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Let V be an n-dimensional vector space over GF(q) and for integers k > t > 0 let 
m,(n, k, t) denote the maximum possible number of subspaces in a t-intersecting 
family 9 of k-dimensional subspaces of V, i.e., dim Fn F’ > c holds for all F, F E F. 
It is shown that m&n, k, t) = max{ [;::I, [ ‘“; ‘I} for n > 2k - t while for n < 2k - t 
trivially m&n, k, t) = [;I holds. 0 1986 Academic Press. Inc. 

1. INTRODUCTION 

Suppose X is an n-element set, n > k > t > 0. A family of k-subsets of X, 
i.e., F c (f) is called t-intersecting if (Fn Fl > t holds for all F, F’ E F. The 
maximum size of a l-intersecting family was determined by Erdos, Ko, and 
Rado [2] for n > n,(k, t). 

ERD~S-K~RADO THEOREM. Suppose 9 c (f), 9 is t-intersecting. Then 
for n > ndk, t), 

holds. (1.1) 

It was shown by the present authors [3, 61 that n,(k, t) = 
(k-t+l)(t+l),i.e.,(l.l)ifandonlyifn3(k-t+l)(t+l).Moreover,for 
n > n,(k, t) the only family achieving equality in (1.1) is obtained by taking 
all k-subsets of X containing a fixed t-set. 

However, very little is known for n < n,(k, t). Denote by m(n, k, t) the 
maximum size of a t-intersecting family 9 c (f). For 0 < i< k - t and 
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Y, E ( ,Tli) define $= {FE (f): JFn Y,( > t + i}. Clearly, z is t-intersecting. 
Let us mention the following conjecture. 

Conjecture 1 [3]. m(n, k, t) = maxi lg”;1. 
This problem has an obvious extension to t-intersecting families of k- 

subspaces of a n-dimensional vector space V over GF(q). Let m,(n, k, t) 
denote the corresponding analog of m(n, k, t), i.e., m&n, k, t) =max(IB(: 
.~~[C,Y],dimFnF~tholdsforallF,F~~}.Ifn~2k-tthen(,Y)ist- 
intersecting. Therefore trivially m&n, k, t) = [;I holds. Here, and in the 
sequel [;I, is the Gaussian coefficient, i.e., [;I, = fl,, G i< b ((q” - qi)/ 
(qb - qi)). If it causes no confusion, we shall omit the subscript q. 

Hsieh[5]provedthatm,(n,k,t)=[;::] holdsforn>2k+l,q>3and 
for n 2 2k + 2, q = 2. Hsieh’s proof is entirely combinatorial but it involves 
lengthy computations. Greene and Kleitman [4] gave a short proof for the 
case t = 1, n > 2k, k divides n. Using the case n = 2k as the base step, in [ 1 ] 
a short, inductive argument is given for the t = 1 case. 

Checking the families in Conjecture 1, one sees that among them P0 = 
{FE [ ky], Y, c F} has the largest size if n >, 2k ( Y,,E [‘(I), and &, = 
{FE [ r$-f] ), Y, ~ f E [ 2,‘L ,], has the largest size if 2k >, n > 2k - t, in par- 
ticular, for n = 2k their sizes are equal. 

The aim of this paper is to show that, in fact, m,(n, k, I)= 
max{ I&I, IFkPIl} holds for all n 3 2k - t. 

THEOREM 1. Suppose n >, 2k - t, 9 c [ [] is t-intersecting then 

IFI Gmax([;::;ly, [zkk-‘],>. (1.2) 

The proof relies on the ideas of [6], however, the actual computation is 
done differently, in a shorter way, using the fast growth of the q-nomial 
coefficients. 

Let us also mention that (1.2) and the methods of [l] easily imply the 
uniqueness of the optimal families for n > 2k + 1 (and hence by Section 3, 
for 2k - t < n < 2k). 

It appears likely that for n = 2k there are only two non-isomorphic 
optimal families but we could not prove this for t > 2. In Section 2 the out- 
line of the proof is given for the case n > 2k; the detailed argument is left 
for Sections 4 and 5. In Section 3 we derive the case 2k > n 2 2k - t from 
the case n > 2k. 

2. OUTLINE OF THE PROOF FOR n>2k 

Suppose n b 2k and 9 c [L] is t-intersecting. Let cp be the characteristic 
vector of 9, i.e., cp is a (0, 1)-vector of length [;ly, with coordinates 
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indexed by the k-subspaces SE [ ky], the entry indexed by S is 1 if and only 
if SE*-. 

Let c be a positive scalar, A a real symmetric matrix of order [‘J!! (with 
rows and columns indexed by the k-subspaces of V), I(J) is the identity 
matrix (all 1 matrix) of order [;I, respectively. Suppose further that (2.1), 
(2.2) hold. 

The entry in row S and column T of A is 0 whenever 
dim Sn Tat. (2.1) 

A+Z-c-‘J is positive semi-definite. (2.2) 

Since 9 is t-intersecting (2.1) implies (pAqT= 0. Now (2.2) yields 

O~cp(A+Z-c~‘~)cp==cpcp=-~~‘cpJ~==~~~-c-’(~~~, (2.3) 

or equivalently, 191 d c. 
In order to prove (1.2) for n 3 2k one needs to find a matrix A satisfying 

(2.1), (2.2), with c= [;I;]. 
To define A let us first define the matrices Wj, k ( Fj, k) of size [y] x [i] 

with rows indexed by the j-subspaces PE [y], columns indexed by the k- 
subspaces SE [,“I, and whose (P, S) entry is 1 if P Q S (resp. if 
dim P n S = 0) and is 0 otherwise, 0 <j d k. 

Now we can define A. 

r-1 
Aqk*+k+(;) c (-l)l-1-r 

Let us set Bj = pTk W, k. Then the general entry b(S, T) of Bi is the 
number i-dimensional subspaces of V contained in T and intersecting S 
only in the zero vector. Thus b(S, T) depends only on dim S n T and 
b(S, T) = 0 if dim S r\ T 3 t (here we used i > k - t). 

This shows that A fulfills (2.1). In order to show that A fulfills (2.2) as 
well, we show that the [;I-dimensional Euclidean space E (with coor- 
dinates indexed by SE [xl) has an orthogonal decomposition E = V, 0 
V, @ . . 0 V, satisfying 

Ui= V,@ ... @V, is the row space of Wi,kr O,<idk. (2.5) 

V, is an eigenspace of B, with corresponding eigenvalue 

(2.6) 
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3. THE CASE 2k>n>2k-t 

Assume that Theorem 1 is proved for all (n, k) with n > 2k. Suppose 
P c [ ,“I is t-intersecting. Let f(u, v) be a non-degenerate bilinear function 
f: V2 -+ GF(q). For a subspace S< V let S’ denote its orthogonal: Sl = 
{u E I/: f(u, o) = 0 for all u E S}. Also, define BL = {S’: SE S}. Clearly 
[FL] = 19(, FL c [,VJ. 

CLAIM 3.1. 9’ is (n - 2k + t)-intersecting. 

Proof. Suppose F, F E 9 and let S = (F, F’ ) be the subspace generated 
by F and F’. Since dim Fr\ F >, t, dim S d 2k - t holds. Therefore 
dim SL > n - 2k + t holds. Now the claim follows from S’ = FL n F”. 1 

From 2k > n b 2k - t one infers 

n > 2(n - k) and n-2k+t>O. 

Thus applying the theorem gives 191 = I911 d [(,:“;/“;n2_k;;!J = 
[ ?I,‘] = [ ‘“; ‘1 as desired. 

In the case of equality, equality holds for IF’1 as well. Thus there exists a 
(n - 2k + t)-dimensional subspace T of V such that T < FL for all FE 5, 
i.e., F<T’E(~~Y,] for all FEF. Since 19;l=[*“,-‘],Y=[,,Til]. 1 

4. THE SPECTRUM OF Bi 

First let us note that given SE [ “1 the number of (n -f)-dimensional 
subspaces T with S n T = (0) is qf n-f). J 

More generally, given SE [ y], S’ E [,“I, the number of (n - e)-dimen- 
sional spaces T with S’ n T = (0), S < T is qf’“- “[” ;f;f] or 0 according 
whether dim S n S’ = 0 or not. 

This implies 

w~~Fef=qf(~--' ",-; m.$, 
[ '1 

O<i<e. 

By a simpler argument one has 

wie wef= [ 1 f-i w- 
e-i If, O<i<e<$ 

(4-l) 

(4.2) 

Let us note that (4.2) shows U, < U, < . . < U,, where Ui is the row 
space of wik. This justifies our definition of Vi as the orthogonal com- 
plement of Uiel in Ui. 
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Let us recall three identities involving q-nomial coefficients: 

[ 1 =(-l)"q-'"-(;) c+s-l ) [ 1 (4.3) 

ii..[:l[~~q(u-i)j=,~~b~=i.i=~i:~,~,qi(b-/), (4.4) 

i,j>O 

o<~<b(-l)iq(i:l)-*‘[b]=* 
1 . . 

= (4.5) 

Note that (4.5) can be derived from (4.4) substituting a = - 1 and using 
(4.3). 

Let us prove now 

and 

Kf= c (-lyq(+7w. re If (4.6) 
09i<min{e,f} 

w,,= f: (-l)iq(i:‘)-eiw;WV. 
i=o 

(4.7) 

For SE [ ,“I, TE [y] let us compute the (S, T)-entry of the RHS of (4.6). 
Denoting dimSnT by b we obtain ~04i4b(-l)iq(;)[f], which (by 
(4.5)) is zero for b > 0 and 1 for 4 = 0. Similarly, the (S, T)-entry of the 
RHS of (4.7) is &GiGe-b (-l)iq(‘:l)-eiqbi[e;b], which is zero-in view 
of (4.5) whenever b < e and 1 for b = e. 

Let us use (4.6) and (4.7) to compute: 
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or equivalently, 

X 1 (-,)iq+-)+(;) 

O<i<min{e.f) 

[“--“ri] [;I;] Bi. (4.8 1 

:S Note that it follows from (4.8) that B, B,= B, B,, which readily implie 
that the Bi can be diagonalized simultaneously. 

Next we show that U, is the row space of B, and it has dimension [:I. 
Consider (4.7) for e=f: Then the LHS is the identity matrix of size [;I. 
Using (4.1) we infer ( FVke = PQ): 

I= i (-1)i4(j:‘)-eiq-C(k-i) 

( i=O 
[n;:;e]-l WLWik) Iv; 

or I= CW&, 

and by the transpose of (4.1): 

I= f: (-l)iq(i:l)-eig-i(k-e) 

( i=o 

or 

I= DW,Tk. 

n-i-e. 

k-e 

-1 

Consequently CB, D T = CE’rk W,, D’ = Z. Since the rank of a product never 
exceeds the rank of the factors, rank B, = rank W,, = [:I. 

Now we are in a position to prove (2.6). 
Let x E V,. Since x E U,, the row space of B,, we have x = yB, for some 

vector y, By definition for i< e x E U,/ holds. As the rows of Bi (and the 
columns as Bi is symmetric) are in Ui, xBi = 0. Consequently 
0 = (yB,) Bi= (yB,) B,, i.e., yBirs U,l. But yBie Ui holds as well, yielding 
yB, = 0. 
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NOW for f>, e (4.8) implies 

XR/ = yR, R/ 

proving (2.6). 

5. THE SPECTRUM OF A 

In this section we show that for n> 2k, A satisfies 
which will prove 191 < [;I:]. 

(2.2) with c= [;I:] 

First note that Vi is an eigenspace of A for i =O,..., k. Let ki be the 
corresponding eigenvalue, (2.4) and (2.6) provide a complicated but closed 
form for Ai. Let us recall that we must show I, >, - 1 + [;]/[;I:] and 
Ai3 -1 for i> 1. 

The next lemma shows that for i = 0, l,..., f one has equality. 

LEMMA 5.1. WtJ = Jt,c - W,, 
P?VOf. 

1-l 
W,,A = 1 (-,)I--1~tq-k’+k+(;)+(k-f)i+(;) “,‘T’ 

i=O [ 1 

Using (4.1) we may rewrite the RHS as 

t-1 

Jo (-l)~-l-iq-Q-l)+(;)+(;)[k;‘;‘] @+J7&& 

The entry in row T and column K of iV,, k _ i W, _ i,k is qckp i”[i x i] if 
dim TnK=I. 

To complete the proof of the lemma one must show that 

i 

1 if 0 G 1~ t, = 
0 if I= t. 
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For I = t the expression is clearly 0. Suppose now 0 < I< t. Using the first 
part of (4.4) with a = t-k - 1, b = k - I, one may write 

or using (4.3) with s=t-i-l, c=k-t+l: 

1 = c q’l- k)(i~/)(_~~r-i-lq-~t-r~l)(k-r+l)-(’-~~’) 

/<r<t-I 

x[:I:r:] [:I:] 

= C (_,),-i-I,-k(f-l)+(k-i)/+(;)+(;) 

O<i<f- I 

x[“k:y] [;I;]- I 

At last we shall prove that 2, < - 1 holds for e > t + 1. In view of (2.4), 
(2.6) we have 

f-l 
2 

c 
=(-,yq-k2+k+(;) c (-1),-‘-i 

i=O 

First note that the expression for 2, is an alternating sum. Our plan is to 
show that the terms decrease in absolute value, thus it is sufficient to show 
that the i=O term has absolute value smaller than 1. 

Then we show that the absolute value of this term strictly decreases as e 
increases. Therefore it is sufficient to check the case e = t + 1 which we do 
by direct computation. 

We use two simple inequalities: 

u-l a 
6-l-% 

for b>a>l, 

46-1 
-<4 

b-a+ I 

q”- 1 
for a>l,q32. (5.2) 
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(a) Let us compute the absolute value of the ratio of consecutive 
terms (i.e., i+ 1, i) in the expression for A,. It is 

4 e--l+i 
4 r--L-i- 1 g-2k+i+l_ 1 qk--e-i- 1 qn-k+i+l-e- 1 

4 k-l-i -1 q”- k--r+i+l-1 qi+l-l qn-2k+i+l-l 

<9 
e--t+iqr-kqr--P 4 k-e-i -1 

4 ifI- 

<4 
r+i-k k--e-2i- 

4 -4 
1-e-i <q-l-‘< 1. 

(b) Let us consider now the absolute value of the i= 0 term in (5.1). 
It is 

4 
-k2+k+(;)qk(k-e)+(;) 

As [“,!;‘I < [“;“;:r’] and also q k(k ~ ‘) + (s) decreases as e increases 
(the derivative of the exponent is -k + e - i < 0), the whole expression is a 
decreasing function of e. 

(c) Finally consider the absolute value of the i = 0 term in (5.1) when 
e=t+ 1. It is 

Since n 2 2k, it is sufficient to show that 

k-l [ 1 
k-r-l k-l-j- 1 

k-t = ,!. ik-f-j- 1 <qtck-‘) 

but this is clear from (5.2). 1 
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