Uniform convexity of ψ-direct sums of Banach spaces

Kichi-Suke Saito a,* and Mikio Kato b,1

a Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
b Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

Received 27 September 2001
Submitted by C.E. Chidume

Abstract
Let X and Y be Banach spaces and ψ a continuous convex function on the unit interval $[0, 1]$ satisfying certain conditions. Let $X \oplus_\psi Y$ be the direct sum of X and Y equipped with the associated norm with ψ. We show that $X \oplus_\psi Y$ is uniformly convex if and only if X, Y are uniformly convex and ψ is strictly convex. As a corollary we obtain that the $\ell_{p,q}$-direct sum $X \oplus_{p,q} Y$, $1 \leq q \leq p \leq \infty$ (not $p = q = 1$ nor ∞), is uniformly convex if and only if X, Y are, where $\ell_{p,q}$ is the Lorentz sequence space. These results extend the well-known fact for the ℓ_p-sum $X \oplus_p Y$, $1 < p < \infty$. Some other examples are also presented.

\odot 2002 Elsevier Science (USA). All rights reserved.

Keywords: Absolute norm; Convex function; Direct sum of Banach spaces; Uniformly convex norm

1. Introduction

For every continuous convex function ψ on $[0, 1]$ satisfying $\psi(0) = \psi(1) = 1$ and $\max\{1 - t, t\} \leq \psi(t) \leq 1$ ($0 \leq t \leq 1$) there corresponds a unique absolute normalized norm $\|\cdot\|$ on C^2 (that is, $\|(z, w)\| = \|(\xi, |w|)\|$ and $\|(1, 0)\| = \|(0, 1)\| = 1$) such that $\psi(t) = \|(1 - t, t)\|$ ($0 \leq t \leq 1$) (see Bonsall and Duncan [4]; cf. also the next section of the present paper and [3]). Owing to this correspondence we have plenty of
non ℓ_p type concrete norms on \mathbb{C}^2. Recently some geometric properties of these norms were discussed by means of the corresponding functions ψ in [6,7]. In [6] Saito et al. determined and estimated their von Neumann–Jordan constant and as a corollary they showed that all absolute normalized norms are uniformly non-square except the ℓ_1- and ℓ_∞-norms, which are the largest and smallest such norms respectively. In [7] they showed that an absolute normalized norm $\|\cdot\|_\psi$ is strictly convex if and only if ψ is. They also introduced the ψ-direct sum $X \oplus_\psi Y$ of Banach spaces X and Y equipped with the norm $\|(x,y)\|_\psi = \|\|(x, y)\|\|_\psi (x \in X, y \in Y)$, and proved that $X \oplus_\psi Y$ is strictly convex if and only if X, Y and ψ are strictly convex. The ψ-direct sum extends the notion of the ℓ_p-sum $X \oplus_p Y$ and provides many interesting examples.

The aim of this paper is to characterize the uniform convexity of $X \oplus_\psi Y$. In Section 2 we shall recall some fundamental facts on the ψ-direct sum of Banach spaces and present several examples. In Section 3 we shall prove that $X \oplus_\psi Y$ is uniformly convex if and only if X, Y are uniformly convex and ψ is strictly convex. As a corollary we obtain that the $\ell_{p,q}$-direct sum $X \oplus_{p,q} Y$, $1 \leq q \leq p \leq \infty$ (not $p = q = 1$ nor ∞), is uniformly convex if and only if X and Y are, where $\ell_{p,q}$ is the Lorentz sequence space. These results extend the well-known fact for the ℓ_p-sum $X \oplus_p Y$, $1 < p < \infty$. Some other examples are also given.

2. ψ-Direct sum $X \oplus_\psi Y$

In this section we shall recall the definition of ψ-direct sum Banach spaces $X \oplus_\psi Y$, and also present several examples. A norm $\|\cdot\|$ on \mathbb{C}^2 is called \textit{absolute} if $\|(z, w)\| = \|(|z|, |w|)\|$ for all $(z, w) \in \mathbb{C}^2$ and \textit{normalized} if $\|(1, 0)\| = \|(0, 1)\| = 1$. The set of all absolute normalized norms on \mathbb{C}^2 is denoted by Na. The ℓ_p-norms $\|\cdot\|_p$ are such examples and for any $\|\cdot\| \in Na$,

$$\|\cdot\|_\infty \leq \|\cdot\| \leq \|\cdot\|_1.$$ (2.1)

Let Ψ be the set of continuous convex functions ψ on $[0, 1]$ satisfying

$$\psi(0) = \psi(1) = 1$$ (2.2)

and

$$\max\{1 - t, t\} \leq \psi(t) \leq 1 \quad (0 \leq t \leq 1).$$ (2.3)

For each $\|\cdot\| \in Na$ the function ψ defined by

$$\psi(t) = \|(1 - t, t)\| \quad (0 \leq t \leq 1)$$ (2.4)

belongs to Ψ. Conversely, for each $\psi \in \Psi$ let

$$\|(z, w)\|_\psi = \begin{cases} (|z| + |w|) \psi\left(\frac{|w|}{|z| + |w|}\right) & \text{if } (z, w) \neq (0, 0), \\ 0 & \text{if } (z, w) = (0, 0). \end{cases}$$ (2.5)
Then \(\| \cdot \| \in N_a \) and \(\| \cdot \| \) satisfies (2.4). Thus the norms in \(N_a \) correspond with the convex functions in \(\Psi \) in a one-to-one manner (see Bonsall–Duncan [4], also [6]). The functions which correspond with the \(\ell_p \)-norms are

\[
\psi_p(t) := \begin{cases}
(1 - t)^p + t^p \\
\max\{1 - t, t\}
\end{cases}
\frac{1}{p} \quad \text{if } 1 \leq p < \infty, \\
\max\{1 - t, t\} \quad \text{if } p = \infty.
\]

(2.6)

In the following let \(X \) and \(Y \) be Banach spaces. We denote by \(X \oplus_\psi Y \) the direct sum \(X \oplus Y \) equipped with the norm

\[
\| (x, y) \|_\psi = \| (\| x \|, \| y \|) \|_\psi \quad \text{for } (x, y) \in X \oplus Y.
\]

(2.7)

For completeness we see that \(X \oplus_\psi Y \) is a Banach space.

Proposition 1. Let \(X, Y \) be Banach spaces and \(\psi \in \Psi \). Then \(X \oplus_\psi Y \) is a Banach space.

Proof. By Lemma 1 we see the triangle inequality as

\[
\| (x_1 + x_2, y_1 + y_2) \|_\psi \leq \| (x_1, y_1) \|_\psi + \| (x_2, y_2) \|_\psi.
\]

Let \(\{(x_n, y_n)\} \) be a Cauchy sequence in \(X \oplus_\psi Y \). Then since \(1/2 \leq \psi \leq 1 \), we have

\[
\frac{1}{2} \left(\| x_n - x_m \| + \| y_n - y_m \| \right)
\leq \left(\| x_n - x_m \| + \| y_n - y_m \| \right) \psi \left(\frac{\| y_n - y_m \|}{\| x_n - x_m \| + \| y_n - y_m \|} \right)
= \| (x_n, y_n) - (x_m, y_m) \|_\psi \to 0,
\]

whence \(\| x_n - x_m \| + \| y_n - y_m \| \to 0 \) as \(n, m \to \infty \). So \(\{x_n\} \) and \(\{y_n\} \) are Cauchy in \(X \) and \(Y \), respectively. Let \(x_n \to x \) in \(X \) and \(y_n \to y \) in \(Y \). Then

\[
\| (x_n, y_n) - (x, y) \|_\psi = \left(\| x_n - x \| + \| y_n - y \| \right) \psi \left(\frac{\| y_n - y \|}{\| x_n - x \| + \| y_n - y \|} \right)
\leq \| x_n - x \| + \| y_n - y \| \to 0 \quad \text{as } n \to \infty.
\]

Thus \(X \oplus_\psi Y \) is complete. \(\diamondsuit \)

Example 1. Let \(1 \leq p \leq \infty \) and let \(\psi_p \) as in (2.6). Then \(\psi_p \)-direct sum \(X \oplus_{\psi_p} Y \) is just the usual \(\ell_p \)-sum \(X \oplus_{\ell_p} Y \); namely,

\[
\| (x, y) \|_{\psi_p} = \| (x, y) \|_p = \begin{cases}
\left\{ \| x \|^p + \| y \|^p \right\}^{1/p} \\
\max\{\| x \|, \| y \|\}
\end{cases}
\quad \text{if } 1 \leq p < \infty, \\
\max\{\| x \|, \| y \|\} \quad \text{if } p = \infty
\]

(2.8)

for \((x, y) \in X \oplus_{\psi_p} Y \).
Proposition 2. Let X, Y be Banach spaces and $\psi \in \Psi$. Then

$$\| (x, y) \|_{\infty} \leq \| (x, y) \|_{\psi} \leq \| (x, y) \|_1$$

for all $(x, y) \in X \oplus Y$.

Example 2. Let $1 \leq q < p < \infty$ and $2^{1/p-1} < \lambda < 1$. Let $\psi_{p,q,\lambda} = \max\{\psi_p, \lambda \psi_q\}$, where ψ_p is as in (2.6). Then $\psi_{p,q,\lambda} \in \Psi$ and the norm of $X \oplus \psi_{p,q,\lambda} Y$ is given by

$$\| (x, y) \|_{\psi_{p,q,\lambda}} = \max\{\| (x, y) \|_p, \lambda \| (x, y) \|_q\}.$$

(2.9)

Indeed, ψ_p and $\lambda \psi_q$ meet in $(0, 1)$ (note that $\psi_p < \psi_q$, and ψ_p and ψ_q have their minimums $2^{1/p-1}$ and $2^{1/q-1}$, respectively), and $\psi_{p,q,\lambda}$ is convex, so $\psi_{p,q,\lambda} \in \Psi$. Then $\psi_{p,q,\lambda}(t) = \max\{\psi_p(t), \lambda \psi_q(t)\} = \max\{\|(1-t,t)\|_p, \lambda \|(1-t,t)\|_q\}$.

Example 3 (cf. [6]). For $1/2 \leq \alpha \leq 1$ let

$$\psi_{\alpha}(t) = \begin{cases} \frac{2}{\alpha} t + 1 & \text{if } 0 \leq t \leq \alpha, \\ t & \text{if } \alpha \leq t \leq 1. \end{cases}$$

(2.10)

Then $\psi_{\alpha} \in \Psi$, and the norm of $X \oplus \psi_{\alpha} Y$ is given by

$$\| (x, y) \|_{\psi_{\alpha}} = \max\{\| x \| + (2 - \frac{1}{\alpha}) \| y \|, \| y \|\}.$$

(2.11)

In particular,

$$\| (x, y) \|_{\psi_{\alpha}} = \begin{cases} \| x \| + \| y \| & \text{if } \alpha = 1, \\ \max\{\| x \|, \| y \|\} & \text{if } \alpha = 1/2. \end{cases}$$

(2.12)

Thus $\| \cdot \|_{\psi_{\alpha}}$ are non-ℓ_p and ℓ_∞ type norms combining the ℓ_1- and ℓ_∞-sum norms as α varies 1 through $1/2$.

In fact,

$$\| (x, y) \|_{\psi_{\alpha}} = \begin{cases} \| x \| + \| y \| \left[\frac{2}{\alpha} \| x \| + \| y \| + 1 \right] & \text{if } \frac{1}{\| x \| + \| y \|} \leq \alpha, \\ \| x \| + \| y \| \left[\frac{1}{\| x \| + \| y \|} \right] & \text{if } \frac{1}{\| x \| + \| y \|} \geq \alpha, \\ \| y \| & \text{if } \frac{1}{\| x \| + \| y \|} \leq \alpha, \\ \| x \| + (2 - \frac{1}{\alpha}) \| y \| & \text{if } \frac{1}{\| x \| + \| y \|} \geq \alpha. \end{cases}$$

Noting that $\| x \| + (2 - 1/\alpha) \| y \| \geq \| y \|$ if and only if $\| y \|/(\| x \| + \| y \|) \leq \alpha$, we have (2.11).

Example 4. Let $1 \leq q \leq p \leq \infty$. Let $\| \cdot \|_{p,q}$ be the (Lorentz) $\ell_{p,q}$-norm:

$$\| (z, w) \|_{p,q} = \left\{ z^{*q} + 2^{(q/p)-1} w^{*q} \right\}^{1/q},$$

where $\{z^*, w^*\}$ is the non-increasing rearrangement of $\{|z|, |w|\}$, that is, $z^* \geq w^*$. Note that in case of $1 \leq p < q \leq \infty$, $\| \cdot \|_{p,q}$ is not a norm but a quasi-norm (cf. [5, Proposition 1],
such that, whenever \[\text{Theorem A} \] showed the following. Let \[\psi \] be a function provided for any \(x, y \in X \). Then the absolute norm \(\| \cdot \| \in \mathcal{N}_a \) and the corresponding convex function is given by

\[
\psi_{p,q}(t) = \begin{cases}
(1 - t)^q + 2q/p - 1 t^q
& \text{if } 0 \leq t \leq 1/2, \\
(1 - t)^q + 2q/p - 1 t^q
& \text{if } 1/2 \leq t \leq 1.
\end{cases}
\]

(2.13)

Thus \(\psi_{p,q} \) yields the \(\ell_{p,q} \) direct sum \(X \oplus_{p,q} Y \):

\[
\|(x, y)\|_{p,q} = \|(x, y)\|_{p,q} = \left\{ \|x\|^q + 2q/p - 1 y^q \right\}^{1/q},
\]

(2.14)

where \(\|x\|^* \geq \|y\|^* \).

3. Uniform convexity of \(X \oplus_{\psi} Y \)

We recall some definitions \[1\] and recent results in \[7\]. A Banach space \(X \) is called strictly convex provided for any \(x, y \in X \), \(\|x\| = \|y\| = 1 \), \(x \neq y \), we have \(\|(x + y)/2\| < 1 \). \(X \) is called uniformly convex provided for any \(\varepsilon > 0 \) there is a \(\delta (0 < \delta < 1) \) such that, whenever \(\|x - y\| \geq \varepsilon \), \(\|x\| \leq 1 \), \(\|y\| \leq 1 \), we have \(\|(x + y)/2\| < 1 - \delta \). A function \(\psi \) on \([0, 1] \) is called strictly convex if, for any \(s, t \in [0, 1], s \neq t \), and for any \(c (0 < c < 1) \), \(\psi((1 - c)s + ct) < (1 - c)\psi(s) + c\psi(t) \). Recently Takahashi et al. \[7\] showed the following.

Theorem A [7, Theorem 5]. Let \(\psi \in \Psi \). Then the absolute norm \(\| \cdot \|_{\psi} \) on \(C^2 \) is strictly convex if and only if \(\psi \) is.

Theorem B [7, Theorem 6]. Let \(X \) and \(Y \) be Banach spaces and let \(\psi \in \Psi \). Then \(X \oplus_{\psi} Y \) is strictly convex if and only if \(X \) and \(Y \) are strictly convex and \(\psi \) is strictly convex.

The strict and uniform convexity are equivalent for finite dimensional spaces, and a fortiori for absolute normalized norms on \(C^2 \), but not for \(X \oplus_{\psi} Y \) in general. We are now going to characterize the uniform convexity of \(X \oplus_{\psi} Y \).

Lemma 1 [4, Lemma 2]. Let \(\| \cdot \| \in \mathcal{N}_a \). Let \(|p| \leq |r| \) and \(|q| \leq |s| \). Then \(\|(p, q)\| \leq \|(r, s)\| \). Furthermore, if \(|p| < |r| \) and \(|q| < |s| \), then \(\|(p, q)\| < \|(r, s)\| \).

One should note that in the latter assertion of Lemma 1 the condition \(|p| < |r| \) or \(|q| < |s| \) is not enough to imply that \(\|(p, q)\| < \|(r, s)\| \). Indeed consider the \(\ell_\infty \)-norm. We need the following more precise fact about the monotonicity property of absolute norms.

Lemma 2 (Takahashi et al. [7]). Let \(\psi \in \Psi \). Then the following are equivalent:

(i) If \(|z| \leq |u| \) and \(|w| \leq |v| \), or \(|z| < |u| \) and \(|w| < |v| \), then \(\|(z, w)\|_{\psi} < \|(u, v)\|_{\psi} \).

(ii) \(\psi(t) > \psi_\infty(t) = \max\{1 - t, t\} \) for all \(t \in (0, 1) \).

(iii) \(\psi(t)/t \) is strictly decreasing for all \(t \in (0, 1) \), and \(\psi(t)/(1 - t) \) is strictly increasing for all \(t \in [0, 1) \).

In particular, if \(\psi \) is strictly convex all these assertions are valid.
Now we obtain the following.

Theorem 1. Let X and Y be Banach spaces and let $\psi \in \Psi$. Then $X \oplus_\psi Y$ is uniformly convex if and only if X and Y are uniformly convex and ψ is strictly convex.

Proof. If $X \oplus_\psi Y$ is uniformly convex, so are X and Y because X, Y are isometrically embedded into $X \oplus_\psi Y$. We have the strict convexity of ψ by Theorem B.

Assume that X and Y are uniformly convex and ψ is strictly convex. Let $\epsilon > 0$ be arbitrary. Take arbitrary $(x_1, y_1), (x_2, y_2) \in X \oplus_\psi Y$ so that
\[
\| (x_1, y_1) - (x_2, y_2) \|_\psi \geq \epsilon, \quad \| (x_1, y_1) \|_\psi = \| (x_2, y_2) \|_\psi = 1.
\] (3.1)

Then there are δ_X and δ_Y ($0 < \delta_X, \delta_Y < 1$) such that
\[
\| u_1 - u_2 \| \geq \frac{\epsilon}{2}, \quad \| u_1 \| \leq 1, \quad \| u_2 \| \leq 1 \quad (u_1, u_2 \in X)
\] (3.2)

and
\[
\| v_1 - v_2 \| \geq \frac{\epsilon}{2}, \quad \| v_1 \| \leq 1, \quad \| v_2 \| \leq 1 \quad (v_1, v_2 \in Y)
\] (3.3)

respectively. Put
\[
t := \frac{\| y_1 - y_2 \|}{\| x_1 - x_2 \| + \| y_1 - y_2 \|}.
\]

Then since
\[
\| y_1 - y_2 \| = \frac{t}{1 - t} \| x_1 - x_2 \|
\]
for $t \neq 1$, we have
\[
\epsilon \leq \| (x_1, y_1) - (x_2, y_2) \|_\psi = \left(\| x_1 - x_2 \| + \| y_1 - y_2 \| \right) \psi(t) = \left(\| x_1 - x_2 \| + \frac{t}{1 - t} \| x_1 - x_2 \| \right) \psi(t) = \frac{\psi(t)}{1 - t} \| x_1 - x_2 \|.
\]

from which it follows that
\[
\| x_1 - x_2 \| \geq \frac{1 - t}{\psi(t)} \epsilon
\] (3.4)

and
\[
\| y_1 - y_2 \| \geq \frac{t}{\psi(t)} \epsilon.
\] (3.5)

Now put
\[
s_1 = \frac{\| y_1 \|}{\| x_1 \| + \| y_1 \|}, \quad s_2 = \frac{\| y_2 \|}{\| x_2 \| + \| y_2 \|}.
\]
Then
\[\|x_i\| = \frac{1-s_i}{\psi(s_i)}, \quad \|y_i\| = \frac{s_i}{\psi(s_i)} \quad (i = 1, 2). \] (3.6)

We assume that \(s_1 \leq s_2 \) without loss of generality. Since \(\psi \) is strictly convex, the function \(\psi(s)/(1-s) \) is strictly increasing and \(\psi(s)/s \) is strictly decreasing by Lemma 2. Therefore by (3.6) we have
\[\|x_1\| \geq \|x_2\| \] (3.7)
and
\[\|y_1\| \leq \|y_2\|. \] (3.8)

Case 1. Let \(0 \leq t \leq 1/2 \). In this case, by (3.4) we have
\[\|x_1 - x_2\| \geq \frac{1-t}{\psi(t)} \geq \frac{1-1/2}{\psi(1/2)} \geq \frac{\epsilon}{2}. \] (3.9)
Hence
\[\|x_1\| \geq \frac{\epsilon}{4}, \]
as \(\|x_1\| \geq \|x_2\| \) and \(\|x_1\| + \|x_2\| \geq \|x_1 - x_2\| > \epsilon/2. \) Thus \((1-s_1)/\psi(s_1) = \|x_1\| > \epsilon/4. \)
Since \((1-s)/\psi(s) \) is strictly decreasing and \(\psi(1) = 0, \) there exists \(a (s_1 < a < 1) \) such that
\[\frac{1-a}{\psi(a)} = \frac{\epsilon}{4}. \]
Now since \(\psi \) is uniformly continuous on \([0, (a+1)/2], \) there exists \(\rho (0 < \rho < (1-a)/2) \) so that, whenever \(0 \leq s_2 - s_1 \leq \rho, s_1 \in [0, a], s_2 \in [0, (a+1)/2], \)
\[\frac{1-s_1}{\psi(s_1)} - \frac{1-s_2}{\psi(s_2)} \leq \frac{\delta X}{2(1-\delta X)} \cdot \frac{1-(a+1)/2}{\psi((a+1)/2)}. \]
Then we have
\[\frac{1-s_1}{\psi(s_1)} - \frac{1-s_2}{\psi(s_2)} \leq \frac{\delta X}{2(1-\delta X)} \cdot \frac{1-s_2}{\psi(s_2)}, \]
from which it follows that
\[\frac{1-s_1}{\psi(s_1)} \leq \frac{1-\delta X/2}{1-\delta X} \cdot \frac{1-s_2}{\psi(s_2)}, \]
or
\[\|x_1\| \leq \frac{1-\delta X/2}{1-\delta X}\|x_2\|. \] (3.10)

Now let us consider the case \(0 \leq s_2 - s_1 \leq \rho. \) We first note that
\[\|x_1 + x_2\| \leq 2(1-\delta X)\|x_1\|. \] (3.11)
Indeed, as
\[\frac{x_1 - x_2}{\|x_1\|} = \frac{x_1 - x_2}{\|x_1\|} \geq \frac{e}{2} \]
by (3.9), we have by (3.2)
\[\frac{x_1 + x_2}{\|x_1\|} < 2(1 - \delta_X), \]
or (3.11). In this case we have \(s_2 \in [0, (a + 1)/2] \) (note that \(s_1 \in [0, a] \)). Therefore according to (3.11) and (3.10),

\[\|(x_1, y_1) + (x_2, y_2)\|_\psi = \|(\|x_1 + x_2\|, \|y_1 + y_2\|)\|_\psi \leq \|(2(1 - \delta_X)\|x_1\|, \|y_1\| + \|y_2\|)\|_\psi \]

\[\leq \|(2(2 - \delta_X)\|x_2\|, 2\|y_2\|)\|_\psi < 2\|(\|x_2\|, \|y_2\|)\|_\psi = 2. \]

Here put
\[f(s_2) = \|(2 - \delta_X)\|x_2\|, 2\|y_2\|)\|_\psi = \|(2 - \delta_X) \frac{1 - s_2}{\psi(s_2)} \cdot \frac{2s_2}{\psi(s_2)} \|_\psi. \]

Then \(f \) is continuous on \([0, (a + 1)/2]\) and \(0 < f(s_2) < 2 \). So if we let \(M_1 := \max\{f(s_2): 0 \leq s_2 \leq (a + 1)/2\} \),

then \(0 < M_1 < 2 \). Therefore we obtain
\[\|(x_1, y_1) + (x_2, y_2)\|_\psi \leq M_1 < 2, \]
as desired.

Next we consider the case \(s_2 - s_1 \geq \rho \). In this case we have
\[\|(x_1, y_1) + (x_2, y_2)\|_\psi = \|(\|x_1 + x_2\|, \|y_1 + y_2\|)\|_\psi \leq \|(\|s_1\|, \|y_1\| + \|y_2\|)\|_\psi \]

\[\leq \left\| \left(\frac{1 - s_1}{\psi(s_1)} + \frac{1 - s_2}{\psi(s_2)} \right) \cdot \left(\frac{s_1}{\psi(s_1)} + \frac{s_2}{\psi(s_2)} \right) \right\|_\psi \]

\[= \frac{1}{\psi(s_1)\psi(s_2)} \left\| \left((1 - s_1)\psi(s_2) + (1 - s_2)\psi(s_1), s_1\psi(s_2) + s_2\psi(s_1) \right) \right\|_\psi \]

\[= \frac{1}{\psi(s_1)\psi(s_2)} \left(\psi(s_1) + \psi(s_2) \right) \left(\psi(s_1) + \psi(s_2) \right) \left(\psi(s_1) + \psi(s_2) \right) \]

\[\leq \frac{\psi(s_1) + \psi(s_2)}{\psi(s_1)\psi(s_2)} \left(\psi(s_1) + \psi(s_2) \right) \left(\psi(s_1) + \psi(s_2) \right) \]

\[= 2. \]

The function
\[g(s_1, s_2) = \psi(s_1) + \psi(s_2) \psi(s_1) + \psi(s_2) \]

is
\[(s_1\psi(s_2) + s_2\psi(s_1)) \psi(s_1) + \psi(s_2) \psi(s_1) + \psi(s_2) \]

(3.14)
is continuous on the set
\[\Omega = \{(s_1, s_2): 0 \leq s_1 \leq a, \ 0 \leq s_2 \leq 1, \ s_2 - s_1 \geq \rho \} \]
and has there the maximum \(M_2 < 2 \). Consequently we obtain
\[\|(x_1, y_1) + (x_2, y_2)\|_\psi \leq M_2 < 2. \quad (3.15) \]

Case 2. Let \(1/2 \leq t \leq 1 \). By (3.5) we have
\[\|y_1 - y_2\| \geq \frac{t}{\psi(t)} \epsilon \geq \frac{1/2}{\psi(1/2)} \epsilon > \frac{\epsilon}{2}. \quad (3.16) \]
Hence
\[\|y_2\| \geq \frac{\epsilon}{4}. \]
The function \(s / \psi(s) \) is strictly increasing and \(\psi(0) = 0 \), and so there exists \(b (0 < b < s_2) \) such that
\[\frac{b}{\psi(b)} = \frac{\epsilon}{4}. \]
As before, take \(\rho \) \((0 < \rho < b/2)\) so that, whenever \(0 \leq s_2 - s_1 \leq \rho \), \(s_1 \in [b/2, 1] \), \(s_2 \in [b, 1] \), we have
\[\frac{s_2}{\psi(s_2)} - \frac{s_1}{\psi(s_1)} \leq \frac{\delta_Y}{2(1 - \delta_Y)} \frac{b/2}{\psi(b/2)}. \]
Then since
\[\frac{s_1}{\psi(s_1)} \leq \frac{1 - \delta_Y/2}{1 - \delta_Y} \|y_1\|. \]
we have
\[\frac{s_2}{\psi(s_2)} \leq \frac{1 - \delta_Y/2}{1 - \delta_Y} \|y_1\|. \]
or
\[\|y_2\| \leq \frac{1 - \delta_Y/2}{1 - \delta_Y} \|y_1\|. \quad (3.17) \]
In the case \(0 \leq s_2 - s_1 \leq \rho \) since
\[\|y_1 + y_2\| \leq 2(1 - \delta_Y) \|y_2\|, \]
with (3.17), we have
\[\|(x_1, y_1) + (x_2, y_2)\|_\psi = \|(\|x_1 + x_2\|, \|y_1 + y_2\|)\|_\psi \leq \|(\|x_1\| + \|x_2\|, 2(1 - \delta_Y) \|y_2\|)\|_\psi \leq \|(2\|x_1\|, (2 - \delta_Y) \|y_1\|)\|_\psi < 2\|(\|x_1\|, \|y_1\|)\|_\psi = 2. \]
Therefore, the maximum M_3 of the function
\[f(s_1) = \left\| \left(2 \frac{1 - s_1}{\psi(s_1)}, (2 - \delta_1) \frac{s_1}{\psi(s_1)} \right) \right\|_\psi \text{ on } \left[\frac{b}{2}, 1 \right] \]
is less than 2. Consequently we have
\[\left\| (x_1, y_1) + (x_2, y_2) \right\|_\psi \leq M_3 < 2. \] \hfill (3.18)
Let next $s_2 - s_1 \geq \rho$. Then according to (3.13)
\[\left\| (x_1, y_1) + (x_2, y_2) \right\|_\psi \leq \frac{\psi(s_1) + \psi(s_2)}{\psi(s_1) + \psi(s_2)} \left(\frac{\psi(s_2)}{\psi(s_1) + \psi(s_2)} s_1 + \frac{\psi(s_1)}{\psi(s_1) + \psi(s_2)} s_2 \right) < 2. \]
So the function $g(s_1, s_2)$ in (3.14) takes the maximum $M_4 < 2$ on the set
\[\Omega_0 = \{(s_1, s_2): 0 \leq s_1 \leq 1, b \leq s_2 \leq 1, s_2 - s_1 \geq \rho \}, \]
from which it follows that
\[\left\| (x_1, y_1) + (x_2, y_2) \right\|_\psi \leq M_4 < 2. \] \hfill (3.19)
Consequently, letting $M = \max\{M_1, M_2, M_3, M_4\}$, we obtain that
\[\left\| (x_1, y_1) + (x_2, y_2) \right\|_\psi \leq M < 2, \]
which proves that $X \oplus \psi Y$ is uniformly convex. This completes the proof. \hfill \square

By putting $\psi = \psi_{p,q}$ we have the following:

Corollary 1. Let X and Y be Banach spaces and let $1 < q < p \leq \infty$, not $p = q = 1$ nor ∞. Then $X \oplus \psi_{p,q} Y$ is uniformly convex if and only if X and Y are uniformly convex.

In particular we have the well-known fact:

Corollary 2. Let $1 < p < \infty$. Then $X \oplus_p Y$ is uniformly convex if and only if X and Y are uniformly convex.

Corollary 3. Let X and Y be Banach spaces. Let $1 < q < p < \infty$ and $2^{1/p - 1/q} < \lambda < 1$. Let $\psi_{p,q,\lambda} = \max\{\psi_p, \lambda \psi_q\} \in \Psi$. Then $X \oplus \psi_{p,q,\lambda} Y$ is uniformly convex if and only if X, Y are uniformly convex.

Example 5. Let X and Y be uniformly convex. Let $\psi_\alpha (1/2 \leq \alpha \leq 1)$ be as in Example 3. Then $X \oplus \psi_\alpha Y$ is not uniformly convex.

References