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Introduction

In [2] it was shown that the big cone of an algebraic surface admits a natural locally finite de-
composition into rational locally polyhedral subcones, the Zariski chambers on X . These chambers are
of basic interest from the point of view of linear series on X : In the interior of each Zariski cham-
ber the stable base loci are constant, and the volume function is given by a quadratic polynomial in
each chamber. (See Section 1 for details on the chamber decomposition.) Understanding the behaviour
of stable base loci and the volume function is also of great interest in the higher-dimensional case,
where the picture is not as clear as for surfaces (see [3] and [4]).

It is an intriguing question to wonder into how many Zariski chambers the big cone decomposes
on a given surface. In other words, we ask on a smooth projective surface X for the quantity

z(X) = #{Zariski chambers on X} ∈ N ∪ {∞}.
The number z(X) is an interesting geometric invariant of the surface X , as it is the answer to the
following questions (see Section 1):
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• How many different stable base loci can occur in big linear series on X?
• How many essentially different Zariski decompositions can big divisors on X have? (By “essen-

tially different” we mean here that their negative parts have different support.)
• How many “pieces” does the volume function vol : Big(X) → R have (which is a piecewise poly-

nomial function)?

So, somewhat roughly speaking, one may think of the number z(X) as measuring how complicated
the surface is from the point of view of linear series.

In the present paper we provide an algorithm that allows to compute the invariant z(X) whenever
the irreducible curves of negative self-intersection on X are known. In particular, we will show how
to apply the algorithm to Del Pezzo surfaces. Recall that a Del Pezzo surface is either P1 × P1, P2, or
a blow-up of P2 at r � 8 general points. As one clearly has z(P1 × P1) = 1 and z(P2) = 1, it is enough
to study the blow-ups. We show:

Theorem. Let Xr be the blow-up of P2 in r general points with 1 � r � 8.

(i) The number z(Xr) of Zariski chambers on Xr is given by the following table:

r 1 2 3 4 5 6 7 8
z(Xr) 2 5 18 76 393 2764 33 645 1 501 681

(ii) The maximal number of curves that occur in the support of a Zariski chamber on Xr is r.

As one might expect intuitively, the number of chambers increases as the Picard number ρ(Xr) =
r +1 increases. Note however that this is not automatic: On abelian surfaces, for instance, ρ(X) varies
between 1 and 4, but one has always z(X) = 1, since the intersection of the nef cone and the big cone
is the only Zariski chamber. The same thing happens on suitable K3 surfaces: There are K3 surfaces
X of any Picard number up to 11 with z(X) = 1 (see [6, Theorem 2]). On the other hand, if one
considers the blow-up Xr of P2 in r � 9 general points, then the surface Xr (which is no longer a Del
Pezzo surface) contains infinitely many (−1)-curves and therefore one has z(Xr) = ∞.

Our algorithm – to be discussed in Section 2 – is in no way specific to Del Pezzo surfaces. It applies
to any surface where the irreducible curves with negative self-intersection are explicitly known. We
plan to study further applications of this method in a subsequent paper.

1. Negative curves and chambers

Consider a smooth projective surface X . A divisor D on X is big, if its volume

volX (D)
def= lim sup

k

h0(X,kD)

k2/2

is positive. The big cone Big(X) is the cone in the Néron–Severi vector space NSR(X) that is generated
by the big divisors. To any big and nef R-divisor P , one associates the Zariski chamber ΣP , which by
definition consists of all divisors in Big(X) such that the irreducible curves in the negative part of the
Zariski decomposition of D are precisely the curves C with P · C = 0. It is shown in [2, Lemma 1.6]
that for any two big and nef divisors P and P ′ , the Zariski chambers ΣP and ΣP ′ are either equal
or disjoint. So the Zariski chambers yield a decomposition of the big cone. If A is an ample divisor,
then the chamber ΣA is the intersection of the big cone and the nef cone, and its interior is the
ample cone; in the sequel we call it the nef chamber for short. The main result of [2] states that the
decomposition into Zariski chambers is a locally finite decomposition of Big(X) into rational locally
polyhedral subcones, such that

• on each chamber the volume function is given by a single polynomial of degree two, and
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• in the interior of each chamber the stable base loci are constant. (See Proposition 1.3 below for
the general statement.)

The following characterization will be essential for our purposes.

Proposition 1.1. The set of Zariski chambers on a smooth projective surface X that are different from the
nef chamber is in bijective correspondence with the set of reduced divisors on X whose intersection matrix is
negative definite.

Proof. Given a chamber ΣP , we consider the irreducible curves C1, . . . , Cr with P · Ci = 0. Then the
divisor C1 + · · · + Cr has negative definite intersection matrix thanks to the index theorem.

Conversely, given a reduced divisor C1 + · · · + Cr with negative definite intersection matrix, we
consider the divisor

D
def= H + k(C1 + · · · + Cr),

where H is a fixed ample divisor and k a positive integer. This divisor is big, and we claim that for
k � 0 the negative part of its Zariski decomposition will have C1 ∪ · · · ∪ Cr as its support. The latter
fact can for instance be seen from the computation of the Zariski decomposition according to [1].
Alternatively, consider the linear system of equations

(
H +

r∑
i=1

aiCi

)
C j = 0, j = 1, . . . , r, (1.1.1)

with unknowns a1, . . . ,ar . If S denotes the intersection matrix (Ci · C j)i, j , then the unique solution of
(1.1.1) is given by

⎛
⎜⎝

a1
...

ar

⎞
⎟⎠ = −S−1

⎛
⎜⎝

H · C1
...

H · Cr

⎞
⎟⎠ .

As S is by assumption negative definite, it follows that all entries of S−1 are � 0 (see [2, Lemma 4.1]),
and consequently we have ai � 0 for all i. The divisor H + ∑r

i=1 ai Ci is then for k � 0 clearly an
effective and nef Q-subdivisor of H +k

∑r
i=1 Ci having zero intersection with all Ci . By the uniqueness

of Zariski decompositions, it follows that it is the positive part in the Zariski decomposition of H +
k
∑r

i=1 Ci , and therefore the negative part has support C1 ∪ · · · ∪ Cr , as claimed. �
Remark 1.2. Note that the divisor D = H + k(C1 + · · · + Cr) that is considered in the proof of Proposi-
tion 1.1 lies in the interior of the chamber that corresponds to C1 + · · · + Cr . In fact, write D = P + N
for its Zariski decomposition, and suppose that D lies on the boundary of a chamber. Then by [2,
Proposition 1.7] there must exist an irreducible curve C ⊂ X with P · C = 0 that does not occur as a
component of N . But as P is of the form H +a1C1 +· · ·+ar Cr with H ample, it is clear that P · C = 0
can happen only if C is among the curves Ci . However, all of them are components of N .

The next statement justifies the claim made in the introduction to the effect that counting Zariski
chambers is equivalent to counting stable base loci of big linear series. By way of notation, we write
Bs(|D|) for the base locus of the linear series |D|, and

B(D)
def=

∞⋂
m=1

Bs
(|mD|)

for the stable base locus of D .
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Proposition 1.3. The set of Zariski chambers on a smooth projective surface X is in bijective correspondence
with the set of stable base loci that occur in big linear series on X.

Proof. As we already said above, it follows from [2] that for a divisor D that lies in the interior of
a Zariski chamber, the stable base locus B(D) coincides with the support of the negative part of the
Zariski decomposition of D . The point to show is therefore that the big divisors whose numerical
classes lie on boundaries of Zariski chambers cannot lead to stable base loci that have not been
accounted for by the divisors in the interior of chambers. To see that latter, suppose that D is a big
divisor on X . If A is any ample Q-divisor A, then we have

B(D) ⊂ B(D − A). (1.3.1)

For a suitable choice of A, the numerical class of the divisor D − A does not lie on the boundary
of any chamber. Moreover, as D is big, D − A is still big when A is sufficiently small. As D − A
then lies in the interior of a Zariski chamber, B(D − A) is the support of the negative part of a
Zariski decomposition, and hence it is the support of a divisor C1 + · · · + Cr with negative definite
intersection matrix. But then B(D) is by (1.3.1) a subdivisor of this divisor, and hence has negative
definite intersection matrix as well. By Proposition 1.1 this divisor corresponds to a Zariski chamber,
and hence has been accounted for already. �
Remark 1.4. Note that in general the stable base locus B(D) does not depend only on the numerical
equivalence class of D (see [7, Example 10.3.3]). In order to get a function on the big cone, one
considers augmented base loci instead (see [7, Section 10.3]). In light of this fact it is even more
surprising that by Proposition 1.3 all stable base loci on surfaces are accounted for by the Zariski
chambers. For instance, in the cited example [7, 10.3.3] one has two numerically equivalent big and
nef divisors D1 and D2 such that B(D1) = ∅ and B(D2) is a curve. According to Proposition 1.3 these
stable base loci correspond to two distinct Zariski chambers.

Our aim now is to study the number z(X) of Zariski chambers on X . By way of terminology, the
term negative curve will always mean an irreducible curve with negative self-intersection. Two things
about z(X) are clear from the outset:

(1) If X carries only a finite number N of negative curves, then one has the trivial upper bound

z(X) � 2N .

Intuitively, it seems unlikely that z(X) is equal (or close) to this upper bound, as this would mean
that every (or almost every) set of negative curves occurs in a stable base locus.

(2) We have z(X) = ∞ if and only if there are infinitely many negative curves on X . The blow-up of
P2 in � 9 general points gives such an example.

When the negative curves on X are known explicitly, then there is a way to effectively determine
the number z(X). To formulate the enumerative statement, we will use for a given (n × n)-matrix
the notion principal submatrix to mean as usual a submatrix that arises by deleting k corresponding
rows and columns of the matrix, where 0 � k < n. The following is then an immediate consequence
of Proposition 1.1:

Proposition 1.5. Let X be a smooth projective surface that contains only finitely many negative curves.

(i) We have

z(X) = 1 + #

{
negative definite principal submatrices
of the intersection matrix of the negative curves on X

}
.
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(ii) More generally, let C1, . . . , Cr be distinct negative curves on X, and let S be their intersection matrix.
Then the number of Zariski chambers that are supported by a non-empty subset of {C1, . . . , Cr} equals the
number of negative definite principal submatrices of the matrix S.

Strictly speaking, it is of course not actually the submatrices themselves that are to be counted,
but the subsets of the index set {1, . . . , r} that give rise to the submatrices. Nonetheless, we will
generally use this shorter formulation in the sequel. Also, note that the “1 + ” in (i) accounts for the
nef chamber.

Remark 1.6. Looking at Proposition 1.5, one would wish for a general matrix-theoretic result that gives
information about the number of negative definite principal submatrices in terms of other (easier
accessible) quantities associated with the matrix. It seems however that no results in this direction
are available so far. Not even is it clear which quantities might be of relevance: The probably most
naive guess might be to consider the signature (p,n) of the matrix, where p is the number of positive
and n the number of negative eigenvalues. However, as the following two examples show, one cannot
expect useful bounds in terms of the signature.

(i) Consider the matrix A that is diagonally composed of a k × k unit matrix and the negative of an
�×� unit matrix. Its signature is (p,n) = (k, �), and it has exactly 2k −1 positive definite principal
submatrices.

(ii) On the other hand, take A to be diagonally composed of a k × k unit matrix and � copies of the
matrix (

0 −1
−1 0

)
.

It has the same number 2k − 1 of positive definite principal submatrices, but its signature is
(p,n) = (k + �, �).

So while in (i) the number of positive definite principal submatrices depends only on p, it depends
in (ii) on the difference p − n.

2. Computing chambers

Proposition 1.5 suggests a way to effectively determine Zariski chambers when the numerical
classes of the negative curves are explicitly known: Each negative definite principal submatrix of the
intersection matrix of the negative curves corresponds to a chamber, supported by the curves that
are represented by the chosen rows and columns. Determining the negative definite submatrices is
however in practice not at all immediate: If there are many negative curves, then such work cannot
be done by hand. And even when carried out by computer, it is not a viable course of action to apply
brute force and check all submatrices for negative definiteness: For instance, on the Del Pezzo surface
X8 there are 2240 potential submatrices. Our algorithm exploits the following two observations, which
drastically reduce the complexity of the computation:

(1) Let A be the intersection matrix of n negative curves. If the principal submatrix A S corresponding
to a subset S ⊂ {1, . . . ,n} is not negative definite, then none of the subsets S ′ with S ′ ⊃ S need
to be examined, since they cannot be negative definite. One can therefore use a backtracking
strategy.

(2) Let S be a subset and let T be the set obtained from S by removing its largest element. If the
subsets are treated in such an order that S is only examined after AT has turned out to be
negative definite, then the negative definiteness of A S can be read off the sign of its determinant.

The algorithm below generates all positive definite principal submatrices of a given symmetric ma-
trix. It will subsequently be applied to the negative of the intersection matrix.
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Algorithm 2.1. The algorithm takes as input an integer n � 1 and a symmetric (n×n)-matrix A over R.
It outputs all subsets S ⊂ {1, . . . ,n} having the property that the corresponding principal submatrix
A S is positive definite.

input n, A
k ← 1
S ← {1}
while S 
= ∅ do

assert(k = max S and A S\{k} is positive definite)
if det A S > 0 then

output S
else

S ← S \ {k}
end if
assert(k � max S and A S is positive definite)
if k < n then

k ← k + 1
S ← S ∪ {k}

else
S ← S \ {k}
if S 
= ∅ then

k ← max S
S ← S \ {k}
k ← k + 1
S ← S ∪ {k}

end if
end if

end while

Remark 2.2. The gain in efficiency compared to checking all principal submatrices is considerable –
and in fact crucial for the algorithm to be practical at all. For instance, on the Del Pezzo surface X6
the algorithm checks only 15 600 submatrices instead of all 227 = 134 217 728 submatrices, which
means reducing cases to about 0.01 percent.

Proof of correctness and termination. Note first that the two assertions made within the loop are
true whenever the algorithm reaches them (the empty matrix being considered positive definite).
Therefore the condition that A S be positive definite is equivalent to det A S > 0. We now have to show
that the algorithm terminates and that it outputs precisely the claimed subsets. Readers familiar with
backtracking algorithms might rather quickly understand the strategy of Algorithm 2.1 and can argue
from there. For readers not versed in these matters we will provide an explicit alternative view as
follows.

For index sets S, S ′ ⊂ {1, . . . ,n} we write S < S ′ if for some integer � � 0 we have

S ∩ {1, . . . , �} = S ′ ∩ {1, . . . , �}

and

min
(

S \ {1, . . . , �}) < min
(

S ′ \ {1, . . . , �}),
where we set min(∅) = −∞. It is immediate that “<” is a strict total order on the set of subsets of
{1, . . . ,n}. Correctness and termination follow then from the two following claims.
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(i) Loop invariant: At the beginning and at the end of each loop cycle all index sets T < S have been
output for which AT is positive definite.

(ii) At the end of each loop cycle either the value of S is strictly bigger than at the beginning, or
S = ∅ (in which case it is the last cycle).

To verify this, let S1 and S2 be the values of the variable S at the beginning and at the end of a
loop cycle respectively, and write S1 = {i1, . . . , im} with i1 < · · · < im . Then we have

S2 = {i1, . . . , im, im + 1} if im < n and A S1 is positive definite,

S2 = {i1, . . . , im−1, im + 1} if im < n and A S1 is not positive definite,

S2 = {i1, . . . , im−2, im−1 + 1} or S2 = ∅ if im = n. (2.2.1)

So we have S2 > S1 or S2 = ∅ in each case, which proves claim (ii). As for claim (i): The algorithm
clearly outputs S1, if A S1 is positive definite. Further, one sees from (2.2.1) that there is no set T
with S1 < T < S2 unless im < n and A S1 is not positive definite. In the latter case, all sets T with
S1 < T < S2 are supersets of S1, and hence none of the corresponding matrices AT can be positive
definite. �
3. Del Pezzo surfaces

Our aim is now to apply Algorithm 2.1 to the Del Pezzo surfaces Xr for 1 � r � 8, which are the
blow-ups of P2 at r general points. To this end, we first need to describe all negative curves on the
surfaces Xr . They have been determined by Manin:

Theorem 3.1. (See Manin [8, Chapter IV].) The negative curves on Xr are

(1) the exceptional divisors corresponding to the blown-up points p1, . . . , pr

and the proper transforms of the following curves in P2:

(2) the lines through pairs of points pi , p j ;
(3) if r � 5, the conics through 5 points from p1, . . . , pr ;
(4) if r � 7, the cubics through 7 points from p1, . . . , pr with a double point in one of them;
(5) if r = 8, the quartics through the 8 points p1, . . . , p8 with double points in 3 of them;
(6) if r = 8, the quintics through the 8 points p1, . . . , p8 with double points in 6 of them;
(7) if r = 8, the sextics through the 8 points p1, . . . , p8 with double points in 7 of them and a triple point in

one of them.

The proof in [8] works from the more general perspective of root systems. We believe that it can
also be useful to have a very quick argument for this basic result in the spirit of [5, Theorem V.4.9],
and we provide such an argument below. Since we will at any rate need to describe the classes of
the negative curves and their intersection behaviour for our purposes, doing so means little additional
effort.

Proof. (i) We start by showing that negative curves as asserted in (2) to (7) exist. An immediate
dimension count shows that on P2 there are in any event effective divisors (which may be reducible)
having at least the indicated multiplicities. Writing H = π∗OP2 (1), Ei = π−1(pi), and E = E1 +· · ·+ Er ,
these divisors on P2 correspond to effective divisors in the following linear series on Xr :

C (1)
i j = H − Ei − E j 1 � i < j � r,
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C (2) = 2H − E (if r = 5),

C (2)
i = 2H − E + Ei 1 � i � 6 (if r = 6),

C (2)
i j = 2H − E + Ei + E j 1 � j < j � 7 (if r = 7),

C (2)

i jk = 2H − E + Ei + E j + Ek 1 � i < j < k � 8 (if r = 8),

C (3)
i = 3H − E − Ei 1 � i � 7 (if r = 7),

C (3)
i j = 3H − E − Ei + E j 1 � i, j � 8, i 
= j (if r = 8),

C (4)

i jk = 4H − E − Ei − E j − Ek 1 � i < j < k � 8 (if r = 8),

C (5)
i j = 5H − 2E + Ei + E j 1 � i < j � 8 (if r = 8),

C (6)
i = 6H − 2E − Ei 1 � i � 8 (if r = 8). (3.1.1)

The point is to show that these divisors are irreducible. To see this, one checks first that if C is any
of these divisors, then one has

C2 = −1 and −K Xr · C = 1. (3.1.2)

As −K Xr is ample, the second equation implies then that C must be irreducible. In particular, its
image curve on P2 has exactly the asserted multiplicities.

(ii) It remains to show that the curves in (1) to (7) are the only negative curves on Xr . So suppose
that C ⊂ Xr is any negative curve that is different from the exceptional curves of the blow-up. Via
the adjunction formula it follows from the ampleness of −K Xr that Eqs. (3.1.2) hold for C . One has
C ∈ |dH − ∑r

i=1 mi Ei | for suitable integers d � 1 and mi � 0. We claim that

d � 2 if r � 6,

d � 3 if r = 7,

d � 6 if r = 8. (3.1.3)

To prove (3.1.3), note first that Eqs. (3.1.2) translate to

d2 −
∑

m2
i = −1 and 3d −

∑
mi = 1. (3.1.4)

Upon combining these equations with the Cauchy–Schwarz inequality

(
r∑

i=1

mi

)2

� r
r∑

i=1

m2
i ,

we get a quadratic equation for d, which in turn implies d � 2 for r � 6, as well as d � 3 for r = 7 and
d � 7 for r = 8. So the claim (3.1.3) will be established as soon as we can rule out the possibility that
d = 7 and r = 8. In that case we would have equality in the Cauchy–Schwarz inequality, and therefore
m1 = · · · = m8. But then (3.1.4) would imply mi = 5/2, which is impossible.

To complete the proof, one checks now that Eqs. (3.1.4) have only the solutions corresponding to
the classes in (3.1.1). This can be done by trial, since the bounds (3.1.3) on d leave only finitely many
possibilities for the integers mi . �
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1
0 −1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1
1 1 −1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 −1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1
1 0 0 1 −1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0
0 1 0 1 0 −1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 −1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1
1 0 0 0 0 1 1 −1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0
0 1 0 0 1 0 1 0 −1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0 0 −1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 −1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 1 0 0 1 1 1 −1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 1 1 0 −1 0 0 0 0 1 0 1 1 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0 1 0 0 −1 0 0 0 1 1 0 1 0 0 0 1 0 1
0 0 1 0 1 1 1 0 0 0 1 0 0 0 −1 0 0 1 1 1 0 0 0 0 0 1 1
1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 −1 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 −1 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 −1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 −1 0 0 0 0 1 0 0
0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 −1 0 0 0 0 1 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 −1 0 0 0 0 1
0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 −1 0 0 0 0
1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 −1 0 0 0
1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 −1 0 0
1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 −1 0
1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. The intersection matrix A6 of the 27 lines on a smooth cubic surface, obtained as a submatrix of A8 as described in
Section 4.

One sees from (3.1.1) that the number N of negative curves on Xr is given by the following table:

r 1 2 3 4 5 6 7 8
N 1 3 6 10 16 27 56 240

(3.1.5)

4. Proof of the theorem

We now turn to the proof of the theorem stated in the introduction. We start by determining
the intersection products of the negative curves on Xr . Note that it is enough to write down the
intersection matrix A8 of the negative curves on the surface X8: The intersection matrices Ar for the
surfaces Xr , r < 8, can then be obtained by taking the principal submatrices corresponding to those
curves whose classes are contained in Z · [H] ⊕ ⊕r

i=1[Ei].
In order to get a compact statement that is suitable for computations, we will use for tuples of

integers (i1, . . . , im) and ( j1, . . . , jn) the abbreviation

(i1, . . . , im) ∗ ( j1, . . . , jn) =
∑

μ=1,...,m
ν=1,...,n

sign(iμ) · sign(iν) · δ|iμ|| jν |,

where δ is the Kronecker delta. Keeping the notation for the curves on X8 and the index ranges as
in (3.1.1), we find:

Ei · E� = (−i) ∗ (�), C (2)

i jk · C (3)
�m = 1 + (i, j,k) ∗ (�,−m),

Ei · C (1)
�m = (i) ∗ (�,m), C (2)

i jk · C (4)
�mn = (i, j,k) ∗ (�,m,n),

Ei · C (2)
�mn = 1 − (i) ∗ (�,m,n), C (2)

i jk · C (5)
�m = 2 − (i, j,k) ∗ (�,m),

Ei · C (3)
�m = 1 + (i) ∗ (�,−m), C (2) · C (6)

� = 1 + (i, j,k) ∗ (l),
i jk
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Ei · C (4)
�mn = 1 + (i) ∗ (�,m,n), C (3)

i j · C (3)
�m = 1 + (−i, j) ∗ (�,−m),

Ei · C (5)
�m = 2 − (i) ∗ (�,m), C (3)

i j · C (4)
�mn = 1 + (−i, j) ∗ (�,m,n),

Ei · C (6)
� = 2 + (i) ∗ (�), C (3)

i j · C (5)
�m = 1 + (i,− j) ∗ (�,m),

C (1)
i j · C (1)

�m = 1 − (i, j) ∗ (�,m), C (3)
i j · C (6)

� = 1 + (−i, j) ∗ (�),

C (1)
i j · C (2)

�mn = (i, j) ∗ (�,m,n), C (4)

i jk · C (4)
�mn = 2 − (i, j,k) ∗ (�,m,n),

C (1)
i j · C (3)

�m = 1 + (i, j) ∗ (−�,m), C (4)

i jk · C (5)
�m = (i, j,k) ∗ (�,m),

C (1)
i j · C (4)

�mn = 2 − (i, j) ∗ (�,m,n), C (4)

i jk · C (6)
� = 1 − (i, j,k) ∗ (�),

C (1)
i j · C (5)

�m = 1 + (i, j) ∗ (�,m), C (5)
i j · C (5)

�m = 1 − (i, j) ∗ (�,m),

C (1)
i j · C (6)

� = 2 − (i, j) ∗ (�), C (5)
i j · C (6)

� = (i, j) ∗ (�),

C (2)

i jk · C (2)
�mn = 2 − (i, j,k) ∗ (�,m,n), C (6)

i · C (6)
� = (−i) ∗ (�).

The preceding formulas determine the intersection matrix A8, which is of dimension 240. As de-
scribed above, the matrices Ar for r = 1, . . . ,7 are obtained as submatrices thereof. They are of
dimension 1, 3, 6, 10, 16, 27, and 56 respectively (see (3.1.5)). As an example, we display the ma-
trix A6 in Fig. 1. Using Algorithm 2.1, applied to the matrix −Ar , we obtain the number of negative
definite principal submatrices of Ar :

r 1 2 3 4 5 6 7 8
# 1 4 17 75 392 2763 33 644 1 501 680

Proposition 1.5 then gives part (i) of the theorem. With an obvious modification of Algorithm 2.1 we
obtain in each case also the maximal cardinality of the positive definite index sets, which shows that
for each r there are positive definite principal submatrices of −Ar of dimension r. This proves part (ii)
of the theorem.
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