Nk and

dkðpÞ that

dkðpÞX15=16ðNk þ 1Þp
X15=16ðNk þ 1Þr;

therefore bound (B.4) implies (B.3). In fact, if all the functions gkðnÞ are well

localized (each around some point nkAZd), then dkðpÞEðjnkj þ 1Þp and NkEjnkj; so
that the two bounds are essentially the same. If the sum on the r.h.s. of (B.3) is
infinite, then bound (B.2) gives us information about the rate of growth for the time-
averaged moments. Such bounds are not available in [26], where one was rather
interested by dynamical localization.
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Consider now the bound of Theorem 3.2. In our case it takes the following form:

/jX jpcðTÞSXC
XN
k¼1

akðckðTÞÞq�1
 !1=q

; ðB:5Þ

where ckðTÞ ¼
P

j:jxj�xk jp1=T aj ; q41=ð1þ p=s0Þ: Taking the limit T-þN in

(B.5), we obtain

lim inf
T-þN

/jX jpcSðTÞXC
XN
k¼1

a
q
k

 !1=q

: ðB:6Þ

If the dynamical localization for the moment of order p holds, then (B.6) yields

XN
k¼1

a
q
koþN

for any q41=ð1þ p=s0Þ: This result (with s0 ¼ d) was established by different
methods in [26].
Bound (B.2) or (B.5) can be used to prove the growth of the moments expected for

some quantum systems with pure point spectrum, provided one has necessary
information about ak; xk and gkðnÞ: The bounds in terms of the integrals

Lmðq; eÞ;L
ðRÞ
m ðq; eÞ or Mcðq; eÞ (Theorem 4.3) may be useful, if one has a good

control from below for mð½x � e; x þ e
Þ or for the powers of the resolvent
jjRmðx þ ieÞcjj:

Appendix C. Uniformly Hölder continuous measures

Let m be a Borel probability measure on R: One says that m is uniformly a-Hölder
continuous ðUaHÞ; if there exists a finite constant C such that for any eAð0; 1Þ; xAR;

mð½x � e; x þ e
ÞpCea:

One can easily see that for such measures D7
m ðqÞXa for all qAð0; 1Þ: For many such

measures D7
m ðqÞ ¼ a for all qAð0; 1Þ:

In fact, the first abstract lower bound for the moments were obtained by Guarneri
[14] and Combes [8] for the states c whose measure is UaH:

/jX jpcSðTÞXCTp=d ; p40; ðC:1Þ

so that a7c ðpÞXp=d: This ‘‘classical’’ lower bound is linear in p: One observes,

however, in numerical calculations [22,23] that a7c ðpÞmay grow nonlinearly for some

UaH measures even if the multifractal dimensions are constant on ð0; 1Þ: It is clear
that (C.1) or Theorem 4.2 cannot explain it. It was conjectured by Mantica that this
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intermittent behaviour may arise from the generalized eigenfunctions. The result we
prove below provides some possible mechanism for such a phenomenon.
Let cAH; jjcjj ¼ 1; m its spectral measure and SNðxÞ the sum of generalized

eigenfunctions defined in Section 2. We shall assume that m is UaH: For any r; g40
we define

Vðg;NÞ ¼
Z
R

dmðxÞðSNðxÞ þ 1Þ�g=a;

Wðr; gÞ ¼
Z þN

0

dNðN þ 1Þr�1
Vðg;NÞ;

where Vðg;NÞA½0; 1
 and it is possible that Wðr; gÞ ¼ þN: We introduce also the
numbers

gcðpÞ ¼ sup gX0

Z þN

1

dt t�1�gjX jpcðtÞ ¼ þN

				

 �

One can consider that jX jpcðtÞBtgðpÞ; t-þN in average sense.

Theorem C.1. (1) Assume that Wðr; gÞ ¼ þN for some 0orop; g40: Then

Z þN

1

dt t�1�gjX jpcðtÞ ¼ þN: ðC:2Þ

(2) For all p40 the inequality holds:

gcðpÞXsupfgX0 j (rAð0; pÞ; Wðr; gÞ ¼ þNg: ðC:3Þ

Proof. We start with the lower bound (2.22) of Theorem 2.2:

/jX jpcSðTÞXC

Z þN

0

dNðN þ 1Þr�1mðOðT ;NÞÞ; 0orop;

where

OðT ;NÞ ¼ fx j bðx;TÞSNðxÞp1=16g; bðx;TÞ ¼
Z
R

dmðxÞRðTðx � yÞÞ;

and R is some bounded fast decaying function. Since m is UaH; it is easy to show (the
proof is identical with the proof of Theorem 2.5 in [21]) that

bðx;TÞpCT�a; TX1:
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Clearly,

OðT ;NÞ*AðT ;NÞ � fx j 16CSNðxÞpTag;

and thus

/jX jpcSðTÞXC

Z þN

0

dNðN þ 1Þr�1
Z
R

dmðxÞwAðT ;NÞðxÞ: ðC:4Þ

Let us multiply by ðT þ 1Þ�1�g the both sides in (C.4) and integrate over ½1;þNÞ:
Z þN

1

dTðT þ 1Þ�1�g/jX jpcSðTÞXC

Z þN

0

dNðN þ 1Þr�1
Z
R

dmðxÞZðN; xÞ; ðC:5Þ

where

ZðN; xÞ ¼
Z þN

1

dTðT þ 1Þ�1�gwAðT ;NÞðxÞ:

For given x;N one observes that xAAðT ;NÞ iff TXð16CSNðxÞÞ1=a � T0ðN; xÞ:
Without loss of generality, we may assume that T0ðN; xÞX1: Thus,

ZðN; xÞ ¼ 1

g
ðT0ðN; xÞ þ 1Þ�g

XKð1þ SNðxÞÞ�g=a ðC:6Þ

with some positive constant K uniform in N; x: On the other hand, since /jX jpcSðTÞ
is Cesaro average of the moments jX jpcðtÞ; one can easily show that

Z þN

1

dTðT þ 1Þ�1�g/jX jpcSðTÞpC

Z þN

1

dt t�1�gjX jpcðtÞ: ðC:7Þ

The first statement of the theorem follows from (C.5)–(C.7). The second statement
follows directly from the first and the definition of gcðpÞ: The proof is

completed. &

To understand better the statement of the theorem, assume that UsðxÞ ¼
supN SNðxÞN�soþN for all xAB; where mðBÞ40: Then we get immediately
for NX1;

Vðg;NÞXDN�sg=a

with positive uniform constant D: Then Theorem C.1 yields

gcðpÞXpa=s;
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which is virtually equivalent to the bound of Kiselev–Last [20]

/jX jpcSðTÞXCTpa=s

(this bound was established in [20] for a slightly larger class of a-continuous
measures).
However, the function Vðg;NÞ for a given g40 may tend to 0 as N-þN slower

than N�sg=a which would give larger lower bound for gcðpÞ: This lower bound may

be nonlinear in p: To see why it may happen, consider the similar phenomenon in the
case of integrals Imðq; eÞ: It is now well known that one may have

lim
e-0

log mð½x � e; x þ e
Þ
log e

¼ a

for m-a.e. x; but at the same time D7
m ðqÞ4a for some or even all qAð0; 1Þ

(equivalently, Imðq; eÞ grows faster than eaðq�1Þ as e-0). This is possible due to the big

contributions to the integral from the sets of energies of vanishing measure (as e-0),
where mð½x � e; x þ e
Þ=ea is very small. Similar phenomenon may happen for
Vðg;NÞ: If SNðxÞ=Ns is small on some set of vanishing measure, it may happen that

Vðg;NÞ tends to 0 slower than N�sg=a (although SNðxÞBCðxÞNs; N-þN; for any
fixed x). It would be interesting to check it, for example, in the case when the family

B is obtained by orthonormalization of Hkc; because one has a good control of the
generalized eigenfunctions ucðn; xÞ (orthogonal polynomials of the measure m) and
thus of SNðxÞ:
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