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A B S T R A C T

Vanillin is a flavoring agent widely used in food and beverages such as chocolates and dairy

products and it is also used to mask unpleasant tastes in medicine. It has been reported to

have antioxidant, anti-inflammatory and antiapoptotic properties. The current study was

designed to investigate the protective effects of vanillin against experimentally induced stress

in rats. Briefly rats were subdivided into four groups. Three groups were subjected to chronic

mild stress and the fourth group served as normal control group. One week before induc-

tion of stress drugs or saline was administered daily and continued for another nine weeks.

At the end of the experimental period behavioral tests including sucrose preference test,

forced swim test and elevated plus maze test were assessed. In addition, brain biochemi-

cal parameters including MDA, GSH, NO and serotonin were determined. Vanillin succeeded

to restore the behavioral and biochemical changes associated with stress. It significantly

increased sucrose consumption in sucrose preference test and time spent in open arm in

elevated plus maze test as compared to stress control group. It also reduced immobility time

in forced swim test and time spent in closed arm in elevated plus maze test. Additionally,

it significantly decreased brain MDA and NO levels and significantly increased brain GSH

and Serotonin levels compared to stress control group. It could be concluded that vanillin

showed beneficial protective effects against experimentally induced stress in rats.

© 2016 Beni-Suef University. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Depression is a disabling and widely distributed disorder that
is associated with exposure to stressful life events. Studies of
chronic stress in animal models and postmortem tissues from

depressed patients demonstrated reduced size of limbic brain
regions that regulate mood and cognition, and decreased neu-
ronal synapses in these brain areas may play a major role in
the pathogenesis of depression (Masi and Brovedani, 2011).

So far, the specific mechanism of depression is not well
defined; yet, theories mainly focus on the involvement of the
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neurotransmitter serotonin. Compounds that suppress the el-
evated concentration of serotonin in the synaptic cleft have
been authenticated to possess antidepressant effects (Belmaker
and Agam, 2008). Recently, oxidative stress has shown impor-
tant role regarding psychiatric diseases such as depression and
has been suggested as an important factor in the pathogen-
esis of depression (Ng et al., 2008). Maes et al. (2011)
demonstrated the entanglement of oxidative and nitrosative
stress in the pathophysiology of depression.

Treatments for depression include tricyclic antidepres-
sants (TCAs), selective serotonin reuptake inhibitors (SSRIs),
serotonin–noradrenergic reuptake inhibitors (SNRIs), and other
atypical antidepressant drugs such as monoamine oxidase in-
hibitors (MAOIs) (Nemeroff, 2007). However, the efficiency of
these antidepressants is variable, and most of them possess
serious adverse effects including sleep disturbance, sedation,
agitation and tiredness, thus, there is a crucial demand for brand
new, efficient, and well tolerated antidepressants (Nestler et al.,
2002).

Venlafaxine is an SSNRIs mainly used in the treatment of
depression and obsessive diseases (Golden and Nicholas, 2000).
Pharmacokinetic data demonstrated venlafaxine as a sole treat-
ment in many clinical trials (Mbaya, 2002). It restrains the
serotonin transporter by binding the receptor at a site other
than active binding site for serotonin (Murphy et al., 2004).
Venlafaxine was selected in the present study as a standard
drug because it is widely prescribed for treating major depres-
sion and it is well tolerated with fewer side effects (Dubovicky
et al., 2014).

Vanillin (4-hydroxy-3-methoxybenzylaldehyde) is the main
component of natural vanilla.Vanillin has been widely used as
a flavoring agent and preservative in food and cosmetics. Van-
illin has a beneficial protective role against oxidative stress such
as protein oxidation and lipid peroxidation in hepatic mito-
chondria (Liu and Mori, 1993). Moreover, Vanillin has also
demonstrated an ability to inhibit the lipopolysaccharide
(LPS)-stimulated nuclear factor kappa-B activation and
cyclooxygenase-2 gene expression in murine macrophages. It
also reduces the expression of proinflammatory cytokines such
as interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-
alpha (TNF-α) (Murakami et al., 2007).

The present research was constructed to elucidate the ben-
eficial role of vanillin in chronic mild stress induced in rats and
to explicate the possible underlying mechanisms.

2. Materials and methods

2.1. Animals

Male Wistar Albino rats (230–250 g) supplied from the Na-
tional Cancer Institute, Cairo, Egypt were used in all the
experimental procedures. Rats were left to acclimatize in the
animal facility of the Faculty of Pharmacy, Beni Suef Univer-
sity, for one week. All animals were kept under a 12 h light–
dark cycle, with controlled humidity (60–80%) and constant
temperature (22 °C ± 1 °C). Food and water were supplied ad
libitum except when rats were submitted to chronic mild stress
(CMS). All experimental procedures were controlled and ap-

proved by the Ethics Committee of Faculty of Pharmacy, Beni
Suef University.

2.2. Drugs and chemicals

Venlafaxine and vanillin were obtained from Sigma-Aldrich,
USA. All other chemicals were of the highest category avail-
able in the market. Venlafaxine and vanillin were freshly
prepared just before administration to the rats by dissolving
them in normal saline.

2.3. Experimental design

After an accommodation period of one week, rats were ran-
domly distributed into four groups (n = 8 rats per group) as
follows: Group I, normal control group. In this group rats re-
ceived regular diet and water ad libitum only. Rats did not
receive any treatment. Group II (untreated stress group): Animals
were subjected to CMS regime and received 1 ml of saline orally
for 9 weeks. Groups III and IV: Rats received venlafaxine, 40 mg/
kg and vanillin 100 mg/kg respectively as a single oral daily dose
one week before induction of CMS and continued for another
9 weeks.

2.4. Chronic mild stress (CMS)

For consecutive twenty eight days, rats were randomly sub-
jected to one of the following external stimulus one each day:
food restriction for 24 h, switching of day and night, unclean
cages (150 ml of water per cage) for 22 h, cage inclining (45
degree) for 22 h, overcrowded housing (8 animals per cage) for
12 h, introduction of an unusual odor (air freshener) for 12 h,
administration of restraint stressor for 20 min, cold stress 4–8 °C
and heat stress 38–39 °C for 20 min and intermittent noise for
5 h for 3 periods (Nirmal et al., 2008).

2.5. Behavioral tests

2.5.1. Sucrose preference test (SPT)
Before starting sucrose preference test, rats were kept singly
and accustomed for 48 h of forced sucrose solution (1%) drink-
ing using two bottles on each side. Soon after, rats were
subjected to 16 h water deprivation and then, two preweighted
bottles were put for each rat. The first one has 1% sucrose so-
lution and the second has water. To escape bias, the side of
the two bottles was randomly allocated. After one hour, the
bottles were reweighted and the alteration in weight differ-
ence was calculated. Sucrose preference was calculated as a
percentage of the consumed 1% sucrose solution in relation
to the total amount of liquid intake (Jiang et al., 2013).

2.5.2. Forced swim test (FST)
Each rat was forced to swim in a cylindrical box. For each rat
the total time of immobility during 5 minutes was calcu-
lated. Rat was considered immobile when it stopped struggling
and floated without movement in the water, doing only moves
that make its head above water. The drug is said to have an-
tidepressant like effect if there is a significant decrease in the
time of immobility (Porsolt et al., 1979).
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2.5.3. Elevated plus maze
In the elevated plus maze times spent in open and closed arms
were recorded. This depends on the rat’s susceptibility con-
cerning darkness, enclosed areas (approach) and an
unconditioned fear of heights/open areas (avoidance) (Walf and
Frye, 2007).

2.6. Biochemical analysis

Brain homogenate from each rat was used for the assess-
ment of biochemical parameters.

2.6.1. Brain homogenate preparation
Twenty four hours after behavioral assessment, rats were killed
by decapitation and the brains were quickly removed and
washed with ice-cold sterile saline (0.9%). Then, brains were
homogenized using ice-cold 0.1 M phosphate buffer (pH 7.4).
This step was repeated five times. The homogenate was cen-
trifuged at 2500 × g (4 °C) for 15 min to remove any cellular
debris. After centrifugation supernatants were separated and
used for the estimation of biochemical parameters.

2.6.2. Determination of lipid peroxidation level
Brain lipid peroxides content was estimated by determina-
tion of the level of thiobarbituric acid reactive substances
(TBARS) measured as MDA according to the method of Wills
(1966). Briefly, 0.5 ml of tris hydrochloric acid (0.1 M, pH 7.4) was
added to 0.1 ml of the supernatant and the solution was in-
cubated for 2 h. One ml of trichloroacetic acid (10% w/v) was
added to the solution and centrifuged at 1000 × g for 10 min.
Then, 1 ml (0.67% w/v) of thiobarbituric acid (TBA) was added
to 1 ml of supernatant, and kept in the boiling water bath for
10 min, cooled and then 1 ml of distilled water was added. Ab-
sorbance was measured at 532 nm using a spectrophotometer
(UV-1700 Shimadzu, Japan).

2.6.3. Determination of reduced glutathione level
Brain reduced glutathione content was determined in accor-
dance with the method of Ellman (1959). 1 ml of the supernatant
was precipitated using 1 ml of 4% sulfosalicylic acid and cooled
at 4 °C for 1 h. The samples were centrifuged at 1200 × g for
15 min at 4 °C. To 1 ml of the supernatant, 2.7 ml of phos-
phate buffer (0.1 mol/l, pH 8) and 0.2 ml of 5, 5-dithio-bis (2-
nitrobenzoic acid) were added. Absorbance was measured
immediately at 412 nm (UV-1700 Spectrophotometer, Shimadzu,
Japan).

2.6.4. Determination of nitric oxide level
The assay determines total nitrite/nitrate level based on the
reduction of any nitrate to nitrite followed by the estimation
of total nitrite (intrinsic nitrite obtained from reduction of
nitrate) by Griess reagent according to the method by Green
et al. (1982). Absorbance was determined at 540 nm (UV-1700
Spectrophotometer, Shimadzu, Japan). The concentration of
nitrite in the brain was expressed as micromole per milli-
gram of protein.

2.6.5. Determination of serotonin level
Serotonin level in the brain was determined according to the
method of Hou et al. (2006) using rat Enzyme Linked Immu-
noassay kit (Abcam, Cambridge, UK).

2.6.6. Statistical analysis
Data were presented as mean ± SD. Statistical analysis of the
data was carried out using one way analysis of variance
(ANOVA) followed by Tukey–Karmer multiple comparisons test
for post hoc analysis. Statistical significance was acceptable
to a level of p < 0.05.

3. Results

3.1. Sucrose preference percentage

The mean value for sucrose consumption in normal control
rats was 61.20 ± 8.70. Sucrose consumption was significantly
reduced in stress control group as compared to normal control
group. On the other hand, stress rats treated with venlafaxine
or vanillin showed significant increase in sucrose consump-
tion as compared to non-treated stress group (66.67 ± 11.29,
58.02 ± 12.80 respectively) (Fig. 1).

3.2. Immobility time in forced swim test (FST)

As shown in Fig. 2, the mean time of immobility in normal
control group was 132.20 ± 12.50 seconds. Time of immobility
was significantly increased in control non-treated stress group
to 176.9 ± 23.51 as compared to normal control group. Treat-
ment of stress rats with venlafaxine or vanillin showed a
significant decrease of immobility time as compared to non-
treated stress group (140.90 ± 16.82, 138.60 ± 14.99, respectively).

3.3. The time spent in closed and in open arms in
elevated plus maze test

In normal control group the mean values for time spent in
closed arm and open arm (seconds) were 139.90 ± 21.11 and
156.80 ± 18.61 respectively. In stress non-treated control group,
a significant increase in time spent in closed arm and a sig-
nificant decrease in time spent in open arm were detected as
compared to normal control group (180.30 ± 24.16 and
132.50 ± 11.95 respectively). Rats treated venlafaxine or vanil-

Fig. 1 – Effects of venlafaxine and vanillin on consumption
of sucrose in sucrose preference test. Data are given as
mean ± SD (n = 8). *Compared to normal control group at
P < 0.05. @Compared to the stress-control group at P < 0.05.
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lin showed a significant lower time spent in closed arm as
compared to stress control group (143.50 ± 17.13,138.2 ± 2.78 re-
spectively) and a significant longer time spent in open arm
(139.40 ± 14.25, 155.50 ± 18.01, respectively) (Fig. 3A,B).

3.4. Effect of treatments on brain MDA level

Brain MDA level in normal control rats was 35.12 ± 4.44 (nmol/g
tissue). CMS significantly elevated brain MDA level as com-
pared to normal control group (84.90 ± 6.08). On the contrary,
administration of venlafaxine or vanillin to stress rats par-

tially reduced brain MDA level as compared to stress control
group (Table 1).

3.5. Effect of treatments on GSH brain level

As shown in Table 1, brain GSH level in normal control rats was
0.16 ± 0.03 (ng/mg tissue). Brain GSH level was notably de-
creased in stress non-treated rats.Treatment of stress rats with
venlafaxine or vanillin significantly elevated brain GSH level
as compared to stress control group.

3.6. Effect of treatments on nitric oxide (NO) brain level

A significant increase in brain NO level was expressed in stress
non-treated control rats in comparison with normal control
rats. Treatment of stress rats with venlafaxine or vanillin sig-
nificantly reduced brain nitric oxide level in stress rats.

3.7. Effect of treatments on brain serotonin brain level

The mean value for serotonin brain level in normal control
group was 17.08 ± 2.27. Brain serotonin level was signifi-
cantly reduced in non-treated stress group as compared to
normal control group. On the other hand, treatment of rats with
venlafaxine or vanillin significantly increased brain sero-
tonin level to 15.22 ± 1.37 and 14.86 ± 2.10 as compared to stress
control rats (Table 1).

4. Discussion

The present investigation aimed at elucidating the possible pro-
tective effects of vanillin in chronic mild stress induced in rats.

Fig. 2 – Effects of venlafaxine and vanillin on immobility
time in forced swim test. Data are given as mean ± SD
(n = 8). *Compared to normal control group at P < 0.05.
@Compared to the stress-control group at P < 0.05.

Fig. 3 – Effects of venlafaxine and vanillin on the time spent in (A) closed arm and (B) open arm in elevated plus maze test.
Data are given as mean ± SD (n = 8). *Compared to normal control group at P < 0.05. @Compared to the stress-control group
at P < 0.05.
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To achieve this goal, two sets of experiments were con-
ducted: a behavioral study to reveal depression incidence, and
a biochemical study to investigate the underlying mecha-
nisms behind anti depression test agent effects.

The CMS method is a representative method for the in-
duction of depression in rodents and is similar to the
development of stress in humans (Xu et al., 2015).

In the present study, CMS significantly decreased sucrose
consumption in sucrose preference test, increased immobil-
ity time in the FST, increased in time spent in closed arm and
a decreased in time spent in open arm in elevated plus maze
test. Immobility time in the FST is an indicator of behavioral
despair (Cryan et al., 2002; Dalvi and Lucki, 1999). Moreover,
the low level of sucrose consumption in stressed rats has rep-
resented an important marker of anhedonia, which is a very
important symptom of depression. Anhedonia happens when
there is a loss of interest in pleasurable and rewarding expe-
riences (Muscat et al., 1990; Willner et al., 1992). Bekris et al.
(2005) suggested that chronic stress is responsible for the
damage of nerve cells in the neural reward system and this
impairment could be correlated to the serotonergic (5-HT) and
dopaminergic (DA) systems.

In the present investigation, vanillin significantly in-
creased sucrose consumption, significantly reduced the time
of immobility in the FST, decreased in time spent in closed arm
and an increased in time spent in open arm. This suggests that
vanillin could have an antidepressive effect. This antidepres-
sant effect could be attributed to vanillin’s action on serotonin
and dopamine activity (Komiya et al., 2006).

Oxidative stress is characterized by loss of balance in
oxidation-reduction reactions. In oxidative stress, the ability
of the antioxidant defense system to remove the excess of re-
active oxygen species is reduced. It is to be noted that increased
oxidative stress was observed in patients with depression.
(Kumar et al., 2004; Sarandol et al., 2007). The present study
showed that chronic mild stress significantly increased oxi-
dative stress as demonstrated by increased brain MDA, nitric
oxide levels and decreased brain GSH level. Oxidative stress
has been suggested as an important contributive factor in the
pathogenesis of depression (Ng et al., 2008).

Previous studies demonstrated the role of oxidative and
nitrosative stress in the pathophysiology of depression (Maes,

2011; Maes et al., 2011). Elevated levels of ROS (Maes et al., 2011)
and NO (Dhir and Kulkarni, 2011; Suzuki and Colasanti, 2001)
and inconsistent levels of the antioxidant GSH in the post-
mortem depression brain were observed (Gawryluk et al., 2011).
Consequently, oxidative and nitrosative mechanisms have been
suggested as targets for new antidepressant drugs (Lee et al.,
2013).

Vanillin attenuated oxidative stress as marked by reduced
MDA, nitric oxide levels. It also restored glutathione level as
compared to stress control group. Vanillin is known to be a
potent antioxidant. It could inhibit singlet oxygen-induced
protein and lipid oxidation. It traps superoxide and hydroxyl
radicals. These indicate its potential role in prevention of oxi-
dative damages in tissues. The antioxidant property of vanillin
could contribute to its antidepressant activity (Kamat et al.,
2000; Santosh Kumar et al., 2002).

The present study revealed that chronic mild stress sig-
nificantly reduced serotonin level in brain homogenate. Previous
theories suggested the involvement of traditional signal trans-
duction mechanisms including abnormalities in the
gamma amino butyric acid (GABA) and serotonin receptor
systems in the pathophysiology of depression (Kessler et al.,
2005).

Vanillin significantly increased serotonin level in brain ho-
mogenate. 5-HT is closely associated with depression (Cowen,
2008) and previous results showed that vanillin could relieve
symptoms of depression in the rat model of chronic depres-
sion via increment of serotonin level in the brain (Xu et al.,
2015).

To conclude, vanillin showed antidepressant activity in rats.
This antidepressant activity could be due to its antioxidant and
serotonin agonistic actions.
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