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1. INTRODUCTION 
For a Hamiltonian system 

$ = JVH(Z), Z E R2n, (1) 

(where J = [E -21, I,, is n x n identity matrix, H : R2n --) R is a smooth function and V is 
the gradient operator), it has been suggested that the symplectic difference schemes should be 
employed to integrate it [1,2]. A great deal of numerical experiment has shown the superiority of 
symplectic schemes over the nonsymplectic ones, especially in structural, global, and long-term 
tracking capabilities [1,3,4]. Except for some trivial cases, a symplectic scheme will not pre- 
serve the Hamiltonian energy H [1,2,4]. However, one of the striking outcomes of the symplectic 
simulation is that the numerically resulted values for H at the discrete temporal points, always 
undulate up and down in a very small neighborhood of the original identical value of H [1,4,5]. 
And, in fact, for a fixed-step size, any symplectic scheme has a formal energy (or nearby energy, 
or perturbed Hamiltonian function) [6-lo] which is the “exact Hamiltonian” for the symplectic 
scheme to be the “formal phase flow” when evaluated at the discrete temporal points [7]. And, 
the expansions of the formal energies have found some remarkable applications, say, in construc- 
tion of higher-order symplectic schemes and in delicate test of the long-term behavior of the 
schemes [ll-131. Such being the case, the theoretical study of the convergence of the formal 
energy of a symplectic scheme, and of the difference between the formal energy and the original 
Hamiltonian H has come out to be most interesting and most important. 

For instance, the mid-point rule 

Z+Z 
Z=Z+rJVH 2 

. ( 1 
(2) 

is a second-order time-reversible symplectic scheme that preserves any quadratic invariants of the 
Hamiltonian H [4,14,15], and its formal energy has an expansion [13] 

H=H+~2H2+74H4++76Hs+..., (3) 
where 

Hz = -$ Hzz (Z[‘1)2; 

H4 = & Hz4 (Z[‘]) 4 + & Hz3 (2[‘1) 2 .d21 + & Hz2 (Z’“1) 2 ; 

H6 = -& Hz6 (d’1) 6 - & H,s (2[‘1) 4 d21 

- & Hz1 (Z”1)3 ,$;I (Z”1)2 + & Hz4 (Z[‘1)3 2$d21 

- & Hz4 .Z+1 ( )’ (z[21)2 _ +& Hz3~[11~[2141 zfll 2 
( ) 

_ & HZ3Z~11~[21&?[21 _ & Hz3 (zL2]) 3 

- 11 Htz (Z!:’ (Z[11)2)2 - & Hzz (Z;:’ (#)‘) (Z1’1Z[21) 
53760 

- -&- Hzz (Zrf12[‘1)‘, 

where z[‘] = JVH(Z), z[“+‘] = G Z[‘I for k = 1,2,. . . . We use the notation 

(3.1) 

(3.2) 

(3.3) 

A,r(Vl). . . (VT) = 
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where A is a variable of any dimension (say, H or ~l’l), Vi is a 2n-dim variable (say, Zlll, ~1~1 et 
al.) for i = 1,. . . ,T, Zju is the jhh component of 2n-dim vector 2, and [Vu]cj,,, stands for the jhh 
component of Zn-dim vector Vu, u = 1,. . . , r. 

For example, in (3.3), 

1 (A [ 
$21 3 (k) ’ 

In the expansion of (3), just like 1 for 7 2, 3 for r4, and 11 for r6 in (3.1)-(3.3), respectively, 
the number of terms for rzk is exactly the number of free unlabeled trees of 2k + 1 vertices and 
there is a l-l correspondence between the terms in H2k and the (21c + 1)-vertex free unlabeled 
trees, for k > 1 [8,13]. 

For example, the above free unlabeled trees: (T-62), (T-64), and (T-66) correspond to the terms 
in (3.1)-(X3): -(l/24) Hz~(Z[11)2, (l/160) H,z(Z[~~)~, and -(l/896) Hz~(Z!1Z[21)2, respectively. 
They also correspond to the &-, &-, and &-terms, respectively, in (12) in Theorem 1 in Section 3. 

The above free unlabeled trees: (T-X2), (T-X4), and (T-As) correspond to the terms in (3.1)- 
(3.3): -(l/24) Hzz(2111)2, (7/5760) Hz~(Z111)4, and -(31/967680) Hz6(2[11)6, respectively. They 
also correspond to the As-, X4-, and &j-terms, respectively, in (17) in Theorem 2 in Section 3. 

The following free unlabeled trees: (T+4) and (T-116) correspond to the terms in (3.2),(3.3): 
(l/480) H,~(,z[‘I)~Z[~I and -(53/161280) H,s (.z+])~z~~] , respectively. (T-~4), (T-ps), and (T-ps) 
also correspond to the ~4-, ps-, and ps-terms, respectively, in (17) in Theorem 2 in Section 3. 

(T-fis) 
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The following free unlabeled trees: (T-~4) and (T-Q) correspond to the terms in (3.2),(3.3): 
(l/160) ~=z (.z[~])~ and -(23/26880) Hz4(2[11)2(2[21)2, respectively. (T-~q), (T-us), and (T-t+) 
also correspond to the v4-, vs-, and vs-terms, respectively, in (17) in Theorem 2 in Section 3. 

(T-v41 (T-e) (T-w) 

HZz (Z121)2 Hz4 (Z111)2 (Z[21)2 HZ6 (Z[11)4 (Z[21)2 

We call this kind of expansion of the formal energy a “tree-expansion” (for an introduction to 
free unlabeled trees, refer to [16,17]). On the other hand, for the number of coefficients of the 
terms in r2& for general k, there is no definite result. It is conjectured [13] that the m&mum 
absolute value of the coeficients of the terms in r2& is exactly 1/(22k+1 x (2k + 1)). 

In this paper, first we review the generating functions for rooted unlabeled trees and free un- 
labeled trees, and write out a rough bound for the number of the free unlabeled trees of 2k + 1 
vertices ‘UZ&+l (for k 2 1). This is also a bound for the number of the terms for H2k in the 
tree-expansion of the formal energy of the mid-point rule (Section 2, Remark 1). Second, we 
obtain some formulae for the coefficients of four special type of terms in 72k, k = 1,2, . . . , in the 
tree-expansion of the formal energy of the mid-point rule. These four special types of terms, with 
coefficients {62k}fm, {X2k);Cm, {P2k}im, and {v2k}i0[), are four different subsequences of the 
tree-expansion of the formal energy and exactly l-l corresponding to four type of (2k + 1)-vertex 
free unlabeled trees, k = 1,2,. . . , respectively, (Section 3, Theorems 1 and 2). And, according to 
these formulae, we give some estimates for the bounds of the coefficients (Section 3, Theorem 3). 
Finally, we give an estimate of the difference between the formal energy fi and the standard 
Hamiltonian H in a domain R under the assumptions 

(i) H is smooth and bounded in a, 
(ii) the absolute values of the coefficients of the terms in 72k are uniformly bounded by vla2& 

for some constants 77 2 1, g > 0, and for any k 1 1 (Section 4, Theorem 4). 

And, we indicate that this kind of analysis is also suitable for other type of terms (subsequences) 
of the tree-expansion of the formal energy of the mid-point rule, and possibly suitable for that of 
other symplectic methods (say, of Runge-Kutta type) (Section 5). 

2. GENERATING FUNCTIONS FOR ROOTED 
UNLABELED TREES AND FREE UNLABELED TREES 

If we expand the mid-point rule (2) as follows: 

i=Z+Erk&, 
k=l 

(4) 

where 

R1 = Z[l1, (4.1) 

R2 = ; Zi21; (4.2) 

Rs = f Z$1 (Z1’1)2 + ; Z;11Z[21; (4.3) 

R4 = $Zs (Z”1)3 + ;Z$1Z[11Z[21 (4.4) 
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then just like 1 for rl, 1 for r2, 2 for r3, and 4 for r 4, the number of terms for rlc is exactly 
the number of rooted unlabeled trees of k vertices and there is a l-l correspondence between the 
terms in Rk and the k-vertex rooted unlabeled trees, for k 1 1 [8,13]. 

We know the generating function u(x) = ~~=~ u,xp for rooted unlabeled trees has a recursive 
definition [16,17] 

u(x)=xexp{g iU(xi)} =xII~~(l-x2r)-UV, (5) 

and its expansion is 

+m 

c u,.x’ = x + x2 + 2x3 + 4x4 + 9x5 + 20x6 + 48x7 + 115x8 
T=l 

+ 286x’ + 719x” + 1842x” + 4766~‘~ + 12486~‘~ 

+ 32973x14 + 87811~‘~ + 235381~‘~ + 634847~~~ + . . . . 

For the coefficients u,., r = 1,2,. . . , in [19] it is given that 

pa3/2 a-n 
u,w-- 

2J?F n3i2 
= 0.4399237 s 

(6) 

(7) 

with cr = 0.3383219, p = 7.924780. 
The generating function v(x) for free unlabeled trees can be expressed by that for rooted 

unlabeled trees u(x) [18,19] 

and its expansion is 

v(x) = u(x) - ; [u”(x) - u (x2)] , 03) 

+ 47x9 + 106x1’ + 235x” + 551~‘~ + . . . . 
(9) 

In fact [19], 
p3oW o-n 

v,m-- 
4& n5i2 

= 0.5349485 5. (10) 

From (lo), 

%a I 3n, n= 1,2,.... (11) 

REMARK 1. As mentioned above, inequality (11) also gives a bound for the number of the terms 
of Hsk in the tree-expansion of the formal energy (3) of the mid-point rule (2), for any k 2 1. 

3. FORMULAE FOR THE COEFFICIENTS 
OF TERMS OF FOUR SPECIAL TYPES 

THEOREM 1. If the tree-expansion of (3) is written 

I? = H + c~~T~H,~ 
( > 
Z[‘] 

2 

+ . . . + b4r4Hzz 

+ . . . 

+ . * * + 62kT2kHZa .zp . . . 
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then for any s 1 1, 

62.9 = 
(-1Y 

229+1 x (2s + 1). (13) 

PROOF OF THEOREM 1. It’s easy to check 

{ ( zy . . . zyz[ll 

2 

Hz2 )I (s - time - “2”) 

= (-1)S2H,,JHz,. . . JH,,JH::JH*, . . . JH,,JH*, +. . . . 
(14) 

Observing the expansions like (4.1)-(4.4) of &+r in (4) and of Z[2s+11, we easily see that the 

term Zl’l ZL’I z[‘lz[ll = JH . . . 2 JH Zt . . . JH,, JVH (with (2s + 1)-the number of “Z”) has the 
coefficients l/225 and 1 for RsiIr and Z[2s+11, respectively. So for any s 2 1, (~~~+l)/2~~ is the 
term of r2s+1 in 

r (1 - 2627-2 + 264T4 - . * .) + $ (1 - 262r2 + ‘i?64~4 - . . .)” 

‘2k+l + + . . . 
(2k + l)! 

(1 - ~6~~2 + ~(5~~4 _ . . . J2k+l + . . . 

=e r(l-2c5*rZ+264s4-...) 

(15) 

If S2 = -l/24 = -1/(23 x 3), . . . , 62k = (-1)E/(22k+1 x (2k + l)), then (15) can be rewritten as 

e2[r/2+(1/3) (~/2)~+...+(1/2k+l) (72)“+’ 

1 

(-l)k+’ 
+“‘I + 62(k+l) - 22k+3 x (2k + 3) 

> 
72k+3 

+o (T2k+5) = 1+ (T/2) 
62(k+l) - (-l)“+l 

1 (16) 
1 _ cT,2) + 

22”+3 x (2k + 3) > 
++3 + 0 (T2k+5) . 

Since in (16), the term of r2kC3 is (r2k+3 )/(22(k+‘)), we should have &(k+r) = (-l)“+l (l/Pk+3 x 

(2k + 3)). I 

THEOREM 2. If the tree-expansion of (3) is written 

fi = H + X2~2Hz1 ( > Z[‘l 
2 

+ X4,r4 Hz4 (Z”‘) 4 + /A~T~H,s (Zl’]) 2 ZL21 + v474Hz~ (Z”]) 2 

+ i&g-‘H,~ ZI1] 6 + p,/H,s Z[‘] 
( ) ( ) 

4 
Zi2] + v,/H z4 (Z”l)2 (Z’21)2 + * . . 

f... (17) 
2k 

+ w2kT21CHZm--2 (Zlil)sk-4 (q + . . 

+... , 

then 

Ass729 = 
7 

eT/2 _ e-r/2 1 (18) 
s=o 

+CQ 

c p2sr2s = -E + r2 4 (,+T ,-4”) + p/2 T&3 - ;;i:;:‘_‘,:r:;’ ’ (“) s=o 
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and 

iE 2s - r5 375 
v2s7 - 

s=o 
32 (er/2 - ,-r/2) + 4 (e+/2 _ e-T/2)3 - 

T4 (g/2 + p/2) 

fj p/2 - ,-s/2)2 

3r5 3~~ (eTj2 + emTi2) 
(20) 

+( 
e~/2 _ ,-T/2)” - 2 (eTi2 - eeT/‘)” ’ 

PROOF OF THEOREM 2. We canwriteout 

7gPl + L? 931 + c 2151 + 
72k-1 T2k+l 

3! 5! . . . + (2k - l)! 
$2k-11 + 

(2k + l)! 
2[2k+ll + . . . 

= TZ[ll + f 251 
( > 

ZPI 2 + ; $1 (q4 + . . . 

+ (;kzx-:)( z& (z[11)2k-2 + c2;:‘;,, zl:! (zy2k + * *. 

+73x2.zy z['l 2 + ;x2z$j (q4 + ... 
( ) 

T2k+l 2k+2 

+ (2k - l)! 
x,2$\ (Z[11)2k + ,;,‘:‘;,! x2z~:!+z z[‘l 

( ) 
+. . . 

+75x4.@ (q4 + ;x4z$1 (z"y +... 
(21) 

T2k+3 

(2k - l)! 
. . . 

And, it is easily shown that in the expansion of &+I in (4), the term Z$l(Z[ll)k has coeffi- 
cient rk+‘/k!2”. 

Thus, we have 
+oO 

c 

T2r+l 

- = fJ g fJhzar”, 
r=O (27-Y22T . s-o 

i.e., 

I- 

2 { 
e7i2 + e--712 

> { 
= i eT _ e-T} EX2.+2*_ 

s=o 

(22) 

(23) 

So we obtain (18). Similarly, and a little more tediously, one can get (19) and (20). I 

THEOREM 3. With the notation above, we have the following inequalities: l&l/ 5 1&11 for 
1= 1,2,...; lpl~ll I IS211 and lvgll < p116211 for 1 = 2,3,. . . . Here p = 1.2416154923235787. 

PROOF OF THEOREM 3. F’rom(18)wehave 

(24) 

so 
x0 = 1; (25.0) 

(25.1) 
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1+1 

c &(1+1-r) 

r=O (27. + 1)!22T = OY 12 1. (25.2) 

If we set 
x(J = x0 = 1; (26.0) 

XZS = k = xzs * 22s+l(2s + l), 
lJ2sl 

s= 1,2,..., (26.1) 

then from (25.1), (26.0), and (26.1) we have 

xrJ = 1; (27.0) 

and for 1 2 1, 

2 
XW+l) = -(21+ 

21+ 3 
(2r+l)[2(1-r)+3]!X2T’ 

(27.1) 

(27.2) 

If 1X&[ I /&?81 = l/(223+’ x (2s+l)), i.e., lx2sl 5 1 for s = 1,2,. . . ,l, then from (27.2) for 1 1 1, 

PW+l)l 5 (21:2)! + ,(;;;)! +...+ (2r+l);1;31-)+3]! +...+ 
21 + 3 

(21+ l)3! = @. (28) 

It is readily proven that {Ol}, +O” monotonically decreases to (l/2) [(e - e- ’ ) - 21 as 1 increases 
to +co. And, (l/2) [(e - e-‘) - 21 = 0.1752011936438016. Thus, 

Ixz(l+l) I 5 lJ2(1+1) I7 l=O,l,.... (29) 

From (19), we have 

so 

(31.2) 

32r+l _ 3 (21+ 1)2 21+3 _ 32(L+l) + l 
W+2-T) (2r + 1)!22r+l = (21 + 3)!22”+5 ’ 

12 1. (31.3) 
r=l 

If we set 
,& = EL = I*zs .22s+l(2s + l), 

16291 
then from (31.2), (31.3), and (32) we have 

s = 2,3, . . . ) (32) 

p4 = 5; (33.2) 

and for 1 1 2, 

/k?(l+l) = (21 + l!;;;;;;)T+l) + l - $ &+:‘g;;y; ; ;, j&. (33.3) 

If IP2sl I 16281 = 1/(22”+’ x (2s+l)), i.e., I&[ 5 1 for s = 2,3,. . . ,l, then from (33.3) for 1 2 2, 

,P2(__+1), I (21+ 1)221+3 + 32(“+‘) - 1 
2(21 + 2)! 

+ (21+ - 
22 

3) (321+1 3) + . . . 
.5(21+ l)! 

(21+ 3) [3 2(1-r)+5 _ 3 1 (21+ 3) (35 - 3) = (34) 

+22(2r+1)[2(1-r)+5]!+“‘+ 22(21+1)5! -@” 
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It is readily proven that {@al}:” monotonically decreases to (l/8) [(e -e-1)3 - 81 as 1 increases 
to +oo. And, (l/8) [(e - e-1)3 - 81 = 0.6230678366196249. Thus, 

\/-q1+1)) I )62(1+1)) 1 1=1,2,.... (35) 

From (20), we have 

SO 

(36) 

1 
v4=5; (37.2) 

1+1 
1 

c V2([+3-r)P2r = 32 Qz(l+~), 1 L 1, 
r=2 

(37.3) 

where Pzr = (52T+’ - 5. 32r+1 + 10)/((2r + 1)!2 2r+1), Qzr = (22’(2r - 7) + 20(2r - 1))/(2r + l)! 
for r > 2. 

If we set 
ix& = $ = z& * 22S+‘(2s + l), s = 2,3,. . . ) (38) 

then, from (37.2), (37.3), and (38), we have 

i74 = 1; (39.2) 

and, for 1 > 2, 

If ]V&] I pS]bzs] = pS/(22S+1 x (2s + l)), i.e., ]i&] I ps (where p = (l/32) [(e - e-1)5 - 321 = 
1.2416154923235787) for s = 2,3,. . . ,I, then from (39.3) for 1 > 2, 

,D22(1+1J, I (21 - W’; ]: ;;;“” + 1P2’ p’ + W+ 3) F;;;$ $+” + 101 pl 

+...+ 
(21+ 3) [5 W-r)+7 - 5. 3W’)tr + 101 p’ 

24(2r + 1) [2(1 -r) + 7]! (40) 

+ . . . + (21 + 3) (5’ - 5. Y + 10) $ ~ $Ql 
24(21+ 1)7! 

It is readily proven that {~~}~” monotonically decreases to p as 1 increases to +oo. Thus, 

IVZ(W) 1 I P 1+1(62(1+1) I 1 1=1,2,.... (41) I 

REMARK 2. From (24), we have 

~(-lYX2.r2’ = 2sin;~,2) = ICY 1 _ (r2;(4r2r2)) 1 
s=o 

(42) 

so c;=“=, x2s72s is an alternating series, i.e., x0 > 0, x2 < 0,. . . , A& > 0, &+2 < 0,. . . . Further- 
more, according to the recursive relations (27.2), (33.3), and (39.3), the numerical calculation 
shows that the sequences of the beginning finite terms (at least 320 terms) of {%J~}~~, {p2S}~oo 
and {&}iw are alternating, and monotonically and rapidly decrease to 0 as s* + 00, respec- 
tively. Unfortunately, we are not yet able to prove this strictly. This is an open problem. 



1180 Y.-F. TANG et al. 

4. ESTIMATE OF THE DIFFERENCE BETWEEN FORMAL 
ENERGY AND ORIGINAL HAMILTONIAN-A NOTE ON 

CONVERGENCE OF FORMAL ENERGY OF MID-POINT RULE 

Theorems l-3 and Remark 2 confirm to some extent the Conjecture (the maximum absolute 
value of the coeficients of the terms in r2k is exactly 1/(2’“+l x (2k+l))) mentioned in Section 1. 
If this conjecture is true, even if only “the maximum absolute value of the coeficients of the 
terms in r2k is less than qa2” for some constants q > 1, D > 0 and for any k > l”, and the 
Hamiltonian H is sufficiently smooth and bounded in some domain R, i.e., there exists some 
constant B > 0, such that 

(43) 

(here, zt,, stands for the L-component of the 2n-dim vector 2) for 2 E O(O,T~~) c 0, and j 2 0 
and 1 5 tl,. . . , tj 5 2n, then, in the expansion (like (3.1)-(3.3)) of H2k in formal energy (3), 
the absolute value of every single term is not greater than ~a~“B(2nB)~“, k = 0, 1,2,. . . , and 
according to (11) 

lH2kl 5 32k+1r]a2kB(2nB)2k = Ew2’“, k=O,l,2 ,..., (44) 

where E = 37B, w = 6naB. 
Thus, we have the following. 

THEOREM 4. With condition (43), if the step size r is sufficiently small, and in the tree-expansion 

of (3) the absolute values of the coefficients of the terms in r2’ are uniformly bounded by qa2k 
for some constants 71 2 1, u > 0 and for any k 2 1, then for the mid-point rule (2), we have the 
estimate: 

I I 
H-H <E w2 < D27.2. 

1 - (wr)2 - (45) 

where D2 depends only on the Hamiltonian H. 

5. CONCLUSIONS AND FURTHER WORK 

We have studied the tree-expansion for the formal energy of the fixed step size mid-point rule, 
and obtained the formulae and estimates for the coefficients of terms of four special types. With 
some assumptions on the smoothness of the Hamiltonian H and on the size of the coefficients of 
the terms in the tree-expansion, we have given an estimate of the difference between the formal 
energy and the original Hamiltonian, which implies the convergence of the formal energy fi. Of 
course, our reasoning is incomplete because we could not deal with all the terms in the tree- 
expansion. So there is still much to be done. We hope this could be a starting point for the study 
of the convergence of the formal energies of the symplectic methods. Obviously, the techniques 
used here are also suitable for the coefficients of the terms of other types in the tree-expansion 
of the formal energy of the mid-point rule, and possibly suitable for that of other symplectic 
one-step methods. 
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