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Abstract

We present a method for extracting tunnelling amplitudes from perturbation expansions which are always divergent and
not Borel-summable. We show that they can be evaluated by an analytic continuation of variational perturbation theory. The
power of the method is illustrated by calculating the imaginary parts of the partition function of the anharmonic oscillator in
zero spacetime dimensions and of the ground state energy of the anharmonic oscillator for all negative values of the coupling
constanfg and show that they are in excellent agreement with the exactly known values. As a highlight of the theory we recover
from the divergent perturbation expansion of the tunnelling amplitude the action of the instanton and the effects of higher loop
fluctuations around it.

0 2003 Published by Elsevier Science B.V. Open access under. CC BY license.

1. Tunnelling processes govern many important mation schemes [3,4] is able to deal with such expan-
physical phenomena. Their theoretical description re- sions. Some time ago it was suggested that a resumma-

quires the calculation of the contribution of critical
bubbles to the partition function, including their fluc-
tuation entropy [1]. The latter can be found at most to
one-loop order. Higher loop effects are prohibitively
complicated [2]. It would be of great advantage tun-
nelling amplitudes could be derived from ordinary per-

tion is possible by variational perturbation theory [5].
However, the imaginary parts calculated there gave ac-
curate imaginary parts only in thgiding regime of
larger negativez and did not invade into the proper
tunnelling regime of smalk dominated by critical
bubbles. A separate variational treatment of an instan-

turbation expansions around the free theory since theseton calculation was set up to cover this region [6].

can be performed to many loops [3]. The difficulty
arising in such a program is that tunnelling amplitudes
are described by the analytic continuation of divergent

Borel-summable power series expansions in the cou-

pling constang to negativeg where they become non-
Borel-summable. None of the currently known resum-
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In this Letter we show that the non-Borel-summable
series can be evaluated with any desired precision by
an appropriate continuation of variational perturbation
theory [2,3] in to the compleg-plane.

Variational perturbation theory has a long history
[7-10]. It is based on the introduction of a dummy
variational paramete® on which the full perturbation
expansion does not depend, while the truncated expan-
sion does. An optimad2 is then selected by the prin-
ciple of minimal sensitivity [11], requiring the quan-
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tity of interest to be stationary as function of the varia-
tional parameter. The optim&? is usually taken from
a zero of the derivative with respect . If the first
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with « = 1/4 andw = 1/2. In the context of critical
phenomena, the exponentcoincides with the Weg-
ner exponent [17] of approach to scaling [18]. The

derivative has no zero, a zero of the second derivative Lth variational approximation depending on the vari-
is chosen. For Borel-summable series, these zeros areational parametef? is given by the truncated series
always real, in contrast to statements in the literature [2,3]
[12—15] advocating the use of complex zeros. Com-
plex zeros, however, produce in general wrong results L ¢\’
for Borel-summable series, as was recently demon- Dya? (¢, £2) = 9172(@) €j(0),
strated in Ref. [16]. Jj=0

The purpose of this Letter is to show that there
does exist a wide range of applications of complex ze-
ros in the pre\_/iously untrea_table fi_eld of_ non—Bort_aI— coefficients are
summable series. These arise typically in tunnelling
problems, and we shall see that variational perturba- j
tion theory provides us with an efficient method for ¢ (5) = Zal ((p - lq)/Z) (=o)L,
evaluating these series and rendering their real and j=l
imaginary parts with any desirable accuracy if only ) o o o
enough perturbation coefficients are available. The Following the principle of minimal sensitivity,
choice of the complex zeros is dictated by the re- W€ pgve to find the zeros of the derivative of
quirement to achieve at each order the least oscillating 92 Pvar (¢, £2), which happen to coincide with the ze-
imaginary part when approaching the tip of the cut. 0S of a function of the variable only, to be denoted
We shall call this selection rule thinciple of mini- by ¢V (0):

mal sensitivity and oscillations. .
tPe)y=> a (
1=0

X (—o)l‘_l.

(2.4)

whereq = 2/w = 4, p = ag = 1. Introducing the
parameters = 2972(£2%2 — 1)/g, the re-expansion

(2.5)
=0

(pL_l_ql)/2> (p—lg+2—2L)

2. For an introduction to the method consider the
exactly known partition function of an anharmonic
oscillator in zero spacetime dimensions, which is a

simple integral representation of a modified Bessel

(2.6)

For a proof of this remarkable property see [19], and

function K, (z): the textbook [2, p. 291].
o As an example, we take the weak-coupling expan-
1 5 4 sion to L = 16th order and calculate real and imagi-
Z(9) = Nz / dx exp(—x</2 — gx"/4) nary parts for the non-Borel region2 < ¢ < —0.008
T e selecting the zero of 19 (o) according to the prin-

ciple of minimal sensitivity and oscillations. The re-
sult is shown in Fig. 1. In order to point out how well
the variational result approximates the essential singu-
larity of the imaginary partx exp(—1/4g) for small

g < 0, we have removed this factor. The agreement is
excellent down to very smai g.

= V8 (47 g)"Y12K 1 14(1/8g). (2.1)

For small ¢ < 0, the function Z(g) and its in-
verse D(g) = Z~1(g) have a divergent non-Borel-
summable power series:

oo
D(g) = chgl.
=0

In the strong-coupling regime, there exists a conver-
gent expansion

2.2)

3. Let us now turn to the non-trivial problem
of summing the instanton region of the anharmonic
oscillator for g < 0. The divergent weak-coupling
perturbation expansion for the ground state energy of

2.3
(2:3) the anharmonic oscillator with the potentigx) =

o
D(g)=g*) bhig™",
=0
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Fig. 1. Imaginary and real parts from variational perturbation

theory of 16th orderD\(,é?) (g) as a function of log—g) (dots)

in comparison with exact curves (curves). In the imaginary part
we have removed the leading essential singularity by dividing
out a factor expl/4g) to see the amazing accuracy with which
this singularity is approximated. For very smallthe onset of
oscillations in the imaginary part can be seen which moves towards
the origin for increasing ordet of the variational approximation.

x2/2+ gx%is, to orderL:

L

Eguea®) =Y _aig, (3.1

1=0
whereq; = (1/2,3/4, —21/8,333/16, —30885128
...). The expansion is obviously not Borel-summable
for g < 0, but will now be evaluated with our new
technique, proceeding in the same way as for the
above test functionD(g) via Eqgs. (2.4)—(2.6). The
known strong-coupling growth parameters are=
1/3 andw = 2/3, so thatp = 1 andg = 3 in Eq. (2.6)
which will guarantee the correct scaling properties for
g — oo. To orderL = 64 we obtain from the optimal
zero ofz 69 (o) the logarithm of the scaled imaginary
part
1(g) :=log[\/~7g/2

ESmi()] —1/3¢, (3.2)
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Fig. 2. Logarithm of the imaginary part of the ground state energy
of the anharmonic oscillator with the essential singularity factored

out for better visualizatiori(g) = log[v/—mg/2 Eéﬁj‘;r(g)] —1/3g,
plotted against small negative values of the coupling constant
—0.2 < g < —0.006 where the series is non-Borel-summable. The
thin curve represents the divergent expansion around an instanton
of Ref. [21]. The fat curve is the 22nd order approximation of the
strong-coupling expansion, analytically continued to negagive

the sliding regime calculated in Chapter 17 of the textbook [2].

shown in Fig. 2 for—0.2 < g < —0.006. The point

g = —0.006 is the closest approach to the singularity

atg = 0 for L = 64 before the onset of oscillations.
Let us compare our curve with the expansion

derived from instanton calculations [21]:

f(g) =b1g —bag® + b3g® —bag* +- -, (3.3)

with coefficientsb; = 3.95833,b2 = 19.344, b3 =
17421, bs = 2177. This expansion is divergent and
non-Borel-summable fog < 0. Remarkably, we are
able to extract this expansion from our data points.
Since our result is given by a convergent expansion,
the fitting procedure will depend somewhat on the
interval chosen over which we fit our curve by a power
series. A compromise between a sufficiently long
interval and the runaway of the divergent instanton
expansion is obtained for a lower lingit> —0.0229+
0.0003 and an upper limig = —0.006. Fitting a
polynomial to the data, we extract the following first
three coefficients:

b1 = 3.95864+ 0.0003
b3 =135+ 18.

by =19.4+0.12,
(3.4)

4. The agreement of our curves with the exact
results in Fig. 1 and of our expansion coefficients in
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(3.4) with the exact ones in (3.3) demonstrates that our
method is capable of probing deeply into the instanton
region of the coupling constant.

Let us end by remarking that another procedure
of summing non-Borel series can be deduced from
a development in the first of Refs. [18] (see also
Chapter 20 of the textbook [3]). One may derive a
strong-coupling expansion of the type (2.3) from the
divergent weak-coupling expansion, which can then
be continued analytically to negative by a simple
rotation of the powerg=® to e~ (—g)~*!. This
method is applicable only in the sliding regime. In
Fig. 2, we have plotted the resulting curve to order
L = 9. The present work fills the gap between the
sliding regime and the tunnelling regime by extending
variational perturbation theory to allarbitrarily close

to zero, without the need for a separate treatment of the

tunnelling regime.

There exists, of course, a wealth of possible ap-
plications of this simple theory, in particular to quan-
tum field theory where variational perturbation theory
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