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Abstract-we find uniform rates of decay of the solutions of the dynamical von Karman equations 
in the presence of dissipative effects. Our proof is elementary and uses ideas of a recent technique 
due to E. Zuszua while studying nonlinear dissipative wave equations [I]. 
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1. INTRODUCTION 

We consider global strong solutions of the dynamical von Karman equations in the presence of 

a dissipation. More precisely, let R be a bounded domain in Iw2 with smooth boundary X2. 

Consider the system 

utt + A2u + Xuzz + /3(-A)%, = [VI, in fl x R, (1.1) 

A2v = -f [u,u], in R X R, (1.2) 

with boundary conditions 

u = 0, 
&A 
- = 0, 
87 

on X2, xR, 

v = 0, au 0 at7= ’ on Xl, xR, 

and initial conditions 

u(x,O) = $0(z), %(X,0) = Q(x), for x E a. 

(1.3) 

(1.4) 

Here, the bracket [, ] means 

b, VI = ‘11,,‘uyy - 2uzyvq/ + uyyvzx, 

where subscripts denote partial differentiation. In (l.l), p and X are positive constants, A2 

denotes the biharmonic operator. Since -A is positive and self-adjoint, then ( -A)a denotes the 

‘b-p-et by 4&W 
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fractional power operator with domain obtained as an interpolation space between L2(n) and the 
domain of A2 with Dirichlet boundary conditions. Also, 0 5 cr 5 2, and $$ denotes the normal 
derivative. 

In (l.l)-(1.2), u = zl(z, y,t) describes the transversal displacement of the plate and u = 
v(z, y, t) is the Airy-stress function of the vibrating plate. The boundary conditions (1.3) mean 
that the boundary is clamped in transversal direction, but free in the horizontal direction. In this 
paper, we shall prove that the global strong solution-pair {u,v} of (l.l)-(1.4) decays uniformly 
as t 4 -too provided that X is small enough. More precisely, there exist positive constants C 
and 5 such that 

as t + +oo, if 0 2 X < Xi where Xi is the first eigenvalue of -A in R. In a recent paper on the 
subject, P. Aviles and J. Sandefur [2] proved the asymptotic stability as t --+ +oo, provided X 
is small enough. No uniform rates were obtained in [2]. Our strategy is based on differential 
inequalities and a technique due to E. Zuazua who first used it to treat similar problems for 
nonlinear dissipative wave equations [I]. Our proof is elementary and is based essentially in a 
convenient choice of a Liapunov functional for problem (l.l)-( 1.4). 

The existence and uniqueness of global strong solutions for problems (l.l)-( 1.4) can be obtained 
in a similar way as in [2] or [3] with suitable modifications, therefore, we will not repeat the 
calculations here. If p = 0 (that is, there is no dissipation), then we only know local existence 
results due to Von Wahl [3] and more recently to A. Stahel [4]. Weak solutions, with a dissipation 
of the form -Au,, instead of (-A)%, in (l.l), were studied by J.-L. Lions in [5] (see also [6]). 

We shall use standard notation: we denote the LP(fl) norm by I] ]lL,,, 1 5 p 5 +co. The 
Sobolev space Hm(0) norm by 1) ]lHm and H,“(R) is defined as the closure of C,-(n) in Hm(R). 
Here C?(R) denotes the space of CM functions with compact support contained in n. 

2. SOME TECHNICAL LEMMAS 

LEMMA 1. Let f, g, h E Hi(Q), then 

J n fh hl dA = 
J 

df, h] dA. 
R 

(2.1) 

PROOF. Whenever f, g and h are smooth functions, say in Cr(fl) then, the following identity 
holds: 

f]g, hl - d.f, hl = Wd,, - 2 (f&w&, + Lfgb&, 
+ 2 Lfv&, - fzh,,)z + 2 (.fz&, - fyhmJy 1 

(2.2) 

as can easily be verified. Integration of identity (2.2) in s1 proves (2.1). The general situation is 
obtained by usual approximation procedure. 

LEMMA 2. Let {u,v} be the solution pair of system (l.l), (1.2) with boundary conditions (1.4) 
and initial conditions cp E H4(S1) r) Hz(O), II, E Hi(O). Then, 

(1) $ [J, (uf + (Au)~ - Xu;) dA] + 2/3 so ut(-A)%dA = 2 j-, ut[v, u] dA, 

(2) & J,(Av)2dA = - _f, Q[‘LL, ~1 dA, 

(3) J&[ut,~ldA= .&pt[w]dA, 

(4) JO ut[v, U] dA = -$ &(Av)2dA - ; & vt[u, u] dA. 



Energy Decay Rates 

PROOF. 

(1) Multiply equation (1.1) by utr integrate in R and use Green’s formula to obtain the result. 

(2) Multiply (1.2) by Q and integrate over R. 

(3) Use Lemma 1 with f = ~lt, g = v and h = u. 

(4) We have the identities 

I w[ut, u] dA = f ; 
s 

v[u, u] dA - 1 
Cl R s ‘2 R 

it [u, u] dA. 

Using equation (l.l), we obtain that 

1 d -- 
s 2 dt R 

zI[u,u] dA = -; 
I R 

vA2vdA = --$ /- (Av)2dA, 
R 

which together with (2.3) proves item (4). 

Next, let us define the functionals E(t) and F(t) given by 

E(t) = 

F(t) = 

(2.3) 

(2.4 

(2.5) 

where {u, w} is the solution pair of (l.l)-( 1.4). Let E > 0 and consider GE(t) given by GE(t) = 

E(t) + EF(t). 

LEMMA 3. There exist positive constants cl, c2 and cg such that 

(a) GE(t) L cl JO(Au)2dA + c2 J, (u: + (a~)~) dA, 

(b) GE(t) I c3 Jn (I$ + (Au12 + (AvJ2) dA, 

for all t, provided that X and E are sufficiently small. 

PROOF. Using Poincare’s inequality, we know that -X s, u:dA > --$ sn lAuj2, (X > 0) and X1 

denotes the first eigenvalue of -A in CI. Also, by HGlder’s inequality sn uutdA 5 f & u2dA + 

3 JO ufdA. Thus, we obtain a lower bound for GE(t): 

(2.6) 

Using Poincare’s inequality once more in (2.6), we deduce that 

GE(t) 2 

which proves item (a) as long as E and X are sufficiently 

Poincare’s inequality to obtain 

GE(t) 5 f n (u; + (Au)~ - XU; + (Aw)“) dA 
s 

+; u2 + uf + /3zl(-A)%) dA 

small. To prove (b), we again use 

)J 
(Au)2dA + 

R 
$~u;dA+;~(Au)2dA, 

which proves item (b). 
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3. THE FINAL RESULT 

THEOREM 1. Let {u, v) be the global solution-pair of problem (l.l)-(1.2) with boundary con- 

ditions (1.3) and initial conditions (1.4) with cp E H4(s2) n H:(0) and II, E H:(0), then, there 

exist positive constants C > 0 and 6 > 0 such that 

J R (u; + (Au)' + (Av)~) dA _< ce-6t, 

for all t, provided that X > 0 is sufficiently small. 

PROOF. 

Consider the derivative of G,(t). An easy calculation shows that 

$G&) = -4L l(-A)“/2uti2dA+& {J,u:dA- J(Au)2dA - 2L(Av)2dA+X J u;dA}. 
R R 

(3.1) 
Using Poincare’s inequality in (3.1) as we did in the proof of Lemma 3, we obtain 

$ G(t) 5 (-PA: + E) 
J 

u;dA - 2~ 
n J R 

P 

(Av)2dA-+-$)jjAu)2dA (32) 

_< --c4 
J 

n (it” + (Au)~ + (Au)~) dA, 

where q > 0 as long as E > 0 and /\ > 0 are taken sufficiently small. From (3.2) and item (b) 

Lemma 3, we deduce that 

~3 $ GE(t) + c4Ge(t) _< 0, 

for all t, consequently G,(t) I G,(0)e-(C3/C4) t w c proves Theorem 1, because by item (a) hi h 
Lemma 3, we know that GE(O) is bounded which together with item (a) completes our claim. 
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