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Abstract

We present a method for extracting tunnelling amplitudes from perturbation expansions which are always diverg
not Borel-summable. We show that they can be evaluated by an analytic continuation of variational perturbation the
power of the method is illustrated by calculating the imaginary parts of the partition function of the anharmonic oscil
zero spacetime dimensions and of the ground state energy of the anharmonic oscillator for all negative values of the
constantg and show that they are in excellent agreement with the exactly known values. As a highlight of the theory we
from the divergent perturbation expansion of the tunnelling amplitude the action of the instanton and the effects of hig
fluctuations around it.
 2003 Published by Elsevier Science B.V. Open access under CC BY license.
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1. Tunnelling processes govern many import
physical phenomena. Their theoretical description
quires the calculation of the contribution of critic
bubbles to the partition function, including their flu
tuation entropy [1]. The latter can be found at mos
one-loop order. Higher loop effects are prohibitive
complicated [2]. It would be of great advantage tu
nelling amplitudes could be derived from ordinary p
turbation expansions around the free theory since th
can be performed to many loops [3]. The difficu
arising in such a program is that tunnelling amplitud
are described by the analytic continuation of diverg
Borel-summable power series expansions in the c
pling constantg to negativeg where they become non
Borel-summable. None of the currently known resu
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Open access under CC
mation schemes [3,4] is able to deal with such exp
sions. Some time ago it was suggested that a resum
tion is possible by variational perturbation theory [
However, the imaginary parts calculated there gave
curate imaginary parts only in thesliding regime of
larger negativeg and did not invade into the prope
tunnelling regime of smallg dominated by critica
bubbles. A separate variational treatment of an ins
ton calculation was set up to cover this region [6].

In this Letter we show that the non-Borel-summa
series can be evaluated with any desired precisio
an appropriate continuation of variational perturbat
theory [2,3] in to the complexg-plane.

Variational perturbation theory has a long histo
[7–10]. It is based on the introduction of a dumm
variational parameterΩ on which the full perturbation
expansion does not depend, while the truncated ex
sion does. An optimalΩ is then selected by the prin
ciple of minimal sensitivity [11], requiring the quan
 BY license.
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tity of interest to be stationary as function of the var
tional parameter. The optimalΩ is usually taken from
a zero of the derivative with respect toΩ . If the first
derivative has no zero, a zero of the second deriva
is chosen. For Borel-summable series, these zero
always real, in contrast to statements in the literat
[12–15] advocating the use of complex zeros. Co
plex zeros, however, produce in general wrong res
for Borel-summable series, as was recently dem
strated in Ref. [16].

The purpose of this Letter is to show that the
does exist a wide range of applications of complex
ros in the previously untreatable field of non-Bor
summable series. These arise typically in tunnell
problems, and we shall see that variational pertur
tion theory provides us with an efficient method f
evaluating these series and rendering their real
imaginary parts with any desirable accuracy if on
enough perturbation coefficients are available. T
choice of the complex zeros is dictated by the
quirement to achieve at each order the least oscilla
imaginary part when approaching the tip of the c
We shall call this selection rule theprinciple of mini-
mal sensitivity and oscillations.

2. For an introduction to the method consider t
exactly known partition function of an anharmon
oscillator in zero spacetime dimensions, which is
simple integral representation of a modified Bes
functionKν(z):

Z(g)= 1√
2π

∞∫
−∞

dx exp
(−x2/2− gx4/4

)

(2.1)= e1/8g(4πg)−1/2K1/4(1/8g).

For small g < 0, the functionZ(g) and its in-
verseD(g) ≡ Z−1(g) have a divergent non-Bore
summable power series:

(2.2)D(g)=
∞∑
l=0

alg
l .

In the strong-coupling regime, there exists a conv
gent expansion

(2.3)D(g)= gα
∞∑
blg

−ωl,

l=0
with α = 1/4 andω = 1/2. In the context of critica
phenomena, the exponentω coincides with the Weg
ner exponent [17] of approach to scaling [18]. T
Lth variational approximation depending on the va
ational parameterΩ is given by the truncated serie
[2,3]

(2.4)D(L)var (g,Ω)=Ωp

L∑
j=0

(
g

Ωq

)j
εj (σ ),

where q = 2/ω = 4, p = αq = 1. Introducing the
parameterσ = Ωq−2(Ω2 − 1)/g, the re-expansion
coefficients are

(2.5)εj (σ )=
j∑
l=0

al

(
(p− lq)/2
j − l

)
(−σ)j−l .

Following the principle of minimal sensitivity
we have to find the zeros of the derivative
∂ΩD

(L)
var (g,Ω), which happen to coincide with the z

ros of a function of the variableσ only, to be denoted
by ζ (L)(σ ):

ζ (L)(σ )=
L∑
l=0

al

(
(p− lq)/2
L− l

)
(p− lq + 2l− 2L)

(2.6)× (−σ)L−l .

For a proof of this remarkable property see [19], a
the textbook [2, p. 291].

As an example, we take the weak-coupling exp
sion toL = 16th order and calculate real and ima
nary parts for the non-Borel region−2< g <−0.008
selecting the zero ofζ (16)(σ ) according to the prin
ciple of minimal sensitivity and oscillations. The r
sult is shown in Fig. 1. In order to point out how we
the variational result approximates the essential sin
larity of the imaginary part∝ exp(−1/4g) for small
g < 0, we have removed this factor. The agreemen
excellent down to very small−g.

3. Let us now turn to the non-trivial problem
of summing the instanton region of the anharmo
oscillator for g < 0. The divergent weak-couplin
perturbation expansion for the ground state energ
the anharmonic oscillator with the potentialV (x) =
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Fig. 1. Imaginary and real parts from variational perturbat

theory of 16th orderD(16)
var (g) as a function of log(−g) (dots)

in comparison with exact curves (curves). In the imaginary p
we have removed the leading essential singularity by divid
out a factor exp(1/4g) to see the amazing accuracy with whi
this singularity is approximated. For very smallg the onset of
oscillations in the imaginary part can be seen which moves tow
the origin for increasing orderL of the variational approximation.

x2/2+ gx4 is, to orderL:

(3.1)E
(L)
0,weak(g)=

L∑
l=0

alg
l,

where al = (1/2,3/4,−21/8,333/16,−30885/128,
. . .). The expansion is obviously not Borel-summa
for g < 0, but will now be evaluated with our ne
technique, proceeding in the same way as for
above test functionD(g) via Eqs. (2.4)–(2.6). The
known strong-coupling growth parameters areα =
1/3 andω= 2/3, so thatp = 1 andq = 3 in Eq. (2.6)
which will guarantee the correct scaling properties
g→ ∞. To orderL = 64 we obtain from the optima
zero ofζ (64)(σ ) the logarithm of the scaled imagina
part

(3.2)l(g) := log
[√−πg/2E(64)

0,var(g)
] − 1/3g,
Fig. 2. Logarithm of the imaginary part of the ground state ene
of the anharmonic oscillator with the essential singularity facto

out for better visualization,l(g)= log[√−πg/2E(64)
0,var(g)]− 1/3g,

plotted against small negative values of the coupling cons
−0.2< g < −0.006 where the series is non-Borel-summable. T
thin curve represents the divergent expansion around an insta
of Ref. [21]. The fat curve is the 22nd order approximation of
strong-coupling expansion, analytically continued to negativeg in
the sliding regime calculated in Chapter 17 of the textbook [2].

shown in Fig. 2 for−0.2< g < −0.006. The point
g = −0.006 is the closest approach to the singula
atg = 0 forL= 64 before the onset of oscillations.

Let us compare our curve with the expans
derived from instanton calculations [21]:

(3.3)f (g)= b1g− b2g
2 + b3g

3 − b4g
4 + · · · ,

with coefficientsb1 = 3.95833,b2 = 19.344, b3 =
174.21, b4 = 2177. This expansion is divergent a
non-Borel-summable forg < 0. Remarkably, we ar
able to extract this expansion from our data poin
Since our result is given by a convergent expans
the fitting procedure will depend somewhat on
interval chosen over which we fit our curve by a pow
series. A compromise between a sufficiently lo
interval and the runaway of the divergent instan
expansion is obtained for a lower limitg >−0.0229±
0.0003 and an upper limitg = −0.006. Fitting a
polynomial to the data, we extract the following fir
three coefficients:

b1 = 3.9586± 0.0003, b2 = 19.4± 0.12,

(3.4)b3 = 135± 18.

4. The agreement of our curves with the ex
results in Fig. 1 and of our expansion coefficients
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(3.4) with the exact ones in (3.3) demonstrates that
method is capable of probing deeply into the instan
region of the coupling constant.

Let us end by remarking that another proced
of summing non-Borel series can be deduced fr
a development in the first of Refs. [18] (see a
Chapter 20 of the textbook [3]). One may derive
strong-coupling expansion of the type (2.3) from t
divergent weak-coupling expansion, which can th
be continued analytically to negativeg by a simple
rotation of the powerg−ωl to e−iπωl(−g)−ωl . This
method is applicable only in the sliding regime.
Fig. 2, we have plotted the resulting curve to ord
L = 9. The present work fills the gap between t
sliding regime and the tunnelling regime by extend
variational perturbation theory to allg arbitrarily close
to zero, without the need for a separate treatment o
tunnelling regime.

There exists, of course, a wealth of possible
plications of this simple theory, in particular to qua
tum field theory where variational perturbation theo
has so far yielded the most accurate critical expon
from Borel-summable series [3,18,20].
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