was intervention (yes/no). Other control variables included were demographics, physician specialty, and the MEPS household component full year consolidated data files (2010–2012) identified diabetes mellitus (T2DM) newly initiating liraglutide QD or exenatide QW in the U.S. RESULTS: Exenatide QW was directionally consistent in sensitivity analyses (tests for group differences = nonsignificant).

OBJECTIVES: To compare 12-month adherence to liraglutide once daily (QD) or exenatide once weekly (QW) in patients who recently initiated diabetes mellitus (T2DM) newly initiating liraglutide QD or exenatide QW in the U.S. METHODS: This retrospective cohort study used U.S. administrative claims data to study patients with T2DM initiating liraglutide QD or exenatide QW (initiated therapy in 2012) and included those who switched from insulin glargine or detemir, like peptide-1 receptor agonist (GLP-1RA)-naïve, initiated liraglutide QD or exenatide QW from 2/1/2012–10/1/2012 (date of initiation-index), were aged ≥18 by index, and had continuous enrollment for 11 months before (baseline) to 12 months after (follow-up). The study outcome was index GLP-1RA adherence (proportion of days covered [PDC] during follow-up, dichotomized at ≥80% versus <80%, and at ≥30% versus <30%). These PDC thresholds have been shown to be predictive of reduced hospitalization and mortality).

RESULTS: A total of 9,024 patients were included in the study (diabetes care had no impact on the OAD medication adherence.

OBJECTIVES: To assess the barriers to treatment adherence on disease management of acromegaly from the provider perspective METHODS: A web-based cross-sectional August–October survey was conducted to determine the barriers to treatment adherence of acromegaly patients. Two groups were created from all eligible respondents based on how they were recruited to the study: 1) from a single primary care provider or medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers). The primary source was usually a medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers). The primary source was usually a medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers).

RESULTS: A total of 1,347 respondents were included in the analysis with 66 in the intervention group. The mean post intervention PDC for the intervention group was 80.8% versus 76.6% for the control group (p < 0.001). There was no significant change in the control group (p = 0.816).

CONCLUSIONS: Age, income and education levels and whether being treated with diet modification influenced the approach to learning about diabetes care. Using medical providers only or multiple resources to learn about diabetes care had no impact on the OAD medication adherence.

PD665 IMPACT OF A PHARMACIST TELEPHONE INTERVENTION ON MEDICATION ADHERENCE AMONG HYPERTENSIVE PATIENTS WITH DIABETES IN A MEDICARE ADVANTAGE PLAN

Ahmedy S1, Wang Y2, Serna O2, Hergens C3, Eissen EJ, Maslamsadi S1, Fleming M4
1University of Houston, Houston, TX, USA, 2Cigna HealthSpring, Houston, TX, USA, 3U of Houston, Houston, TX, USA, 4University of South Carolina, Columbia, SC, USA

OBJECTIVES: To determine patterns of learning diabetes care and how this impacts medication adherence among respondents with diabetes prescribed oral antidiabetic (OAD) medications. METHODS: The Medical Expenditure Panel Survey (MEPS) household component full year consolidated data files (2010–2012) identified diabetes respondents aged 18 years who received OAD medications and participated in Diabetes Care Survey (DCS). Two groups were created from all eligible respondents based on how they learned diabetes care: 1) from a single primary care provider or medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers). OAD medication adherence was measured using the mediation possession ratio (MPR). Respondents with MPR > 0.8 were defined as adherent. Logistic regression analyses were conducted to identify significant associations related to the learning approach (single provider versus multiple resources) used to learn diabetes care.

RESULTS: A total of 1,347 respondents (58.5%, representing 12.6 million individuals in the U.S.) and 772 respondents (41.5%, representing 8.9 million individuals in the U.S.) were included in the study. Adherence in the follow-up year was the study outcome, defined as proportion of days covered [PDC] during follow-up, dichotomized at ≥80% versus <80%, and at ≥30% versus <30%). These PDC thresholds have been shown to be predictive of reduced hospitalization and mortality (13). These PDC thresholds have been shown to be predictive of reduced hospitalization and mortality (13).

CONCLUSIONS: Age, income and education levels and whether being treated with diet modification influenced the approach to learning about diabetes care. Using medical providers only or multiple resources to learn about diabetes care had no impact on the OAD medication adherence.

PD666 BARRIERS TO TREATMENT ADHERENCE ASSOCIATED WITH ACREMAGELY IN THE UNITED STATES: PROVIDER’S PERSPECTIVE

Lin S1, Xu Y2, Begelman SMP3, Shi L3
1Tulane University, New Orleans, LA, USA, 2Vanderbilt University, New York, NY, USA, 3Genentech Inc., South San Francisco, CA, USA

OBJECTIVES: To assess the barriers to treatment adherence on disease management of acromegaly from the provider perspective METHODS: A web-based cross-sectional August–October survey was conducted to determine the barriers to treatment adherence of acromegaly patients. Two groups were created from all eligible respondents based on how they were recruited to the study: 1) from a single primary care provider or medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers). The primary source was usually a medical specialist resource versus 2) multiple resources (medical provider plus in- and/or network/out-of-network providers).

RESULTS: A total of 1,347 respondents were included in the analysis with 66 in the intervention group. The mean post intervention PDC for the intervention group was 80.8% versus 76.6% for the control group (p < 0.001). There was no significant change in the control group (p = 0.816).

CONCLUSIONS: Age, income and education levels and whether being treated with diet modification influenced the approach to learning about diabetes care. Using medical providers only or multiple resources to learn about diabetes care had no impact on the OAD medication adherence.

PD667 VALIDATION OF PRESCRIPTION MEDICATION ADEQUACY PREDICTION TOOL (RXAPT) TO PREDICT NON-ADHERENCE AMONG DIABETES PATIENTS ENROLLED IN MEDICARE

Miukte S1, Sarangi Y3, Serna O2, Sarangi Y3
1University of Houston, Houston, TX, USA, 2AstraZeneca, Wilmington, DE, USA

OBJECTIVES: Adherence to diabetes medications in the Medicare population is low, which can greatly reduce CMS star ratings for managed care organizations (MCOs). Proactive identification of patients at risk for future non-adherence can provide MCOs with a selective cost-effective approach to implement adherence intervention programs. The study aims to develop and validate a risk assessment tool (Prescription Medication Adequacy Prediction Tool [RXAPT]) to predict non-adherence to diabetes medications using Medicare claims data. METHODS: Claims data from 2012–2013 was used; data from previous year (baseline period) was used to predict adherence. Follow-up was extended to patients with ≥2 years of diabetes medication use and ≥2 years of diabetes medication use and receipt of insulin prescriptions. Adherence was assessed using the portion of days covered (PDC) ≥80%. A multiple logistic regression model was used to identify the final model using 70% of the data and risk scores were calculated using significant predictors from the model. The remaining 30% was used for cross-validation and ROC analysis. Results: The model resulted in the temporal validity of the tool. RESULTS: Total sample included 7028 patients. Seven significant predictors (all from pharmacy claims) were identified and used in the tool. Cross-validation statistics were as follows: C-statistic = 0.74, Hommer-Lemeshow goodness-of-fit p < 0.05, sensitivity = 0.71, specificity = 0.66, positive predic-