JOURNAL OF COMBINATORIAL THEORY, Series A 43, 228-236 (1986)

The Erdös-Ko-Rado Theorem for Vector Spaces

P. FRANKL

CNRS, 15 Quai Anatole France, 75007 Paris, France

AND

R. M. WILSON

California Institute of Technology, Pasadena, California 91125 Communicated by the Managing Editors Received February 28, 1986

Let V be an n-dimensional vector space over GF(q) and for integers $k \ge t > 0$ let $m_q(n, k, t)$ denote the maximum possible number of subspaces in a t-intersecting family \mathscr{F} of k-dimensional subspaces of V, i.e., dim $F \cap F \ge t$ holds for all $F, F' \in \mathscr{F}$. It is shown that $m_q(n, k, t) = \max\{ \lfloor \frac{n-t}{2} \rfloor, \lfloor \frac{2k-t}{2} \rfloor \}$ for $n \ge 2k - t$ while for $n \le 2k - t$ trivially $m_q(n, k, t) = \lfloor \frac{n}{k} \rfloor$ holds. \square 1986 Academic Press, Inc.

1. INTRODUCTION

Suppose X is an *n*-element set, $n \ge k \ge t > 0$. A family of k-subsets of X, i.e., $\mathscr{F} \subset {X \choose k}$ is called *t*-intersecting if $|F \cap F'| \ge t$ holds for all $F, F' \in \mathscr{F}$. The maximum size of a *t*-intersecting family was determined by Erdös, Ko, and Rado [2] for $n > n_0(k, t)$.

ERDÖS-KO-RADO THEOREM. Suppose $\mathscr{F} \subset \binom{x}{k}$, \mathscr{F} is t-intersecting. Then for $n \ge n_0(k, t)$,

$$|\mathscr{F}| \leq \binom{n-t}{k-t}$$
 holds. (1.1)

It was shown by the present authors [3, 6] that $n_0(k, t) = (k-t+1)(t+1)$, i.e., (1.1) if and only if $n \ge (k-t+1)(t+1)$. Moreover, for $n > n_0(k, t)$ the only family achieving equality in (1.1) is obtained by taking all k-subsets of X containing a fixed t-set.

However, very little is known for $n < n_0(k, t)$. Denote by m(n, k, t) the maximum size of a *t*-intersecting family $\mathscr{F} \subset \binom{x}{k}$. For $0 \le i \le k - t$ and

 $Y_i \in \binom{X}{t+2i}$ define $\mathscr{F}_i = \{F \in \binom{X}{k}: |F \cap Y_i| \ge t+i\}$. Clearly, \mathscr{F}_i is *t*-intersecting. Let us mention the following conjecture.

Conjecture 1 [3]. $m(n, k, t) = \max_i |\mathcal{F}_i|$.

This problem has an obvious extension to *t*-intersecting families of *k*-subspaces of a *n*-dimensional vector space *V* over GF(q). Let $m_q(n, k, t)$ denote the corresponding analog of m(n, k, t), i.e., $m_q(n, k, t) = \max\{|\mathscr{F}|: \mathscr{F} \subset [{}_k^V], \dim F \cap F' \ge t$ holds for all $F, F' \in \mathscr{F}\}$. If $n \le 2k - t$ then $\binom{V}{k}$ is *t*-intersecting. Therefore trivially $m_q(n, k, t) = [{}_k^n]$ holds. Here, and in the sequel $[{}_b^a]_q$ is the Gaussian coefficient, i.e., $[{}_b^a]_q = \prod_{0 \le i < b} ((q^a - q^i)/(q^b - q^i))$. If it causes no confusion, we shall omit the subscript q.

Hsieh [5] proved that $m_q(n, k, t) = {n-t \brack k-t}$ holds for $n \ge 2k + 1$, $q \ge 3$ and for $n \ge 2k + 2$, q = 2. Hsieh's proof is entirely combinatorial but it involves lengthy computations. Greene and Kleitman [4] gave a short proof for the case t = 1, $n \ge 2k$, k divides n. Using the case n = 2k as the base step, in [1] a short, inductive argument is given for the t = 1 case.

Checking the families in Conjecture 1, one sees that among them $\mathscr{F}_0 = \{F \in [{}_k^{\nu}], Y_0 \subset F\}$ has the largest size if $n \ge 2k$ $(Y_0 \in [{}_t^{\nu}])$, and $\mathscr{F}_{k-t} = \{F \in [{}_{k-t}^{\nu}]\}, Y_{k-t} \in [{}_{2k-t}^{\nu}]\}$, has the largest size if $2k \ge n \ge 2k - t$, in particular, for n = 2k their sizes are equal.

The aim of this paper is to show that, in fact, $m_q(n, k, t) = \max\{|\mathcal{F}_0|, |\mathcal{F}_{k-t}|\}$ holds for all $n \ge 2k - t$.

THEOREM 1. Suppose
$$n \ge 2k - t$$
, $\mathscr{F} \subset \begin{bmatrix} V \\ k \end{bmatrix}$ is t-intersecting then
 $|\mathscr{F}| \le \max\{\begin{bmatrix} n-t \\ k-t \end{bmatrix}_q, \begin{bmatrix} 2k-t \\ k \end{bmatrix}_q\}.$ (1.2)

The proof relies on the ideas of [6], however, the actual computation is done differently, in a shorter way, using the fast growth of the *q*-nomial coefficients.

Let us also mention that (1.2) and the methods of [1] easily imply the uniqueness of the optimal families for $n \ge 2k + 1$ (and hence by Section 3, for 2k - t < n < 2k).

It appears likely that for n = 2k there are only two non-isomorphic optimal families but we could not prove this for $t \ge 2$. In Section 2 the outline of the proof is given for the case $n \ge 2k$; the detailed argument is left for Sections 4 and 5. In Section 3 we derive the case $2k \ge n \ge 2k - t$ from the case $n \ge 2k$.

2. Outline of the Proof for $n \ge 2k$

Suppose $n \ge 2k$ and $\mathscr{F} \subset \begin{bmatrix} v \\ k \end{bmatrix}$ is *t*-intersecting. Let φ be the characteristic vector of \mathscr{F} , i.e., φ is a (0, 1)-vector of length $\begin{bmatrix} n \\ k \end{bmatrix}_q$, with coordinates

indexed by the k-subspaces $S \in [{}_{k}^{\nu}]$, the entry indexed by S is 1 if and only if $S \in \mathcal{F}$.

Let c be a positive scalar, A a real symmetric matrix of order $\begin{bmatrix} n \\ k \end{bmatrix}$ (with rows and columns indexed by the k-subspaces of V), I(J) is the identity matrix (all 1 matrix) of order $\begin{bmatrix} n \\ k \end{bmatrix}$, respectively. Suppose further that (2.1), (2.2) hold.

The entry in row S and column T of A is 0 whenever

$$\dim S \cap T \ge t.$$
 (2.1)

$$A + I - c^{-1}J$$
 is positive semi-definite. (2.2)

Since \mathscr{F} is *t*-intersecting (2.1) implies $\varphi A \varphi^T = 0$. Now (2.2) yields

$$0 \leq \varphi(A + I - c^{-1j}) \varphi^T = \varphi \varphi^T - c^{-1} \varphi J \varphi^T = |\mathscr{F}| - c^{-1} |\mathscr{F}|^2, \quad (2.3)$$

or equivalently, $|\mathcal{F}| \leq c$.

In order to prove (1.2) for $n \ge 2k$ one needs to find a matrix A satisfying (2.1), (2.2), with $c = \begin{bmatrix} n-t \\ k-t \end{bmatrix}$.

To define A let us first define the matrices $W_{j,k}(\overline{W}_{j,k})$ of size $\begin{bmatrix} n \\ j \end{bmatrix} \times \begin{bmatrix} n \\ k \end{bmatrix}$ with rows indexed by the *j*-subspaces $P \in \begin{bmatrix} V \\ j \end{bmatrix}$, columns indexed by the *k*-subspaces $S \in \begin{bmatrix} V \\ k \end{bmatrix}$, and whose (P, S) entry is 1 if $P \leq S$ (resp. if dim $P \cap S = 0$) and is 0 otherwise, $0 \leq j \leq k$.

Now we can define A.

$$A = q^{-k^{2}+k} \binom{t}{2} \sum_{i=0}^{t-1} (-1)^{t-1-i} \times q^{(k-t)i+\binom{i}{2}} \binom{k-1-i}{k-t} \binom{n-k-t+i}{k-t}^{-1} \bar{W}_{k-i,k}^{T} W_{k-i,k}.$$
(2.4)

Let us set $B_i = \overline{W}_{i,k}^T W_{i,k}$. Then the general entry b(S, T) of B_i is the number *i*-dimensional subspaces of V contained in T and intersecting S only in the zero vector. Thus b(S, T) depends only on dim $S \cap T$ and b(S, T) = 0 if dim $S \cap T \ge t$ (here we used i > k - t).

This shows that A fulfills (2.1). In order to show that A fulfills (2.2) as well, we show that the $\begin{bmatrix} n \\ k \end{bmatrix}$ -dimensional Euclidean space E (with coordinates indexed by $S \in \begin{bmatrix} V \\ k \end{bmatrix}$) has an orthogonal decomposition $E = V_0 \oplus V_1 \oplus \cdots \oplus V_k$ satisfying

$$U_i = V_0 \oplus \cdots \oplus V_i$$
 is the row space of $W_{i,k}$, $0 \le i \le k$. (2.5)

 V_i is an eigenspace of B_i with corresponding eigenvalue

$$(-1)^{i} {\binom{k-i}{j-i}} {\binom{n-i-j}{k-i}} q^{j(k-i)} q^{\binom{i}{2}}.$$
 (2.6)

3. The Case 2k > n > 2k - t

Assume that Theorem 1 is proved for all (n, k) with n > 2k. Suppose $\mathscr{F} \subset \begin{bmatrix} V \\ k \end{bmatrix}$ is *t*-intersecting. Let f(u, v) be a non-degenerate bilinear function $f: V^2 \to GF(q)$. For a subspace S < V let S^{\perp} denote its orthogonal: $S^{\perp} = \{v \in V: f(u, v) = 0 \text{ for all } u \in S\}$. Also, define $\mathscr{F}^{\perp} = \{S^{\perp}: S \in \mathscr{F}\}$. Clearly $|\mathscr{F}^{\perp}| = |\mathscr{F}|, \ \mathscr{F}^{\perp} \subset \begin{bmatrix} v \\ n-k \end{bmatrix}$.

CLAIM 3.1. \mathscr{F}^{\perp} is (n-2k+t)-intersecting.

Proof. Suppose $F, F' \in \mathscr{F}$ and let $S = \langle F, F' \rangle$ be the subspace generated by F and F'. Since dim $F \cap F' \ge t$, dim $S \le 2k - t$ holds. Therefore dim $S^{\perp} \ge n - 2k + t$ holds. Now the claim follows from $S^{\perp} = F^{\perp} \cap F'^{\perp}$.

From $2k > n \ge 2k - t$ one infers

$$n > 2(n-k)$$
 and $n-2k+t > 0$.

Thus applying the theorem gives $|\mathscr{F}| = |\mathscr{F}^{\perp}| \leq \left[\frac{n - (n - 2k + t)}{(n - k) - (n - 2k + t)} \right] = \left[\frac{2k - t}{k} \right] = \left[\frac{2k - t}{k} \right] = \left[\frac{2k - t}{k} \right]$ as desired.

In the case of equality, equality holds for $|F^{\perp}|$ as well. Thus there exists a (n-2k+t)-dimensional subspace T of V such that $T \leq F^{\perp}$ for all $F \in \mathscr{F}$, i.e., $F \leq T^{\perp} \in \binom{V}{2k-t}$ for all $F \in \mathscr{F}$. Since $|\mathscr{F}| = \binom{2k-t}{k}$, $\mathscr{F} = \binom{T^{\perp}}{2k-t}$.

4. The Spectrum of B_i

First let us note that given $S \in \begin{bmatrix} V \\ f \end{bmatrix}$ the number of (n-f)-dimensional subspaces T with $S \cap T = \langle 0 \rangle$ is $q^{f(n-f)}$.

More generally, given $S \in \begin{bmatrix} v \\ i \end{bmatrix}$, $S' \in \begin{bmatrix} v \\ f \end{bmatrix}$, the number of (n-e)-dimensional spaces T with $S' \cap T = \langle 0 \rangle$, $S \leq T$ is $q^{f(e-i)} \begin{bmatrix} n-i-f \\ e-i \end{bmatrix}$ or 0 according whether dim $S \cap S' = 0$ or not.

This implies

$$W_{ie}\overline{W}_{ef} = q^{f(e-i)} \begin{bmatrix} n-i-f\\ e-i \end{bmatrix} \overline{W}_{if}, \qquad 0 \le i \le e.$$
(4.1)

By a simpler argument one has

$$W_{ie}W_{ef} = \begin{bmatrix} f-i\\ e-i \end{bmatrix} W_{if}, \qquad 0 \le i \le e \le f.$$
(4.2)

Let us note that (4.2) shows $U_0 < U_1 < \cdots < U_i$, where U_i is the row space of W_{ik} . This justifies our definition of V_i as the orthogonal complement of U_{i-1} in U_i .

Let us recall three identities involving q-nomial coefficients:

$$\begin{bmatrix} -c \\ s \end{bmatrix} = (-1)^{s} q^{-cs-\binom{s}{2}} \begin{bmatrix} c+s-1 \\ s \end{bmatrix},$$
 (4.3)

$$\sum_{\substack{i+j=t\\i,j\ge 0}} \begin{bmatrix} a\\i \end{bmatrix} \begin{bmatrix} b\\j \end{bmatrix} q^{(a-i)j} = \begin{bmatrix} a+b\\t \end{bmatrix} = \sum_{\substack{i+j=t\\i\neq j}} \begin{bmatrix} a\\i \end{bmatrix} \begin{bmatrix} b\\j \end{bmatrix} q^{i(b-j)}, \quad (4.4)$$
$$\sum_{\substack{0\leqslant i\leqslant b}} (-1)^i q^{\binom{i+1}{2}-bi} \begin{bmatrix} b\\i \end{bmatrix} = 0$$
$$= \sum_{\substack{0\leqslant i\leqslant b}} (-1)^i q^{\binom{i}{2}} \begin{bmatrix} b\\i \end{bmatrix}, b \ge 1. \quad (4.5)$$

Note that (4.5) can be derived from (4.4) substituting a = -1 and using (4.3).

Let us prove now

$$\bar{W}_{ef} = \sum_{0 \le i \le \min\{e, f\}} (-1)^i q^{\binom{i}{2}} W_{ie}^T W_{if}$$
(4.6)

and

$$W_{ef} = \sum_{i=0}^{e} (-1)^{i} q^{\binom{i+1}{2} - ei} W_{ie}^{T} \overline{W}_{if}.$$
 (4.7)

For $S \in \begin{bmatrix} v \\ e \end{bmatrix}$, $T \in \begin{bmatrix} v \\ f \end{bmatrix}$ let us compute the (S, T)-entry of the RHS of (4.6). Denoting dim $S \cap T$ by b we obtain $\sum_{o \le i \le b} (-1)^i q^{\binom{i}{2}} \begin{bmatrix} b \\ i \end{bmatrix}$, which (by (4.5)) is zero for b > 0 and 1 for b = 0. Similarly, the (S, T)-entry of the RHS of (4.7) is $\sum_{0 \le i \le e-b} (-1)^i q^{\binom{i+1}{2} - ei} q^{bi} \begin{bmatrix} e-b \\ i \end{bmatrix}$, which is zero—in view of (4.5) whenever b < e and 1 for b = e.

Let us use (4.6) and (4.7) to compute:

$$(\overline{W}_{ek}^{T} W_{ek})(\overline{W}_{fk}^{T} W_{fk}) = q^{f(k-e)} \begin{bmatrix} n-e-f \\ k-e \end{bmatrix} \overline{W}_{ek}^{T} \overline{W}_{ef} W_{fk} \\ = q^{f(k-e)} \begin{bmatrix} n-e-f \\ k-e \end{bmatrix} \overline{W}_{ek}^{T} \left(\sum_{0 \le i \le \min\{e,f\}} (-1)^{i} q^{\binom{i}{2}} W_{ie}^{T} W_{if} \right) W_{fk} \\ = q^{f(k-e)} \begin{bmatrix} n-e-f \\ k-e \end{bmatrix} \overline{W}_{ek}^{T} \sum (-1)^{i} q^{\binom{i}{2}} W_{ie}^{T} \begin{bmatrix} k-i \\ f-i \end{bmatrix} W_{ik}$$

$$=q^{f(k-e)}\begin{bmatrix}n-e-f\\k-e\end{bmatrix}$$
$$\times\sum_{i}(-1)^{i}q^{\binom{i}{2}+k(e-i)}\begin{bmatrix}n-k-i\\e-i\end{bmatrix}\begin{bmatrix}k-i\\f-i\end{bmatrix}\overline{W}_{ik}^{T}W_{ik}$$

or equivalently,

$$B_{e}B_{f} = q^{f(k-e)} \begin{bmatrix} n-e-f\\ k-e \end{bmatrix}$$

$$\times \sum_{0 \le i \le \min\{e, f\}} (-1)^{i} q^{k(e-i)} + {\binom{i}{2}} \begin{bmatrix} n-k-i\\ e-i \end{bmatrix} \begin{bmatrix} k-i\\ f-i \end{bmatrix} B_{i}. \quad (4.8)$$

Note that it follows from (4.8) that $B_e B_f = B_f B_e$, which readily implies that the B_i can be diagonalized simultaneously.

Next we show that U_e is the row space of B_e and it has dimension $\begin{bmatrix} n \\ e \end{bmatrix}$. Consider (4.7) for e = f. Then the LHS is the identity matrix of size $\begin{bmatrix} n \\ e \end{bmatrix}$. Using (4.1) we infer $(\overline{W}_{ke} = \overline{W}_{ek}^T)$:

$$I = \left(\sum_{i=0}^{e} (-1)^{i} q^{\binom{i+1}{2} - ei} q^{-e(k-i)} \begin{bmatrix} n-i-e\\k-i \end{bmatrix}^{-1} W_{ie}^{T} W_{ik} \right) \bar{W}_{ek}^{T}$$

or
$$I = C \bar{W}_{ek}^{T},$$

and by the transpose of (4.1):

$$I = \left(\sum_{i=0}^{e} (-1)^{i} q^{\binom{i+1}{2} - ei} q^{-i(k-e)} \begin{bmatrix} n-i-e\\k-e \end{bmatrix}^{-1} W_{ie}^{T} \overline{W}_{ik} \right) W_{ek}^{T}$$

or

$$I = DW_{ek}^T$$

Consequently $CB_e D^T = C\overline{W}_{ek}^T W_{ek} D^T = I$. Since the rank of a product never exceeds the rank of the factors, rank $B_e = \operatorname{rank} W_{ek} = \begin{bmatrix} n \\ e \end{bmatrix}$.

Now we are in a position to prove (2.6).

Let $\mathbf{x} \in V_e$. Since $\mathbf{x} \in U_e$, the row space of B_e , we have $\mathbf{x} = \mathbf{y}B_e$ for some vector \mathbf{y} . By definition for $i < e \ \mathbf{x} \in U_i^{\perp}$ holds. As the rows of B_i (and the columns as B_i is symmetric) are in U_i , $\mathbf{x}B_i = \mathbf{0}$. Consequently $\mathbf{0} = (\mathbf{y}B_e) B_i = (\mathbf{y}B_i) B_e$, i.e., $\mathbf{y}B_i \in U_e^{\perp}$. But $\mathbf{y}B_i \in U_i$ holds as well, yielding $\mathbf{y}B_i = \mathbf{0}$.

Now for $f \ge e$ (4.8) implies

$$\mathbf{x}B_{f} = \mathbf{y}B_{e}B_{f}$$

$$= q^{f(k-e)} \begin{bmatrix} n-e-f \\ k-e \end{bmatrix} \sum_{0 \le i \le e} (-1)^{i} q^{k(e-i)+\binom{i}{2}} \begin{bmatrix} n-k-i \\ e-i \end{bmatrix} \begin{bmatrix} k-i \\ f-i \end{bmatrix} \mathbf{y}B_{i}$$

$$= (-1)^{e} q^{f(k-e)+\binom{e}{2}} \begin{bmatrix} n-e-f \\ k-e \end{bmatrix} \begin{bmatrix} k-e \\ f-e \end{bmatrix} \mathbf{y}B_{e},$$

proving (2.6).

5. The Spectrum of A

In this section we show that for $n \ge 2k$, A satisfies (2.2) with $c = \begin{bmatrix} n - t \\ k - t \end{bmatrix}$ which will prove $|\mathscr{F}| \le \begin{bmatrix} n - t \\ k - t \end{bmatrix}$.

First note that V_i is an eigenspace of A for i = 0,..., k. Let λ_i be the corresponding eigenvalue, (2.4) and (2.6) provide a complicated but closed form for λ_i . Let us recall that we must show $\lambda_0 \ge -1 + {n \choose k} / {n-i \choose k-i}$ and $\lambda_i \ge -1$ for $i \ge 1$.

The next lemma shows that for i = 0, 1, ..., t one has equality.

LEMMA 5.1. $W_{tk}A = J_{tk} - W_{tk}$

Proof.

$$W_{ik}A = \sum_{i=0}^{t-1} (-1)^{t-1-i} q^{-k^2+k+\binom{t}{2}+(k-i)i+\binom{i}{2}} {k-1-i \choose k-t} \\ \times \left({n-k-t+i \choose k-t}^{-1} (W_{ik} \bar{W}_{k-i,k}^T) W_{k-i,k} \right)$$

Using (4.1) we may rewrite the RHS as

$$\sum_{i=0}^{t-1} (-1)^{t-1-i} q^{-k(t-1)} + {t \choose 2} + {i \choose 2} \begin{bmatrix} k-1-i \\ k-t \end{bmatrix} \overline{W}_{t,k-i} W_{k-i,k}.$$

The entry in row T and column K of $\overline{W}_{l,k-i}W_{k-i,k}$ is $q^{(k-i)}[{k-i \atop k-i}]$ if dim $T \cap K = l$.

To complete the proof of the lemma one must show that

$$\sum_{\substack{0 \le i \le t-1}} (-1)^{t-i-1} q^{-k(t-1)+(k-i)l+\binom{i}{2}+\binom{i}{2}} {k-1-i \brack k-t} {k-l \brack k-i}$$

=
$$\begin{cases} 1 & \text{if } 0 \le l < t, \\ 0 & \text{if } l=t. \end{cases}$$

For l = t the expression is clearly 0. Suppose now $0 \le l < t$. Using the first part of (4.4) with a = t - k - 1, b = k - l, one may write

$$1 = \begin{bmatrix} t-1-l\\ t-1-l \end{bmatrix} = \sum_{l \leq i \leq t-1} q^{(i-k)(i-l)} \begin{bmatrix} t-k-1\\ t-i-1 \end{bmatrix} \begin{bmatrix} k-l\\ i-l \end{bmatrix},$$

or using (4.3) with s = t - i - 1, c = k - t + 1:

$$1 = \sum_{l \leq i \leq t-1} q^{(i-k)(i-l)} (-1)^{t-i-1} q^{-(t-i-1)(k-t+1) - \binom{t-i-1}{2}} \\ \times \begin{bmatrix} k-i-1\\t-i-1 \end{bmatrix} \begin{bmatrix} k-l\\k-i \end{bmatrix} \\ = \sum_{0 \leq i \leq t-1} (-1)^{t-i-1} q^{-k(t-1) + (k-i)l + \binom{i}{2} + \binom{t}{2}} \\ \times \begin{bmatrix} k-1-i\\k-t \end{bmatrix} \begin{bmatrix} k-l\\k-i \end{bmatrix}.$$

At last we shall prove that $\lambda_e < -1$ holds for $e \ge t+1$. In view of (2.4), (2.6) we have

$$\lambda_{e} = (-1)^{e} q^{-k^{2}+k+\binom{t}{2}} \sum_{i=0}^{t-1} (-1)^{t-1-i} \\ \times q^{(k-t)i+\binom{i}{2}} \binom{k-1-i}{k-t} \binom{n-k-t+i}{k-t}^{-1} \\ \times \binom{k-e}{i} \binom{n-k+i-e}{k-e} q^{(k-i)(k-e)+\binom{e}{2}}.$$
(5.1)

First note that the expression for λ_e is an alternating sum. Our plan is to show that the terms decrease in absolute value, thus it is sufficient to show that the i=0 term has absolute value smaller than 1.

Then we show that the absolute value of this term strictly decreases as e increases. Therefore it is sufficient to check the case e = t + 1 which we do by direct computation.

We use two simple inequalities:

$$\frac{a-1}{b-1} < \frac{a}{b} \qquad \text{for} \quad b > a \ge 1,$$

$$\frac{q^b-1}{q^a-1} < q^{b-a+1} \qquad \text{for} \quad a \ge 1, q \ge 2. \qquad (5.2)$$

(a) Let us compute the absolute value of the ratio of consecutive terms (i.e., i + 1, i) in the expression for λ_e . It is

$$q^{e-i+i} \frac{q^{i-1-i}-1}{q^{k-1-i}-1} \frac{q^{n-2k+i+1}-1}{q^{n-k-i+i+1}-1} \frac{q^{k-e-i}-1}{q^{i+1}-1} \frac{q^{n-k+i+1-e}-1}{q^{n-2k+i+1}-1}$$

$$< q^{e-i+i}q^{i-k}q^{i-e} \frac{q^{k-e-i}-1}{q^{i+1}-1}$$

$$< q^{i+i-k}q^{k-e-2i} = q^{i-e-i} \leqslant q^{-1-i} < 1.$$

(b) Let us consider now the absolute value of the i=0 term in (5.1). It is

$$q^{-k^2+k+\binom{t}{2}}q^{k(k-e)+\binom{e}{2}}\binom{k-1}{k-t}\binom{n-k-t}{k-t}^{-1}\binom{n-k-e}{k-e}.$$

As $\begin{bmatrix} n-k-e \\ k-e \end{bmatrix} \leq \begin{bmatrix} n-k-e-1 \\ k-e-1 \end{bmatrix}$ and also $q^{k(k-e)+\binom{e}{2}}$ decreases as *e* increases (the derivative of the exponent is $-k+e-\frac{1}{2}<0$), the whole expression is a decreasing function of *e*.

(c) Finally consider the absolute value of the i = 0 term in (5.1) when e = t + 1. It is

$$q^{t^{2}-tk} \begin{bmatrix} k-1\\ k-t \end{bmatrix} \begin{bmatrix} n-k-t\\ k-t \end{bmatrix}^{-1} \begin{bmatrix} n-k-t-1\\ k-t-1 \end{bmatrix} = q^{-t(k-t)} \begin{bmatrix} k-1\\ k-t \end{bmatrix} \frac{q^{k-t}-1}{q^{n-k-t}-1}.$$

Since $n \ge 2k$, it is sufficient to show that

$$\binom{k-1}{k-t} = \prod_{j=0}^{k-t-1} \frac{q^{k-1-j}-1}{q^{k-t-j}-1} < q^{t(k-t)}$$

but this is clear from (5.2).

REFERENCES

- M. DEZA AND P. FRANKL, Erdös-Ko-Rado theorem—22 years later, SIAM J. Algebraic Discrete Math. 4 (1983), 419-431.
- 2. P. ERDÖS, C. KO, AND R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961), 313-320.
- P. FRANKL, The Erdös-Ko-Rado theorem is true for n = ckt, in "Proc. Fifth Hungar. Combin. Colloq., Coll. Math. Soc. J. Bolyai Vol. 18, pp. 365-375, North-Holland, Amsterdam, 1978.
- C. GREENE AND D. J. KLEITMAN, Proof techniques in the theory of finite sets, in MAA Studies in Math. Vol. 17, pp. 12–79, Math. Assoc. of Amer., Washington, D. C., 1978.
- 5. W. N. HSIEH, Intersection theorems for systems of finite vector spaces, Discrete Math. 12 (1975), 1-16.
- 6. R. M. WILSON, The exact bound in the Erdös-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.