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Abstract

Let H be a self-adjoint operator on a separable Hilbert space #, W e #,||y|| = 1. Given
an orthonormal basis # = {e,} of #, we consider the time-averaged moments ¢ |X|§/ >(T) of
the position operator associated to 4. We derive lower bounds for the moments in terms
of both spectral measure pu, and generalized eigenfunctions uy(n,x) of the state .
As a particular corollary, we generalize the recently obtained lower bound in terms of
multifractal dimensions of y, and give some equivalent forms of it which can be useful in
applications. We establish, in particular, the relations between the L?-norms (¢>1/2) of the
imaginary part of Borel transform of probability measures and the corresponding multifractal
dimensions.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let H be a self-adjoint operator on a separable Hilbert space #. Let
Ve, ||y|l = 1. The time evolution of the state ¥ is given by , = exp(—itH ).
Consider an orthonormal basis 4 = {e,} of # (in fact, one can also take any
orthonormal basis of the cyclic subspace of ). The vectors e, are labelled by ne N or

by neZ¢ (in the specific case # = IZ(Z‘I ) and e, = 0,, where J, is the canonical basis
of P(Z%).

E-mail address: serguei.tcherem(@labomath.univ-orleans.fr.

0022-1236/03/$ - see front matter © 2002 Elsevier Science (USA). All rights reserved.
PII: S0022-1236(02)00066-6


https://core.ac.uk/display/81934105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

248 S. Tcheremchantsev | Journal of Functional Analysis 197 (2003) 247-282

We define the time-averaged moments of order p of abstract position operator
(associated to the basis %) as

1

T
XEYI) = [ (5 1Y IC oxplitty )T

These quantities describe the spreading of the wave packet over the basis %4. Many
recent papers were devoted to the following problem: what is the relation between
the transport properties of the operator H (represented by the behaviour of
X |pl// >(T),T— + o) and its spectral properties (represented by the spectral
measure x, and the generalized eigenfunctions uy(n, x) associated to the state ).
The problem is to establish the links between the growth exponents

ClogdIXEY(T) leed|XE(T)
) (p) = lim sup —— ", oy (p) = lim inf —— "7

and the spectral properties of H. Most general results obtained so far deal with the
lower bounds for ocf (p). The results obtained in 1989-1999 can be summarized as
follows: the lower bounds for ocf (p) are determined by “the most continuous” part
of the spectral measure ;. Namely, it was shown [1,8,14,15,21] that

oy (p) = dimi () (1.1)
and [16] that
2} (p) >4 dimp (). (1.2)

Here d = 1 for abstract basis labelled by neN and d>1 in the special case *(Z%),
and dimg (u), dimp(u) are the Hausdorff and packing dimension of the measure u,
respectively (for definitions, see Appendix A).

In [20] it was shown that bound (1.1) can be improved if one has some additional
information about the decay of generalized eigenfunctions uy (n, x) as |n|— oo. One
can then take smaller value of d (in the case of a-continuous ).

As to general upper bounds for ocf (p), there are no results available (except from
trivial ballistic upper bound in most cases where <, e, is fast decaying in #n). In
available examples with nontrivial upper bounds [5,9] one uses rather the methods
specific to the considered quantum system.

Bounds (1.1) and (1.2) clearly are not optimal in many cases. Let the measure p,,
be pure point, so that dimy(u,) = dimp(u,) = 0. While for many models with pure
point spectrum one has dynamical localization (so that ozf (p) = 0 for any p>0), it is
possible that awi (p)>0. In the well-known “‘pathological”” example of [10] one even
has ocx/J,r ) = p for = §y for any p>0 (quasiballistic behaviour on the sequence of
times).
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Further, bounds (1.1) and (1.2) are always linear in p. At the same time, numerical
calculations show that for some quantum systems [9,22,23] oc ) grow faster than
linearly (i.e. (p) /p is growing with p). This phenomenon is called by
physicists “quantum intermittency”’.

It was thus clear that one should find some new general lower bounds, improving
(1.1) and (1.2). In particular, the nature of the spectrum (pure point or singular
continuous) should not be so important as in (1.1) and (1.2). Some intermediate
results were obtained in [6]. Probably, most important in [6] was the understanding
that one should optimize the lower bound for a given time 7 rather than for all T
simultaneously. The developement of the ideas of [6] allowed to achieve a significant
breakthrough [2,3], where the new lower bounds were obtained (similar result was
simultaneously obtained in [11] in the special case /*(N) by different methods and
under more restrictive assumptions). Namely, under some assumptions on p,
(in particular, for any p, with compact support),

4 (p) 25D (1/(1+ p/d)). (1.3)

Here D#i (¢) are the nonincreasing functions called multifractal dimensions (or

generalized fractal dimensions) defined for any Borel probability measure u for g#1
as follows:

_ .. logl(q,¢)
D, (¢) =liminf —————

. log 1,(q,¢)
() — u\q,
D, (q) = lim sup e=0 (¢—1)logée’

1.4
e»0  (g—1)logeé (1.4)

where

B(a0) = [ = x4 )" du).

It was pointed out in [3] that one cannot expect better general bound of this kind
(for example, (1.3) with £ D*(1 — p/d) on the r.h.s.).

The bound like (1.3) was expected to hold, because the multifractal dimensions
earlier appeared in upper bounds for dynamics for Julia matrices [5] and in heuristic
form in [22,23]. The importance of this theoretical result follows from three
observations:

1. For any ¢e(0,1) one has [3] D, (¢)>dimp(n), D;(g)>dimp(u), so that (1.3)
implies (1.1) and (1.2). At the same time it 1is possible that
limg 1 4<1 D, (¢) >dimp(u), and similarly for D™ and dimp(u).

2. There exist pure point measures whose dimensions are positive for some or even
all ge(0,1).

3. If D, (q) or D;(q) is nonconstant on (0,1) (i.e. strictly decaying), then the
corresponding lower bound (1.3) is nonlinear in p.

At the moment when [3] was written, bounds (1.3) were rather of theoretical
interest. Now, 3 years later, the things are different. There are actually some
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examples [12,27] where one obtains nontrivial lower bounds using (1.3) in one of its
equivalent forms (our Theorem 4.3).

The first is the Schrodinger operator with barrier sparse potentials (this model was
suggested in [19]), where one gets [27] nonlinear lower bound for oy (p). Together
with the upper bound of Combes—Mantica [9], it gives the first example of quantum
system where the phenomenon of quantum intermittency is rigorously proved. Next,
in [12] one considers Schrodinger operators with random slowly decaying potential.
In the case of pure point spectrum, one obtains a quasiballistic lower bound for the
moments of high order. One shows also in [12] for the famous ‘“pathological”
example of [10] that D:(q) =1 for any ¢e€(0, 1), and thus bound (1.3) yields the
quasiballistic behaviour for the moments of any order p>0 on some sequence of
times (the result proved by different methods in [10]). All these results in preparation
cannot be obtained using “‘classical”’ lower bounds (1.1) and (1.2).

What has also changed in last years, is the better understanding of multifractal
dimensions Di (¢). In particular, the basic properties and many equivalent
definitions of DNi (q) were established in [4] (see also Theorem 4.3), which appeared
very useful in applications.

In the present paper we go further and obtain lower bounds for the time-averaged
moments which take into account not only the properties of the spectral measure y,
but also of the generalized eigenfunctions uy, (n, x) associated to y. For this reason we
call them mixed lower bounds.

The paper is organized as follows. In Section 2 we show our basic lower bound
(Theorem 2.2) which takes into account both the spectral measure and generalized
eigenfunctions:

XD Clp) [ iy (N T) 1)

where 0 <r<p,

N(x,T) =sup{N>0|b(x, T)Sy(x)<1/16},

Sv(9) = 3 lug(n 0P b(x, T) = / dpy (7)R(T(x — ),

In[<N

and R(u) is some fast decaying function such that R(u) = 1 for any u : |u|<1 (one
should think to b(x,T) as p([x — 1/T,x + 1/T])).

In Section 3 we derive some simplified versions of this general lower bound, where
the functions Sy(x) do not appear explicitly. First, for any s>0 let Uy(x) =
supy=o((N +1)7° Sy(x)), so that Sy(x)<Us(x)(N +1)" (it is possible that
Us(x) = +o0). Then Theorem 3.1 states that

X (T)= Clr,p.o) / du(x)(b(x, T) Uiy (x)) 0, (1.5)
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where 0 <r<p and s(x) is any Borel positive function such that s(x)>dJ>0. Bound
(1.5) can be considered (to some extent) as the generalization of the result of Kiselev
and Last [20] established for a-continuous spectral measures.

Next, we improve the bounds of [2,3]. We show that whatever the spectral measure
Ly 1s, for any 7>0 the following bound holds:

XG> (T) 2 Cp, @)Ly, (g, 1/ T, (1.6)

where ¢>1/(1+ p/s¢) and so is some positive number depending on /, 4. (One
always has so<d, so that (1.6) holds for any ¢>1/(1 + p/d).) Bounds (1.6) are
obtained as a direct corollary of (1.5). The proof of (1.6) we give is simpler rather
than the technical proof of [3].

In Section 4 we recall definition (1.4) of multifractal dimensions of Borel measures
and establish the lower bounds (1.3) without any assumptions on the measure .
We give also in Theorem 4.3 many quantities equivalent to I,(g, &) which give rise to
the same multifractal dimensions D;—r (¢). In particular, for ¢>1/2 one can take
instead of I, the integrals

gl /R dx(Im F,(x + ig))*,

where dx is Lebesgue measure and F,(z) is the Borel transform of .
If m is some integer, then for any ¢>1/(2m) one can take

g2am—1 / dx||Rm(x+l'8)l//||2q,
R

where R"(z) = (H —z)”" and the measure u is the spectral measure associated to
the state v and self-adjoint operator H. As an interesting corollary of Theorem 4.3
we show in Theorem 4.4 that the lower bound

u(lx —e,x+¢)=Cx)e’, y=1, C(x)>0, xeAd

uniform in ¢€(0,1) on the set 4 of positive Lebesgue measure yields nontrivial
dynamical information about the moments of order p high enough. Such a
possibility was never investigated before.

We establish also some related (but more general) result concerning the behaviour
of Df (¢) as ¢—0. Namely, assume that there exist two finite positive constants C, 4
such that

u([x — &, x4 &)= Ce? for all xesupp u, £€(0,1). (1.7)
Then Theorem 4.5 yields

. i _ . i
qug}Q—O D/_L (q) - dlmB (Supp ,LL),
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where dim;—r are the box-counting dimensions of the support of the measure. Thus,
under condition (1.7), these quantities give information about the behaviour of the
moments of high order p.

In Appendix A we discuss relations between the multifractal dimensions and the
Hausdorff and packing dimensions of finite Borel measures. In Theorem A.l we
generalize some result of [10] and give the lower bounds for the lower Hausdorff and
packing dimensions in terms of the Lf-norms (¢>1) of the imaginary part of the
Borel transform of the measure.

In Appendix B we consider the lower bounds of Sections 2 and 3 in the case of
pure point spectrum and discuss their relation with the problem of dynamical
localization.

Finally, in Appendix C we derive from Theorem 2.2 some lower bounds in the case
of uniformly a-H6lder continuous measures. These bounds show that the nonlinear
behaviour of ocwi (p) may come from the generalized eigenfunctions even if the

multifractal dimensions are constant.

2. General mixed lower bounds

Let H be a self-adjoint operator on separable Hilbert space # and yy some vector
from # with ||y|| = 1. We denote by J#, the cyclic subspace spanned by H and v
and by Py the orthogonal projection on #. Let # = {¢,} be any orthonormal
system in # such that 2, c £ (%), where £ (%) is the subspace spanned by %. For
example, one can take as # any orthonormal basis of #. Remark that ||¢||* =
a1, en> * for any ¢ e A y. Most of the time, we shall assume that the system %
is labelled by neN. However, in the particular case # = [>(Z?) where % =
{3,}, neZ’ is the canonical basis of />(Z%), we shall use the labelling ne Z¢. In the
first case we shall define the dimension of the orthonormal system % equal to 1, and
in the second case equal to d. The moments of the abstract position operator
associated to the vector iy and the system % are defined by

X150 =D (Inl + 17| Cexp (—itH )W, e, > P, p>0,

n

where |n| is the Z¢-norm of vector # in the case of Z/-labelling and the summation is
carried over N or Z¢. We shall be interested by the lower bounds for the Cesaro
averages of the position operator. At the beginning we follow the same strategy as in
[3]. Let & be some positive function from Cg° ([0, 1]) such that fol h(z)dz = 1. The
constants in the estimates we shall obtain will depend on /. As the function / is fixed,
we omit it in notations. For any z€(0, 1] we have h(z)<||A||,, so for T>0

p 1 1 i P
<X|¢,>(T)>W7/O | X1y, (DA(2/T) dr. (2.1)

0]
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For any couple of vectors ¥, ¢ and any N >0 define

Dy ¢(T,N) /+ﬂ Z {exp (—itH )Y, e,y {exp (—itH)d, e, Y h(t/T) dt.

In| <N

In particular, if ¢ =, consider

+ o0
By(T,N) = Dy4(T,N) / > [<exp (=itH) ¢, en ) [*h(t/T) dt
n|<N

Clearly,

> (Inl + 1Y | <exp (—itH),en > P> (N + 1) Y [<exp (—itH), e, > (22)

n |n|>N

for any >0, N>0. Since [,” h(z)dz =1 and ||exp(—itH)y|| = |[y/|| = 1, bounds
(2.1) and (2.2) yield

X > (T)=C(N +1)°(1 = By(T, N)). (2.3)
Let us take ¢ = Po(H)y where Q<R is some Borel set and Po(H) is the
corresponding spectral projector of operator H. Obviously, ¥ = ¢ + y, where
¢, xeAy and (¢, x> = 0. It is easy to see that
By(T,N) =By(T,N) + B,(T,N)+2Re D, 4(T,N)
= — Bd,(T, N) + BX(T, N)+2Re Dl/,7¢(T, N)
<BZ(T7N)+2RCDI/,_’¢(T,N). (2.4)
Asl/Tf h(t/T)dt =1 and h(z) >
B,(T,N)<l|lzlI> =1 —1[¢]. (2.5)

Finally, inequalities (2.3)—(2.5) give the following lower bound for the time-averaged
moments:

X[ (T)= C(N + 1) (|¢]]> = 2Re Dy (T, N))
> C(N + 1Y ([¢]]* — 2|Dyo(T, N)]). (2:6)
Suppose that 7', N are such that

Dy (T, N)I<|l9]*/4. (2.7)
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Then (2.6) yields
X[ (T)=C(N +1Y[[]/2 (2.8)

with some positive constant C. To obtain a good lower bound for the Cesaro
averaged moments, one should first estimate from above Dy 4(7,N) and then
optimize bound (2.8) choosing ¢, N depending on yy and T.

Some estimate of Dy 4(7,N) was obtained in [3, Theorem 3.2]. This result,
however, will not be sufficient for our purposes. To derive a better bound for
Dy 4(T,N), we shall use again the standard spectral Theorem for a self-adjoint
operator H. Namely, there exist a Borel measure y, (spectral measure of vector )

and a unitary map W, from #, to L*(R,dp,,) such that (W, (g(H)y))(x) = g(x) for
any Borel bounded function g. In particular, (W, (exp (—itH)Y))(x) = exp (—itx)
and for any Borel set Q<R,

(W (9))(x) = 1o(x), ¢ = Pay, (2.9)

where yq(x) is the characteristic function of the set Q. Recall that we denote by Py
the orthogonal projection on . For any n define

uy (n,) = (W (Pyen) (). (2.10)

Later on in this section, the state yr is fixed and we shall omit it in notations (so that
# = py and u(n, x) = uy(n, x)). Since for a fixed n each function u(n, x) is defined u-
everywhere, the sequence {u(n, x)} is well defined for u-a.e. xeR. One calls u(n, x)
generalized eigenfunctions of H corresponding to the vector  and the energy x in
the representation & = {e, }. Two choices of % and thus of u(n, x) are of particular
interest.

1. In the case # = I*(Z?), H = —A + Q(n), where —Af(n) = > 1S (M),

one takes as 2 the canonical basis of />(Z“). Then for a fixed x the function u(n, x) is
a solution to the generalized eigenvalue equation

—Au(n, x) + Q(n)u(n, x) = xu(n, x). (2.11)

One should make here an important observation. Typically, the eigenvalue equation
(2.11) has many linearly independent solutions, some growing as |n|— oo, and
moreover any solution can be multiplied by some constant K(x). On the other hand,
given , the functions u(n, x) are uniquely defined due to (2.10). Therefore, for
u-a.e.x, u(n,x) is some solution to (2.11) depending on  but not any solution. In
particular, since

|lu(n, -)

L*(Rdp) — [[Pyen||<1 (2.12)
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for any n, one can easily show, integrating with u, that

> (nl+ 1)~ (0[] + 1) Mu(n, x)P < + o0

n

for p-a.e. x. Therefore, u(n,x) cannot have power growth as |n|— co.
2. Suppose that the linear combinations of {H*}} are dense in Hy (this is
always true if H is bounded). Then one can construct the basis # of

by orthonormalization of {H*y}. This basis consists of vectors e, =
Ww‘l(Rn(x)), neN, where R,(x) = u(n,x) are the orthogonal polynomials of the
spectral measure p. The restriction of H on J,; has a tridiagonal matrix

representation in this basis.
Let us continue the estimation of D(7, N). As the map W), is unitary, we have

<exp (—itH )\, ey y = {exp (—itH), Pyey )
= CWylexp (=itH ) Wo(Pyen) vy = [ du)e ™) (213)
and in the similar manner using (2.9),
Cexp (<itH) by = [ dux)e o) (2.14)
It follows directly from definition of Dy, 4(T, N) and (2.13)—(2.14) that

Dyo(TN) = [ duto) dutnR(Tx = ), 2.15)

where / is the Fourier transform of 4 and

Sn(x,y) = Z u(n, x)u(n, y).

[n|<N

Consider the following positive function on R:

Ru) =1, [ul<1 and R) = sup |h(z)]*, |u|>1.

zz/ > ul

Since he C;° ([0, 1]), the function R is bounded, even, monotonous in |u| and fast
decaying at infinity. Since |h(u)| <1,

|h(u)* <R(u)<1 (2.16)

for any ueR. Define the function

b(x,T) = /Rdu(y)R(T(x—y))7 xeR, T>0. (2.17)
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It is clear from definition of R that b(x,T) is decaying in T and u([x —1/T,
x+1/T)<b(x,T)<1 for all x,T.

Lemma 2.1. Let

= > lu(n.x)

|n|<N

For any ¢ = Py the following estimate holds:

DuslT.N)|< [ du) /B TISN ) (2.18)

Proof. Applying the Cauchy—Schwartz inequality to the integral over y for a fixed x
and using (2.16), we obtain:

DuolTN)I< | duto)/BCx TIGx () (2.19)

where

Gx(x) = [ dnlSx(xnP
For any xeR, N >0 consider the following vector in

f(x,N) = Z u(n, x)ey,.

In[<N

Let g(y) = Wy (Pyf (x,N))(»). One can easily check that

gy = Y uln, )Wy (Pye)(y) = Y uln, x)u(n,y) = Sy(x,»).

i<V i<V
Therefore,
Gy () = 191172 ay = [1Puf 5 NIP< LS (e, NP (2.20)

The system {e, } being orthonormal in

I/ N)IP =" Ju(n,x) = Sy(x). (2.21)

|n|<N
The result of the lemma follows from (2.19)—(2.21). O

We can obtain now the basic lower bound for the moments.
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Theorem 2.2. For any T, N >0 consider the set
Q(T,N) ={x|b(x,T)Sn(x)<1/16}.
For any xeR, T >0 define the numbers
Nx,T)=sup{N>0|xeQ(T,N)}.

We set N(x,T) =0 if x¢ Q(T,N) for all N> 0.
For all p>0, 0<r<p the following estimates hold with positive constants C(r,p):

XD [ ANV 1 (T ), (2.22)
X D= Clp) [ d) (Vs T) 417 (2.23)

Proof. One first proves that
CXB(T)Y = CN + 1P (T, N)) (2.24)

for any N>0, T >0. If the set Q(T, N) is of measure 0 (in particular, this is the case if
Q(T,N) is empty), the inequality is trivially true. If u(Q(7T,N))>0, then consider
¢ = ror.mVs |p|]> = w(Q(T, N)). The definition of Q(T,N) and Lemma 2.1 yield

Dy (T, N)|<1/4u(Q(T, N)) = 1/4/|¢]|*.
Bound (2.24) then follows directly from (2.7)—(2.8). Define now the function

Ly(T) = sup ((N +1)"u(Q(T, N))).

N>0

It follows from (2.24) that
CIX[y > (T)=CLy(T) (2.25)
with C>0 uniform in p, 7. From definition of L,(7T) we have
#QT, N)<(N+1)7"Ly(T)

for any N >0. Therefore, if r<p,

/M dAN(N + 1) w((T,N))< L,(T) /+oo dN(N + 1)
0 0

= C(p — NL,(T), (2.26)

where C(p — r)< + co. The first bound of the theorem follows from (2.25)—(2.26).
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To prove the second bound, we write the integral in (2.22) as

WD) = [ du) [ aN 1 g ()

Since Sy(x) are growing with N, it is clear from the definition of N(x,T) that
xeQ(T,N) for all Ne[0,N(x, T)). Therefore,

1(T)> / du(x) / T vy
R 0
—C(r) / dp(x)(N(x, T) + 1) — 1)
C(;’)(/Rd,u(x)(N(x7 T)+1)"1>. (2.27)

Since <|X|§ >(T) =1, bound (2.23) follows from (2.22) and (2.27). O

Remark 2.1. One can obtain slightly better bounds taking (N + 1Y~ '(log(N +
2))7'7°,6>0, instead of (N +1)""" in (2.26).

Remark 2.2. It follows from the results of [7,20] that the spectral measure and the
generalized eigenfunctions are not completely independent. Therefore, there is also
some relation between b(x, T') and Sy(x).

Remark 2.3. One can give the following (not rigorous) interpretation of the numbers
N(x,T). Consider the part of the wave packet i with the energy x. Then for €10, T
this part of the wave packet spends at least half a time outside the ball of radius
N(x,T).

Remark 2.4. The proof can be adapted to obtain the lower bounds for more general
quantities like

1 Td H 2
T/O Sl Cenp (it

where f(z) is some growing function such that lim,_, o, f(z) = +00. The particular
choices of interest different from f(z) = (z + 1)’ are f(z) = loglz or f(z) = exp(pz),
where p>0.
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3. Simplified lower bounds

Let u(n,x) be the functions defined for a given vector y and an orthonormal
family # in the previous section: wu(n,x) = (Wy(Pye,))(x), and Sy(x)=
o< |u(n, x)|*. For any s>0 define two functions

Us(x) = sup (N + 17 Sw(x),  Yolx)= Y (Inl+1)~"Ju(n, )P,

where it is possible that U(x) = 4+ o0 and Y;(x) = + oo for some (or even all) xeR.
The functions Us(x), Ys(x) are finite for some s> 0 if the generalized eigenfunctions
u(n, x) have sufficiently fast decay at infinity (it was pointed out in the previous
section that they cannot grow faster than logarithmically). It is clear that

Sx(x) < (N + 1) Uy(x) (3.1)
for any N, x. One can casily see that

Yi(x)= Y (Inl+ 1) fu(n, %)= (N + 1)~ Sw(x)

[n|<N
for any N >0, so that
Us(x) < Yi(x). (3.2)

It is also straightforward to show that Y;(x) < C(d)U;_s(x) for any 6 >0. Therefore,
considering Y;(x) or Uy(x) is virtually equivalent.
Since

[ a0 = 1PyerlP <1
for all n, we get for any s>d
/R dp()Y(x) = > (Ifl+ DNIPyenlP< D (Il + 1) <+ 0. (33)

n n

We see that if s>d, then Y (x)< + oo for a.e. x. As the growth of Sy(x) as N— oo
(determined by the rate of decay of u(n, x)) may depend on x, it will be convenient to
take s depending on x. Assume that s(x) is some positive Borel function such that
s(x)=0>0 for p-a.e. x. In principle, it is reasonable to define for any x

s*(x) = inf{s>0| Y,(x)< + o0}

and to take s(x) slightly bigger than s*(x). But one can also take as s(x) any value,
even such that Y,)(x) = 4 00. One particular choice is to take s(x) constant: s(x) =
a, a>0. If a>d, then one is sure that Y,(x)< + oo for p-a.e. x. It is possible,
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however, that for some a<d the function Y,(x) is also finite, at least on some set of
positive measure. In this case the bound of the theorem below remains nontrivial.

Theorem 3.1. Let p>0 and the function b(x,T) defined by (2.17). Let s(x) be the
positive function defined above. For any 0 <r<p the uniform in T estimate holds:

X, (T)=C(r,p, d) / dp(x)(b(x, T)G(x))""*0, (3.4)
R

where C(r,p, ) >0 and G(x) is one of the two functions Uy(x), Y (x) (we adopt the
convention that (+o0)™ " =0, y>0).

Proof. Let us prove the statement of the theorem for G(x) = Uyy)(x). For Y (x)
the result will then follow from (3.2). For any 7>0, xeR define

M(x,T) = (16b(x, T) Uyy (x)) "™ =1, M(x,T)> — 1.
Consider the set
A(T) ={x|M(x,T)>0}.
If xe A(T), then for any Ne[0, M(x,T)] by (3.1),
b(x, T)Sy(x) < b(x, T)(N + 1) Uy (x)
<b(x, T)Y(M(x, T) + 1)’ Uy (x) = L.
Therefore, xe Q(T,N) for all Ne[0, M(x,T)] and thus N(x,T)=>M(x,T) for all

xeA(T) (Q(T,N) and N(x,T) were defined in Theorem 2.2). The second bound of
Theorem 2.2 yields:

X[ (T)>Clr,p) /Am du(x)(M(x, T) + 1), 0<r<p. (3.5)

On the other hand, it follows directly from definition of the set A(7) that
[ 16 T Uy () 7 <1< () (3.6)
R\A(T)

Since s(x)>0d>0, the result of the theorem follows from definition of M (x,T) and
(3.5-(3.6). O

Remark 3.1. If G(x) = +o0 for p-a.e. x for some choice of s(x), the theorem is
empty.

Remark 3.2. The result can be considered as a generalization of the result of [20],
established for a-continuous measures u. In fact, if the measure is a-continuous, then
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u([x — &, x +¢]) <K (x)e* with some finite K(x) for py-a.e. x and any ¢€(0,1). One
can easily see that b(x,T)<LK(x)T* with some uniform L>0. Assume that
U,(x)< + oo for some a>0 for all xeQ, u(Q)>0. Then (3.4) immediately yields
for any O<r<p

XL (T)> Clp,rya) Lo T7a / dp(x) (K (x) Uy(x)) "
Q
=D(p,r,a)T"*, D>0. (3.7)

This is virtually the bound of [20]. In fact, in [20] it is proved for r = p, which is
slightly better than (3.7). However, the result of Theorem 3.1 is more general.

Remark 3.3. Eliminating N in bounds (3.4), we may lose the intermittency due to the
generalized eigenfunctions (see the discussion in Appendix C).

We shall derive now the lower bounds where the kernels u(n, x) and thus the
functions Y,(x), Us(x) do not appear explicitly. In particular, are of interest the
bounds independent of the choice of the orthonormal family % (we shall call them
“basis-independent bounds”). The results we obtain below as a direct corollary of
Theorem 3.1, improve the recent results of [2,3,17]. One can note that the proof we
present is simpler than that of [3].

Let

so =inf {s>0’ /R du(x) Ys(x)< + oo}

:inf{s>0

The constant sy depends on i and %4. As it was mentioned above, one always has
so<d.lf L (B) = Ay, then ||Pye,|| = 1 for all n and it is clear that sy = d. However,
if the vector y is not cyclic and £ (£) is considerably ““bigger” than 4, it is possible
that so <d, because ||Pye,|| >0 as [n] - co. One can expect that it may happen if the
subspace ' is “thin” and 4 is, for example, a basis of # . Thus, one could have
so =1 for some operators with absolutely continuous spectrum of infinite
multiplicity in ZZ(Z" ), d>1, which could give the ballistic lower bounds for the
moments.

One should stress that the condition

Z (In] + 1) ™| Pyea| | < + oo}.

n

/ () Yi(x) < + o0 (3.8)

is stronger than Y, (x)< + oo for p-a.e. x.
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For any geR, ¢>0 and any Borel measure y define the integrals

h@&):”AdMMUMx—&X+4D“V

In fact, it is sufficient to integrate over supp u and it is possible that I(g,&) = + 0.

Theorem 3.2. Let e A, ||y|| =1 and u the corresponding spectral measure. Let s

be the positive number defined above, p>0, gy = 1+p/3 For any qe(qo, 1) the uniform

in T estimate holds:
X (T)=CL4 (g, T ). (3.9)

In particular, this is always true for ¢>1/(1 + p/d) (basis-independent lower bounds),
and in this case the constant C depends only on p,q but not on \y and p.

Proof. Let ge(qo,1), f=1/q— 1. Since f<p/sy, one can represent it as f =r/s
with some r<p, s>sy. Consider the integrals

_ / du(x) (b, ). (3.10)
R

Let ¢ = 1/T. Applying the Holder inequality, one can estimate

e "< [ duo(x.7) (/w )

<c<m/dm>wan<»ﬂ (3.11)

since s> and thus [, du(x)Y(x)< + co. The result of Theorem 3.1 with s(x) = s
and (3.11) yield

AX[(T)= €1 q, T ). (3.12)

The integral J,(¢,¢) can be written as

Ju(q,€) /du e)’,

o) = | du(or(*2).

Recall that the function R(u) is positive, fast decaying at infinity and R(u) = 1 for all
u: |u|<1. Recent result of [4] established the equivalence of integrals 1,(g,¢) and
Ju(q,¢) for ge(0,1) in full generality (i.e. for any Borel probability measure ).

where
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Namely, the two integrals are either both finite or both equal to +oco. Moreover,
there exist finite positive constants (depending only on ¢ and on the choice of the
function R, i.e. of /) such that

Cil(q.e)<Jul(g,8) < Colu(q, ¢) (3.13)
for any ¢€ (0, 1). The statement of the theorem follows from (3.12) and (3.13). O

Remark. One can see that the r.h.s. of (3.9) decays in ¢ for a fixed T. Therefore, one
has interest to take g close to ¢o.

4. Multifractal dimensions of spectral measures

The growth exponents of integrals 1,(q, €) are closely related with the multifractal
dimensions of probability measures. One defines them for any geR, g#1 as follows:

. log I,(g,¢)
D' (g) = limsup —H 22
w (@) = Hmsup o iog e

— 1 . log Iu(qa ‘c)
Du (q) = lll;nﬁlé’lf m

In fact, one can adopt this definition for any finite measure u, and the dimensions of
w are identical with the dimensions of probability measure v = p/u(R).
Defined in such a way, the quantities D (¢), D, (¢) are decreasing with ¢ and

0<D,(q) <D;(q) < + oo for any ¢. Some basic properties of the functions D;i (q),

such as continuity on the set of ¢’s where they are finite (except maybe g = 1), are
established in [4].
Let f(¢) be some monotonous function. We define

S(r+0)=Tlim f(q)

q—))‘,q>l‘

and in the similar way for f(r — 0). As an immediate consequence of Theorem 3.2,
we obtain the following.

Corollary 4.1. Under the conditions of Theorem 3.2, for any p>0
P
o )>£Dui(1/(l+p/so)+0). (4.1)
In particular, the following basis-independent bounds hold:

oy (p) =5 D (1/(1 4 p/d) +0). (4.2)

Ul
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Proof. The bound of Theorem 3.2 and the definitions of ocl;—“ (p), D (q) yield

oy (q)=(1/q = 1)D; (q)

for any g>qo=1/(14p/sy). Taking the limit g—¢qo, ¢>¢qo, we obtain the
result. [

The result of this corollary generalizes the bounds
p
oy ()25 Dy (1/(1+p/d)) (4.3)

obtained in [3] under the assumption that the moments of u of order high enough are
finite (which is always true if supp u is compact). The proofs of [3] can be generalized
to obtain (4.3) with s instead of d. Bounds (4.3) were also obtained by different
methods in [17] in the special case # = I*(N), e, = J, under rather restrictive
assumptions that D (q) = D, (¢) = D(q) for all geR and D(g)< + oo for some
g<1. One should stress that the result of our corollary holds in any Hilbert space for
any orthonormal family 4 and any spectral measure p. In particular, it is possible
that D;f (¢) = +oo for some or even for all g<1.

As it was pointed out in [3,17], one can obtain better bound under assumption that
Sy(x)<CN* (4.4)

for some s>0 with constant C uniform in x, N. This condition implies U,(x)<C.
Taking s(x) = s in Theorem 3.1, we obtain immediately that

X (T)= Clrp)u(l = /s, T7),

where J,(q,¢) was defined in the previous section. As we said above, the integrals
Ju(q,¢) are equivalent to I,(q,¢) for ¢>0 in full generality. In the case ¢<<0 this
equivalence can be easily established (the proof is the same as in [3]) for ¢> §, where

g =inf{geR|D;(q)< + o}.

If § = — o0, then we obtain for any p >0, using the continuity [4] of D;—’ (g) on (4, 1):

ocl;—r (p) ZIEQD/‘i (1—p/s).

These bounds may be better than (4.3) (even if s> d) provided D;l (g) are essentially
nonconstant for g<1.

Let us return to bounds (4.1) and (4.2). In fact, under the assumptions of [3] the
dimensions are always finite and continuous at ¢ = ¢y, so in this case our bound (4.2)
is identical with (4.3). Let u be any Borel probability measure on R. Define the
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following number ¢* €0, 1]:

g = inf{q>0

> (kb + 1)< + oo}.

keZ

If supp p is compact, then always ¢* = 0. For measures with noncompact support ¢*
may take any value from [0, 1]. It was shown in [4] that the dimensions Dﬂi (gq) are

continuous on (¢*, +o0)\{1} and there 0<D; (¢)<1. On the other hand, if ¢<g*,
then I,(¢q,e) =+ for ¢ small enough, in particular, DHi (¢) = +o0. The next
statement follows directly from what is said above, Theorem 3.2 and Corollary 4.1.

Theorem 4.2. (1) Assume that ¢*<1. Then for any pe(0,s0(1/¢* — 1)) (any p>0 if
q*=0),

ocf(p)?

Ul

Dy (1/(1+p/d)) (4.3)

(2) Assume that ¢*>0. Then for any p>so(1/q* —1) for T large enough
XPT) = +o0.

Remark 4.1. We do not control the upper bounds for the moments. Therefore, it is
possible that in the second case the moments are infinite from the beginning, i.e. for
the state v itself.

Remark 4.2. If p = 5o(1/¢* — 1), one always has bound (4.1), but one cannot say
whether the moments are finite or not. This case is more delicate.

Remark 4.3. In some cases one has a priori ballistic upper bound for the moments
|X|pw(t) for any p>0. It follows from Theorem 4.2 that ¢* = 0 for the corresponding
measure fi,.

To apply the results of Theorem 3.2, Corollary 4.1 and Theorem 4.2 to concrete
models, one should be able to calculate or rather to estimate from below the integrals
I,(g,¢). In fact, these quantities can be represented in many equivalent forms. We
hope that the following theorem will be useful in applications (its first statement is
used in [12,27]). Let f'(¢), g(¢) be two functions from (0, 1) to [0, +o0]. We shall say
that /'~ g if they are either both finite or both equal to + oo and there exist two finite
positive constants Cj, C, such that

Theorem 4.3. Let u be any Borel probability measure. The following statements
hold, where the constants Cy, Cy depend on the parameters such as q,m, o but do not
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depend on the choice of u:
1. For any ¢>0

Lulg.o) = [ dullr = ox-+ )~ Lla.o),

Sulg,e) = Y (ulie, G+ D)) ~Lu(g. ).

JjeZ
2. Let R(u) be some Borel positive function on R such that inf_; jj R(u) = 6>0 and

C
R <n7
N T

for some real m> 1. Define

p(x,8) = /Rdu(y)R(x_y)-

&

Then for any q>$
L0 = [ dxtotxe)'~Lia.c)
3. For any q>%
K,(g,¢) = &1 /R dx(Im F,(x + ie))! ~ I,(q,¢),

where F,(z) is the Borel transform of u:

_ [ du(y)
Fu(z) = /Ry_z, Im z>0.

4. Let H be a self-adjoint operator on # ye A, ||W|| = 1 and u the corresponding
spectral measure. Let meN. For any q>ﬁ,

Mylg.0) =2 | aslIR" ek i~ Lo,
R
where R"(z) = (H —z)™ ™.

Proof. The first statement is proved in [4]. The proof for ¢g>1 is trivial and well
known. It was conjectured many years ago that the result should also hold for
q€(0,1). However, unlike it was stated in many physicist’s papers, the proof for
¢€(0,1) is not the same (except the case of the measures verifying the doubling
condition) and rather nontrivial. Only in [4] it was rigorously proved in all generality
(for any Borel probability measure).
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The third statement follows from the second if one takes R(u) = (lu]* +1)7",

because

N du(y)
Im F,(x +ie) = . /R TR

The same is true for the fourth statement, where one takes R(u) = (ju|*" +1)"".
Let us show the second statement of the theorem. First, as R is positive and
R(u)=6>0 for ue[—1,1],
p(x,e)=ou([x —ex+¢).
Therefore, using the first statement,

LflR)(% e)=07L,(q, ) ~1u(q,¢). (4.5)

It is thus sufficient to show that LE,R)( &)< Cl,(q,8)~Su(q, ) Let I; = [je, (j + 1))
and a; = u(l)), so that Sy(gq,&) = 3_,., af. One can write L ( ¢) as follows:

1
LLR)(q7 8) = E Z B dX(p(X, 8))q7 (46)
j 'j
where
xX—y
p(x,e) = d
()= 30 [ duty (=)

As R(u) < it is easy to see that for any xel;, yel; the bound holds:

= ul” -H’

with some uniform constant K. Therefore, if xe/;, one can estimate
p(x,e)<K
Z i — k| +1

Since |I;| = &, we obtain from (4.6)

q
L®(g,e)< Z( 3 = ;" - 1) . (4.7)
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Consider first the case when %<q<l. Using the elementary bound

(O br)T< 2o b, we get

q

;= DK'S,(q.¢), (4.8)

LW < K¢ %

where D=>" 1/(]n|" + 1)< + co. Bounds (4.5) and (4.8) yield the second
statement of the theorem.
Let now g>1. One can write the r.h.s. of (4.7) as

q
2. o
— |n|"+ 1)~

J

Using the bound || >, /.|| < >, ||#|], where || - || is the /7(Z) norm, one sees that
| 1/4
(R) 1/q s q _ 1/
(LP(g,2))/ <K Z P ( Z am) = KDS)/(q, 2), (4.9)

where D =" < + oo. Bounds (4.5) and (4.9) give the statement of the

" "+ 1
theorem for ¢g>1. O

Remark. In [25] the behaviour of LY-norms of Borel transform was related to the
absolute continuity of the measure (¢>1) or the absence of the a.c. part for u (if
¢€(0,1)). The third statement of Theorem 4.3 shows the relation of such L?-norms
(for ¢>1/2) with multifractal dimensions and thus their importance (especially for
ge(1/2,1)) in quantum dynamics.

As an example of application of this theorem we shall prove that the lower bound
for the measure of intervals [x — ¢, x +¢] may give some nontrivial dynamical
information. It is well known that the upper bound

u(x —e,x +¢)) <C(x)e*, C(x)< + o0, ael0,1] (4.10)

is important for dynamics. If bound (4.10) uniform in ¢€ (0, 1) holds for any x from
the set 4 of positive measure u(A), then it is easy to show that dimy(u) >«, and thus
we have bound (1.1) for the moments. If (4.10) holds for any x € 4 for some sequence
& — 0 (may be depending on x), then the similar bound is true for dimp(u). What is
surprising, is the fact that the lower bound uniform in ¢€(0, 1)

ullx —e,x+e))=Cx)e’, C(x)>0, y=1, (4.11)

on the set of positive Lebesgue measure also yields rather nontrivial dynamical
information for the moments of high order of position operator (and the
corresponding lower bounds for ocl;—“ (p) are always nonlinear in p). Such a possibility
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was never supposed before. One can observe that bound (4.11) may hold for pure
point measures.

Theorem 4.4. Let p be a Borel probability measure. Assume that for some y =1 bound
(4.11) holds for any xe A, where A is a set of positive Lebesgue measure and C(x) is
strictly positive Borel function. Then for any g€ (O,%)7

1 —qy
l—gq’

D, (q)> (4.12)

If the spectral measure of some state \ verifies the conditions of this theorem, then
- p
o >=——(y—1
s> - - 1)

Jor all p>so(y — 1). In particular, in one dimension one always has o, (p) =2p — (y — 1)

and thus the behaviour of the moments of high order is quasiballistic.
Bound (4.12) also holds for g>1/m if the function p(x,¢) from the second statement
of Theorem 4.3 verifies the same lower bound (4.11).

Proof. The definition of L,(q,¢) and the first statement of Theorem 4.3 yield
lu(g.e)~ / dx(u([x — &, x +&]))! >0 / dxCi(x) = Ket',
4

where K >0 because the set 4 has positive Lebesgue measure and C(x)>0 for all
x € A.The definition of D;7(¢) and Corollary 4.1 give the result. For p(x,¢) the proof
is the same. [

Remark. One cannot have (4.11) with y<1 on the set of positive Lebesgue measure
because u is finite.

To understand better this result, consider the sums S,(¢, ¢), which are equivalent
to 1,(g,¢) and thus also yield lower bounds for the moments of position operator:

Za/, ;= u(fje, G+ 1) Zaj—l

JjeZ

The behaviour of Sy(¢,¢) as ¢—0 and thus the multifractal dimensions D (¢) are
determined by the distribution of numbers a; depending on & for small &. In
particular, the upper and the lower bounds for @; imply some lower bounds for
S.(g,€). Assume, for example, that ¢; < Ce” with uniform constant C (uniformly a-
continuous measure). Then, as ¢ — 1 <0, one can estimate:

= ala>(Ce) Y 4= Clg)e
J J

thus, D} (¢) > .
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Assume now that for all I; [0, 1] the uniform in ¢, lower bound holds a; > C¢'.
Then immediately

Su(g,8)=C(q)e? !

and D, (q) > 11:‘1[1"’. That is how one can interpret the result of Theorem 4.4. To obtain
a good lower bound for D#i (g) for any ge(0,1), in general, however, the whole
statistics of the numbers a; is necessary.

An interesting question related to the result of Theorem 4.4 is the following: what
properties of the measure u determine the behaviour of D;—’ (¢) as ¢—0 (which gives

lower bound for the moments for large values of p)? We provide below a partial
answer to it. Let us recall the definition (one of two equivalent) of the support of the
measure:

suppu = {xeR|Ve>0, u([x—e¢x+¢)>0}.

One notes that u(R\supp p) = 0.
We define also the box-counting dimensions of the set Q<R (see [11]):

dim};(Q) = lim sup log N(e)

e—0 10g (1/8)
and similarly for dimg(Q), where
N(e) = card{jeZ]|[je, (j + 1)) nQ#0}.

The following statement follows from more general results of [13]. However, for the
sake of completeness, we shall give below a simple direct proof of it.

Theorem 4.5. Assume that there exist two positive constants C, A such that
w(fx — e, x +¢]) = Ce? (4.13)
for all xesupp p. (This is possible [13] only if supp u is compact). Then for all g€ (0, 1)

dim; (supp p) — g4
l—g¢

@ _dimj (supp 1)

<D
l—¢q

FH

In particular,
lim D¥(g) = dimj (supp u).

q~>0

Proof. Consider the sums

S(qu): Zaj('17 a./':.“(lj)v Ij:[j8’<j+l)8),

JjeZ
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where ¢>0 and the summation is carried only over j such that a;>0. For ¢ >0 these
sums are equivalent to /,(q, ¢) due to Theorem 4.3. One observes that

S(0,¢)=S(q,¢), ¢>0, ¢€(0,1) (4.14)
and
S(0,¢) =card(L), L= {jeZ|u(l;)>0}.
Consider the set
M = {jeZ|;nsupp u#0},

where N (&) = card(M) is the number in the definition of dimj (supp u). Let je L. It
is clear that I nsupp u#0, thus, je M and L< M. Define

L™ ={jeZ|j—1elL}=L+1.

Let je M. Due to the definition of supp u and the fact that I; = [je, (j + 1)¢), one of
the number a;_y, a; is positive. Therefore, je L~ UL and thus M < (L™ UL). We see
that card(L)<card(M)<2card(L). Therefore, one can take card(L) instead of
card(M) = N(e) in the definition of dim} (supp ). Finally, we obtain

. . log S(0,
dim}; (supp p) = lim sup log 5(0,¢)

nsup = (4.15)

and similarly for the lower limits.

Let us minorate now S(g,¢) for some ge(0,1). Let j be such that @;>0. Then
lje, G+ 1)e) nsupp u#0 and thus one can find xoe€lje, (j + 1)) nsupp u. Since
[xo — & x0 + &)= (fi_1uljUl;), condition (4.13) implies

a1 +aj+a = Ccel.
Therefore, taking the ¢’s power and summating over j such that a; >0,

C1e915(0,¢) < Z (a1 + aj + aj1)*

j:a/->0

< Z (ajfl +a; + aj+l)q

jez
<2 (@ +a+d)
JeZ
=3S(q,¢). (4.16)
Finally, (4.14) and (4.16) yield

C(q)e?1S(0,¢6) < S(q,8) <S(0,¢) (4.17)
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with some constant C(g) uniform in ¢. The definition of D (¢), the first statement of
Theorem 4.3, (4.17) and (4.15) prove the statement of the theorem. [

Remark 4.4. Without condition (4.13) the result of the theorem may be not true.
One can give an abstract example, but we prefer to consider an example from
quantum mechanics. Let H be a self-adjoint operator with dense pure point
spectrum on some interval [a,b] (for example, this is the case for some random
Schrédinger operators). Assume that for some cyclic state iy from the subspace of the
pure point spectrum the dynamical localization holds. Then ocf (p) =0 for all p>0

and thus Duiw(‘” = 0 for all ge(0,1). On the other hand, [a,b] =supp p,, therefore

dimj (supp ) = 1. It is clear that the result of Theorem 4.5 is not true in this case
and, condition (4.13) fails for .

Remark 4.5. Condition (4.13) plays an important role [13] in the behaviour of
multifractal dimensions DMi (q¢) for ¢<0. In particular, under this condition the

dimensions are finite for all ¢<0 and lim,, . DF (q)<A< + 0.

Remark 4.6. One says that the measure p is doubling if there exist ¢ >0, K >0 such
that

w(fx —2e,x +2e]) <Kp([x — e, x +¢])

for all xesupp u, £<gy. One can show [13] that any doubling measure with compact
support verifies (4.13) (the converse in general being not true).

Appendix A. Hausdorff and packing dimensions of measures

In this appendix we shall discuss the relations between multifractal dimensions
and Hausdorff and packing dimensions of Borel measures. For any Borel set .S we
denote by dim(S) and Dim(S) the Hausdorff and packing dimension of S,
respectively (for the definition of Hausdorff and packing measures and dimensions
see, for example, [11]). Let u be some finite Borel measure. We define the lower and
upper Hausdorff dimensions of y by

dim, (u) = inf{dim(S) | u(S)>0},

dim*(u) = dimg(p) = inf{dim(S) | u(S) = 1}

and similarly for the packing dimensions

Dim, () = inf{Dim(S) | u(S) >0},

Dim* (1) = dimp(y) = inf{Dim(S) | u(S) = 1}.
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All these dimensions lie in [0, 1]. One can interpret them in the following way: the
measure y gives zero weight to any set S with dim(S) <dim, (x) and is supported by
a set with Hausdorff dimension less than dim*(u) + ¢ for any £> 0. Similarly for the
packing dimensions.

The following inequalities hold: dim, () <dim*(x), Dim, (u)<Dim*(u),
dim, (1) <Dim, (1) and dim*(u) <Dim*(u) (the two last follow from the fact that
dim(S) < Dim(S) for any set S). The dimensions dim*(u) = dimy () and Dim*(u) =
dimp(u) are often called by physicists Hausdorff and packing dimension of pu,
respectively (we adopt this definition in this paper). Mathematicians have a different
definition. They say that the measure is of exact Hausdorff dimension « if dim, () =
dim*(u) = « and in the same way for packing dimensions. It is clear that not all
measures have exact Hausdorff or packing dimensions.

Define now the local exponents of the measure u:

ES 1 ) > . 1 — &,
77 (x) = lim inf ogu(x =X+ b), 77 (x) = lim sup o (X = & x +¢)
£—0 loge &0 loge

7

where xesupp u. Obviously, 0<y (x)<yt(x) for any x. It is known [I] that
7%(x)€l0, 1] for u-a.e. x. It was proved in [11,18] that

dim, (u) = p—essinfy~(x) =sup {a |y~ (x)=a, p-as.},
dimg(p) = dim™(u) = p-esssup y~ (x) = inf{a |y~ (x) <o, p-a.s.},
Dim, (1) = p —essinf " (x) = sup {o | y" (x) >, p-as.},

dimp(p) = Dim*(u) = p-esssup y*(x) = inf{a | 77 (x) <o, p-a.s.}.

The Hausdorff and packing dimensions of the measure are related with its
multifractal dimensions in the following way: for any g<1,r>1,

D, (q)=dimy(u) = dim*(u) >dim, (1) > D}, (r), (A1)

D, (q)>dimp(u) = Dim™* () >Dim, (1) > D, (r). (A2)

It follows from the results of [4] and the expressions of Hausdorff and packing
dimensions of the measure in terms of local exponents. In particular, (A.1) implies
that if the measure u is not of exact Hausdorff dimension, then D;(q) is always
discontinuous at ¢ = 1, and similarly for the packing dimension.

It is interesting to note that the multifractal dimensions of measures appeared in
the hidden form many years ago in the proof of absolute continuity of the spectrum
of self-adjoint operators. Let us consider the well-known sufficient condition for the
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absolute continuity of the spectral measure u [24]:
/ dx|Im F,(x + ie) "< C(q) < + o0 (A.3)
R

for some ¢> 1 uniformly in e€(0, 1). Due to Theorem 4.3, (A.3) is equivalent to
I(q,e)<Cel™ " (A4)

Bound (A.4) implies that D*(q)>1, ¢>1, so that DF(¢q) = 1 for any ¢>¢* (see
previous section for definition of ¢*). In fact, condition (A.3) or (A.4) contains more
information than D*(¢) = 1. It implies directly the absolute continuity of the
measure.

One can generalize condition (A.3) in local form if the integrals over some interval
(a,b) are bounded by some negative power of &. The result we prove below
generalizes one of the results of [10].

Theorem A.1. Let (a,b) be some interval of R such that u((a,b))>0 and v is the
restriction of u on (a,b). We denote by F,(z) the Borel transform of .
1. Suppose that

b
/ dx|Im F,(x + ig)|? < Ce~*@~ (A.5)
a

for some g>1, se€(0,1) uniformly in ¢€(0,1). Then
dim, (v)=1—s,

so that v gives zero weight to sets of Hausdorff dimension less than 1 — s.
2. Suppose that for some q>1, s€(0,1) there exists a sequence ¢,—0 such that
(A.5) holds for all ¢ = ¢, with uniform constant C. Then

Dim, (v)=1 —s,
so that v gives zero weight to sets of packing dimension less than 1 — s.

Proof. Let us estimate the integrals 1,(g,¢). Due to the third statement of Theorem
4.3,

L)~ [ drg), (A.6)
R
where

g(x)=ImF,(x +ie) =¢ / d,u();) S<Im Fu(x +ie). (A7)

(@h) (X =) +¢
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The condition of the theorem and (A.7) imply that
b
/ dx g?(x)< Ce~*la D), (A.8)

Let us estimate the integral over R\(a, b). First, one observes that for any x, ye (a, b),
1 1
2 < 2 J
2b—x—-p)"+& (x—p)+&

so that
g(2b—x)<g(x), xe(a,b).

Therefore,
2b—a b b
/ dx g?(x) = / dtg?(2b— 1)< / dt g7(1) < Ce~5l D), (A.9)
b a a

. . &
Next, it is obvious that g(x) <7 for all x> b, so that
X —

+ o0
/ dx g?(x) < C(a, b)e! (A.10)
2b—a

As e€(0,1), ¢g>1, bounds (A.9) and (A.10) yield
+ 00
/ dx g?(x) < Cel4D, (A.11)
b
The similar considerations give

/ dx g?(x) < Ce—l4D), (A.12)

o0

Finally, (A.6), (A.8), (A.11) and (A.12) imply
I(q,e) < Cell=9la=D), (A.13)
If bound (A.5) holds for all e€(0, 1), then (A.13) and the definition of D, (g) yield

Dy (q)=1—s (A.14)

v
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and if (A.5) holds for some sequence ¢, —0, then
Di(g)=1—s. (A.15)

Bounds (A.1)-(A.2) and (A.14)—(A.15) yield the result. [

Remark. The first statement of the theorem was proved for ¢ = 2 in [10].

Appendix B. Operators with pure point spectrum

In this appendix we shall see how the general lower bounds of the paper work in
the particular case of pure point spectrum. Assume that iy belongs to the subspace of
point spectrum of operator H. For simplicity we consider the particular case of

H =12, B=1{5,}, neZ’. One can write | as
M
lp: Z’ykglﬁ "/k:<¢>gk>7507 MeN OI'M:+OO7
=1

where Hgy = Xigk, |lgr|| = | and xi #x,, for k#m. It is clear that the orthonormal
system {gk}kle is the basis of the cyclic subspace ', of Y. The spectral measure of
is pure point:

u= i/[: ardy, ar = |yel*>0.
k=1
It is easy to verify that the unitary map W, from 2, to L*(R,dy) is given by
(Wil () = <> ke[l M
Further, the kernels u(n, x) are given by
1

M(n7 Xk) = 7gk(n)7
Vi

and the function b(x, T') by

M
b(xi, T) = bi(T) = > amR(T (xi — X))

m=1

One can observe that by (T) is decreasing in k and limy_ o br(T) = ai. Next, we
have

Ys(xk) :Clik Z (|n| + 1)7x|g/c(n)|2'

n
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The function N(x, T) of Theorem 2.2 is given by

2 223
= = < , , M]. B.
N(x/c7 T) NIC(T) sup N>0 ‘nlgN |gk(n)| 16bk(T) ke[l M] ( l)
The lower bound (2.23) of Theorem 2.2 reads as
M
X ( P> a(N(T) + 1Y, (B.2)
k=1

where 0 <r<p. This bound, of course, is of interest only if the r.h.s. of (B.2) tends
to 4+ 00 as T— oo, which may happen only if M = +oc0. As limy_, o, b (T) = ay,
one has

Ne= lim Ni(T)=sup N>0| > |g(n |\16

T—+w
- |n|<N

Therefore,

o0
11m 1nf X ( Z ar(Ni + 1 (B.3)
k=1
If the sum in (B.3) is infinite, then lim7_, |, < |X|ﬁ >(T) = + o0 and so the dynamical

localization for the moment of order p (i.e. sup, |X\pl//(t)<C< + o0) fails. It is
interesting to compare (B.3) with the lower bound established in [26]:

lim inf (|X[7>(7)> ; acdi(p), (B4)

where di(p) =, (|n] + 1)’|gx(n)]>. One can easily see from definition of N, and
di(p) that

di(p)=15/16(Ny + 1)’ >15/16(Ny + 1),

therefore bound (B.4) implies (B.3). In fact, if all the functions gx(n) are well
localized (each around some point n; € Z¢), then dj (p) ~ (|nx| + 1)” and Ny~ |ni], so
that the two bounds are essentially the same. If the sum on the r.h.s. of (B.3) is
infinite, then bound (B.2) gives us information about the rate of growth for the time-
averaged moments. Such bounds are not available in [26], where one was rather
interested by dynamical localization.
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Consider now the bound of Theorem 3.2. In our case it takes the following form:

0

1/q
XE(T)> >c< 3 ak<ck<T>>‘“> , (B.5)

k=1

where ¢ (T) = Z/‘:|xj—xk\<l/T aj, ¢>1/(14p/so). Taking the limit 7— 4 co in
(B.5), we obtain

T—+w

o 1/q
liminf (|Xf}>(T)> C(Z aZ) : (B.6)
k=1

If the dynamical localization for the moment of order p holds, then (B.6) yields

8

al< +
=

for any ¢>1/(1 4 p/sp). This result (with so = d) was established by different
methods in [26].

Bound (B.2) or (B.5) can be used to prove the growth of the moments expected for
some quantum systems with pure point spectrum, provided one has necessary
information about a,x; and gx(n). The bounds in terms of the integrals

L,(q, s),LLR)(q,s) or My(q,¢) (Theorem 4.3) may be useful, if one has a good
control from below for u([x —¢,x+¢]) or for the powers of the resolvent
|| R (x + ie)i||.

Appendix C. Uniformly Holder continuous measures

Let u be a Borel probability measure on R. One says that u is uniformly a-Holder
continuous (U, H), if there exists a finite constant C such that for any € (0, 1), xeR,

u(lx — &, x +e]) < Ce”.

One can easily see that for such measures D (¢q) > for all g€ (0,1). For many such
measures D (¢) = o for all g€ (0,1).

In fact, the first abstract lower bound for the moments were obtained by Guarneri
[14] and Combes [8] for the states yy whose measure is U, H:

X (T) =T/, p>0, (C.1)

so that oc‘/% (p)=p/d. This “classical” lower bound is linear in p. One observes,
however, in numerical calculations [22,23] that a‘f (p) may grow nonlinearly for some

U,H measures even if the multifractal dimensions are constant on (0, 1). It is clear
that (C.1) or Theorem 4.2 cannot explain it. It was conjectured by Mantica that this
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intermittent behaviour may arise from the generalized eigenfunctions. The result we
prove below provides some possible mechanism for such a phenomenon.

Let e, |||l =1, u its spectral measure and Sy(x) the sum of generalized
eigenfunctions defined in Section 2. We shall assume that u is U,H. For any r,y>0
we define

V(. N) = / dp(x) (Sy(x) + 177,

Wi = [ T AN+ 1V N),

where V(y,N)el0,1] and it is possible that W (r,7) = +o0. We introduce also the
numbers

+ o0
() SUP{“/ZO‘ / dr X (0) +OO}
1

One can consider that | X |i(t) ~0W) | - 4+ oo in average sense.

Theorem C.1. (1) Assume that W (r,y) = + oo for some 0<r<p, y>0. Then

+ o0
/1 dr X[ (1) = 0. (C.2)
(2) For all p>0 the inequality holds:
Yy (p)=sup{y=0|3re(0,p), W(r,y) =+ow}. (C3)

Proof. We start with the lower bound (2.22) of Theorem 2.2:
+ o0 i
XEID=C [ VW 1) w(@T V), 0<r<p,
where
QT,N) = {x | b(x. T)Sw(x) <1/16), b(x.T) = [ duR(T(x=),
R

and R is some bounded fast decaying function. Since p is U, H, it is easy to show (the
proof is identical with the proof of Theorem 2.5 in [21]) that

b(x,T)<CT ™™ T=>1.
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Clearly,
Q(T,N)>A(T,N) = {x| 16CSy(x)<T*},

and thus
+00 -
WEDC [ avw T [ a0 (©a)
Let us multiply by (7 4 1)~'"7 the both sides in (C.4) and integrate over [1,+c0):

/W dT(T+1)l”<|X|p¢>(T)>C/+x AN(N + 1) / du(x)Z(N,x), (C.5)
1 0 R

where
“+ o0 -
Z(N,x) = / dT(T + 1)y ():

For given x, N one observes that xe A(T,N) iff T>(16CSN(x))1/“ = To(N, x).
Without loss of generality, we may assume that To(N, x)>1. Thus,

Z(N,x) :%(TO(N, x)+1)7=K(1+ SN(x))_’/“ (C.6)

with some positive constant K uniform in N, x. On the other hand, since {|X |’l/’/ >(T)
is Cesaro average of the moments | X |f;(l), one can easily show that
+ 0

+ o0
/1 dT(T+1)*1*'<|X|;>(T)<c/l di 717 |X 1 (). (C.7)

The first statement of the theorem follows from (C.5)—(C.7). The second statement
follows directly from the first and the definition of 7,(p). The proof is

completed. [

To understand better the statement of the theorem, assume that U(x) =
supy SN(x)N*< 4+ oo for all xeB, where u(B)>0. Then we get immediately
for N>1,

V(y,N)=DN =/

with positive uniform constant D. Then Theorem C.1 yields

9 (p)Zpa/s,
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which is virtually equivalent to the bound of Kiselev—Last [20]
X (T)=CcTh

(this bound was established in [20] for a slightly larger class of a-continuous
measures).

However, the function V' (y, N) for a given y >0 may tend to 0 as N - + oo slower
than N—*"/* which would give larger lower bound for 74(p)- This lower bound may
be nonlinear in p. To see why it may happen, consider the similar phenomenon in the
case of integrals /,(q, ¢). It is now well known that one may have

&0 log e

for p-a.e. x, but at the same time DHi (¢)>o for some or even all ¢ge(0,1)

(equivalently, I,(g, ¢) grows faster than ¢9=1) as ¢ —0). This is possible due to the big
contributions to the integral from the sets of energies of vanishing measure (as ¢ —0),
where pu([x —e,x+¢])/e* is very small. Similar phenomenon may happen for
V(y,N). If Sy(x)/N* is small on some set of vanishing measure, it may happen that
V(y, N) tends to 0 slower than N=/* (although Sy (x) ~ C(x)N*, N— + oo, for any
fixed x). It would be interesting to check it, for example, in the case when the family
4 is obtained by orthonormalization of H*\, because one has a good control of the
generalized eigenfunctions uy (n, x) (orthogonal polynomials of the measure x) and
thus of Sy(x).
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