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a b s t r a c t

The spectrum of the ∂-Neumann Laplacian on the Fock space L2(Cn, e−|z|
2
) is explicitly

computed. It turns out that it consists of positive integer eigenvalues, each ofwhich is of in-
finitemultiplicity. Spectral analysis of the ∂-Neumann Laplacian on the Fock space is closely
related to Schrödinger operatorswithmagnetic fields and to the complexWitten Laplacian.

© 2013 Elsevier Inc.

1. Introduction

The spectrum of the ∂-Neumann Laplacian for the ball and annulus was explicitly computed by Folland [3]. Fu [5]
determined the spectrum for the polydisc, showing that it need not be purely discrete like for the usual Dirichlet Laplacian.
Here we will exhibit the weighted case, where the weight function is ϕ(z) = |z|2, showing that the essential spectrum is
non-empty, which is equivalent to the fact that the ∂-Neumann operator (the inverse to the ∂-Neumann Laplacian) fails to
be compact [2].

Let ϕ : Cn
−→ R+ be a plurisubharmonic C2-weight function, and define the space

L2(Cn, e−ϕ) =


f : Cn

−→ C :


Cn
|f |2 e−ϕ dλ <∞


,

where λ denotes the Lebesgue measure, the space L2(0,q)(C
n, eϕ) of (0, q)-forms with coefficients in L2(Cn, e−ϕ), for 1 ≤ q ≤

n. Let

(f , g)ϕ =


Cn
f ge−ϕ dλ

denote the inner product and

∥f ∥2ϕ =


Cn
|f |2e−ϕ dλ

the norm in L2(Cn, e−ϕ).
We consider the weighted ∂-complex

L2(0,q−1)(C
n, e−ϕ)

∂
−→
←−

∂∗ϕ

L2(0,q)(C
n, e−ϕ)

∂
−→
←−

∂∗ϕ

L2(0,q+1)(C
n, e−ϕ),
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where for (0, q)-forms u =

′

|J|=q uJ dz J with coefficients in C∞0 (Cn) we have

∂u =

|J|=q

′
n

j=1

∂uJ

∂z j
dz j ∧ dz J ,

and

∂
∗

ϕu = −

|K |=q−1

′
n

k=1

δkukK dzK ,

where δk =
∂

∂zk
−

∂ϕ

∂zk
.

There is an interesting connection between ∂ and the theory of Schrödinger operators with magnetic fields; see, for
example, [6] for recent contributions exploiting this point of view.

The complex Laplacian on (0, q)-forms is defined as

�ϕ,q := ∂ ∂
∗

ϕ + ∂
∗

ϕ∂,

where the symbol�ϕ,q is to be understood as themaximal closure of the operator initially defined on formswith coefficients
in C∞0 , i.e., the space of smooth functions with compact support.

�ϕ,q is a self-adjoint and positive operator, which means that

(�ϕ,qf , f )ϕ ≥ 0, for f ∈ dom(�ϕ).

The associated Dirichlet form is denoted by

Qϕ(f , g) = (∂ f , ∂g)ϕ + (∂
∗

ϕ f , ∂
∗

ϕg)ϕ, (1.1)

for f , g ∈ dom(∂) ∩ dom(∂
∗

ϕ). The weighted ∂-Neumann operator Nϕ,q is – if it exists – the bounded inverse of �ϕ,q.
We indicate that a square integrable (0, 1)-form f =

n
j=1 fj dz j belongs to dom(∂

∗

ϕ) if and only if

eϕ
n

j=1

∂

∂zj


fje−ϕ


∈ L2(Cn, e−ϕ),

where the derivative is to be taken in the sense of distributions, and that forms with coefficients in C∞0 (Cn) are dense in
dom(∂) ∩ dom(∂

∗

ϕ) in the graph norm f → (∥∂ f ∥2ϕ + ∥∂
∗

ϕ f ∥
2
ϕ)

1
2 (see [8]).

We consider the Levi matrix

Mϕ =


∂2ϕ

∂zj∂zk


jk

of ϕ, and suppose that the sum sq of any q (equivalently: the smallest q) eigenvalues ofMϕ satisfies

lim inf
|z|→∞

sq(z) > 0. (1.2)

We show that (1.2) implies that there exists a continuous linear operator

Nϕ,q : L2(0,q)(C
n, e−ϕ) −→ L2(0,q)(C

n, e−ϕ),

such that �ϕ,q ◦ Nϕ,qu = u, for any u ∈ L2(0,q)(C
n, e−ϕ).

If we suppose that the sum sq of any q (equivalently: the smallest q) eigenvalues of Mϕ satisfies

lim
|z|→∞

sq(z) = ∞, (1.3)

then the ∂-Neumann operator Nϕ,q : L2(0,q)(C
n, e−ϕ) −→ L2(0,q)(C

n, e−ϕ) is compact (see [9,10] for further details).
To find the canonical solution to ∂ f = u, where u ∈ L2(0,1)(C

n, e−ϕ) is a given (0, 1)-form such that ∂u = 0, one can take
f = ∂

∗

ϕ Nϕ,1u, and f will also satisfy f ⊥ Ker∂ . For further results on the canonical solution operator to ∂ , see [11,14].

If the weight function is ϕ(z) = |z|2, the corresponding Levi matrix Mϕ is the identity. The space A2(Cn, e−|z|
2
) of entire

functions belonging to L2(Cn, e−|z|
2
) is the Fock space, which plays an important role in quantum mechanics. In this case,

�ϕ,0 u = ∂
∗

ϕ ∂u = −
1
4
△u+

n
j=1

z j uzj , (1.4)
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where u ∈ dom�ϕ,0 ⊆ L2(Cn, e−|z|
2
), and

�ϕ,n u = ∂ ∂
∗

ϕu = −
1
4
△u+

n
j=1

z j uzj + n u, (1.5)

where u ∈ dom�ϕ,n ⊆ L2(0,n)(C
n, e−|z|

2
).

For n = 1, there is a connection to Schrödinger operators with magnetic fields (see [1] for properties of its spectrum),
and to Dirac and Pauli operators [13]: the operators

P+ = e−|z|
2/2 ∂ ∂

∗

ϕ e|z|
2/2, P− = e−|z|

2/2 ∂
∗

ϕ ∂ e|z|
2/2

defined on L2(C) are the Pauli operators; P+ is also a Schrödinger operator with magnetic field, and the square of the
corresponding Dirac operator satisfies

D2
=


P− 0
0 P+


.

For n > 1 and 1 ≤ q ≤ n− 1, the ∂-Neumann Laplacian �ϕ,q acts diagonally (see [12]): for

u =

|J|=q

′

uJ dz J ∈ dom�ϕ,q ⊆ L2(0,q)(C
n, e−|z|

2
),

we have

�ϕ,q u = (∂ ∂
∗

ϕ + ∂
∗

ϕ ∂) u =

|J|=q

′


−

1
4
△uJ +

n
j=1

z j uJzj + q uJ


dz J . (1.6)

2. Determination of the spectrum

In order to determine the spectrum of �ϕ,q for ϕ(z) = |z|2, we use the following lemma (see [2, Lemma 1.2.2]).

Lemma 2.1. Let H be a symmetric operator on a Hilbert space H with domain L, and let (fk)∞k=1 be a complete orthonormal set
in H . If each fk lies in L and there exist µk ∈ R such that Hfk = µkfk for every k, then H is essentially self-adjoint. Moreover, the
spectrum of H is the closure in R of the set of all µk.

For the sake of simplicity, and in order to explain the general method, we start with the complex one-dimensional case.
Looking for the eigenvalues µ of �ϕ,0, we have, by (1.4),

�ϕ,0 u = −uz z + zuz = µu. (2.1)

It is clear that the space A2(Cn, e−|z|
2
) is contained in the eigenspace of the eigenvalue µ = 0.

For any positive integer k, the antiholomorphic monomial zk is an eigenfunction for the eigenvalue µ = k.
In the following, we denote N0 = N ∪ {0}.

Lemma 2.2. Let n = 1. For k ∈ N0 and m ∈ N, the functions

uk,m(z, z) = zk+m zm +
m
j=1

(−1)j(k+m)!m!
j! (k+m− j)! (m− j)!

zk+m−j zm−j (2.2)

are eigenfunctions for the eigenvalue k+m of the operator �ϕ,0 u = −uz z + zuz .
For k ∈ N and m ∈ N0, the functions

vk,m(z, z) = zk zk+m +
k

j=1

(−1)j(k+m)! k!
j! (k+m− j)! (k− j)!

zk−j zk+m−j (2.3)

are eigenfunctions for the eigenvalue k of the operator �ϕ,0 u = −uz z + zuz .

Proof. To prove (2.2), we set

uk,m(z, z) = zk+m zm + a1zk+m−1 zm−1 + a2zk+m−2 zm−2 + · · · + am−1zk+1 z + amzk,

and compute

∂2

∂z∂z
uk,m(z, z) = (k+m)mzk+m−1 zm−1 + a1(k+m− 1)(m− 1)zk+m−2 zm−2 + · · · + am−1(k+ 1)zk
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as well as

z
∂

∂z
uk,m(z, z) = (k+m)zk+m zm + a1(k+m− 1)zk+m−1 zm−1 + · · · + am−1(k+ 1)zk+1 z + amkzk,

which implies that the function uk,m is an eigenfunction for the eigenvalue µ = k+m, and from (2.1) we obtain, comparing
the highest exponents of z and z,

(k+m)m− a1(k+m− 1) = −(k+m)a1;

hence a1 = −(k+m)m. Comparing the next lower exponents, we get

a1(k+m− 1)(m− 1)− a2(k+m− 2) = −a2(k+m)

and a2 = 1
2 (k+m)(k+m− 1)m(m− 1). In general, we find that, for j = 1, 2, . . . ,m,

aj =
(−1)j(k+m)!m!

j! (k+m− j)! (m− j)!
,

which proves (2.2).
In order to show (2.3), we set

vk,m(z, z) = zk zk+m + b1zk−1 zk+m−1 + b2zk−2 zk+m−2 + · · · + bk−1z zm+1 + bkzm,

and compute

∂2

∂z∂z
vk,m(z, z) = k(k+m)zk−1 zk+m−1 + b1(k− 1)(k+m− 1)zk−2 zk+m−2 + · · · + bk−1z zm+1

as well as

z
∂

∂z
vk,m(z, z) = kzk zk+m + b1(k− 1)zk−1 zk+m−1 + · · · + bk−1z zm+1

which implies that the function vk,m is an eigenfunction for the eigenvalue µ = k, for eachm ∈ N, and from (2.1) we obtain,
comparing the highest exponents of z and z,

k(k+m)− b1(k− 1) = −kb1;

hence b1 = −(k+m)k. Comparing the next lower exponents, we get

b1(k− 1)(k+m− 1)− b2(k− 2) = −b2k

and b2 = 1
2 (k+m)(k+m− 1)k(k− 1). In general, we find that, for j = 1, 2, . . . , k,

bj =
(−1)j(k+m)! k!

j! (k+m− j)! (k− j)!
,

which proves (2.3). �

Now we are able to prove the following theorem.

Theorem 2.3. Let n = 1 and ϕ(z) = |z|2. The spectrum of �ϕ,0 consists of all non-negative integers {0, 1, 2, . . .}, each of
which is of infinite multiplicity, so 0 is the bottom of the essential spectrum. The spectrum of �ϕ,1 consists of all positive integers
{1, 2, 3, . . .}, each of which is of infinite multiplicity.

Proof. We already know that the whole Bergman space A2(C, e−|z|
2
) is contained in the eigenspace of the eigenvalue 0 of

the operator �ϕ,0 and, for any positive integer k, the antiholomorphic monomial zk is an eigenfunction for the eigenvalue
µ = k. In addition, all functions of the form zν zκ with ν, κ ∈ N0 can be expressed as a linear combination of functions
of the form (2.2) and (2.3). For a fixed k ∈ N, the functions of (2.3) have infinite multiplicity, as the parameter m ∈ N0
is free. So all eigenvalues are of infinite multiplicity. All the eigenfunctions considered so far yield a complete orthogonal
basis of L2(C, e−|z|

2
), since the Hermite polynomials {H0(x)Hk(y),H1(x)Hk−1(y), . . . ,Hk(x)H0(y)} for k = 0, 1, 2, . . . form a

complete orthogonal system in L2(R2, e−x
2
−y2) (see for instance [4]), and, since x = 1/2(z + z) , y = i/2(z − z), we can

apply Lemma 2.1 and obtain that the spectrum of �ϕ,0 is N0. The statement for the spectrum of �ϕ,1 follows from (1.5). �

For several variables we can adopt the method from above to obtain the following result.

Theorem 2.4. Let n > 1, ϕ(z) = |z1|2 + · · · + |zn|2, and 0 ≤ q ≤ n. The spectrum of �ϕ,q consists of all integers
{q, q+ 1, q+ 2, . . .}, each of which is of infinite multiplicity.
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Proof. Recall that the ∂-Neumann Laplacian �ϕ,q acts diagonally, and that

�ϕ,q u =

|J|=q

′

dom


−

1
4
△uJ +

n
j=1

z j uJzj + q uJ


dz J .

The factor q in the last formula is responsible for the fact that the eigenvalues start with q, which can be seen, in each
component separately, by

−
1
4
△uJ +

n
j=1

z j uJzj = (µ− q) uJ .

Now let k1, k2, . . . , kn ∈ N0 andm1,m2, . . . ,mn ∈ N. Then the function

uk1,m1(z1, z1) uk2,m2(z2, z2) · · · ukn,mn(zn, zn)

is a component of an eigenfunction for the eigenvalue
n

j=1(kj+mj) of the operator �ϕ,q, which follows from (1.6) and (2.2).
Similarly, it follows from (1.6) and (2.3) that, for k1, k2, . . . , kn ∈ N andm1,m2, . . . ,mn ∈ N0, the function

vk1,m1(z1, z1) vk2,m2(z2, z2) · · · vkn,mn(zn, zn)

is an eigenfunction for the eigenvalue
n

j=1 kj.
All other possible n-fold products with factors ukj,mj or vkj,mj (also mixed) appear as eigenfunctions of �ϕ,q.
From this we obtain that all expressions of the form zα1

1 zβ1
1 · · · z

αn
n zβn

n for arbitrary αj, βj ∈ N0, j = 1, . . . , n, can be
written as a linear combination of eigenfunctions of �ϕ,q, which proves that all these eigenfunctions constitute a complete
basis in L2(0,q)(C

n, e−|z|
2
); see the proof of Theorem 2.3. So we can again apply Lemma 2.1. �

Remark 2.5. (i) Since in all cases the essential spectrum is non-empty, the corresponding ∂-Neumann operator fails to be
with compact resolvent (see for instance [2]).

(ii) If one considers the weight function

ϕ(z) = (|z1|2 + |z2|2 + · · · + |zn|2)α for α > 1,

the situation is completely different: the operators �ϕ,q are with compact resolvent (see [13]), so the essential spectrum
must be empty.

We can use the results from above to settle the corresponding questions for the so-called Witten Laplacian which is
defined on L2(Cn).

For this purpose, we set Zk = ∂
∂zk
+

1
2

∂ϕ

∂zk
and Z∗k = −

∂
∂zk
+

1
2

∂ϕ

∂zk
, and we consider (0, q)-forms h =


|J|=q

′ hJ dz J , where
′ means that we sum up only increasing multiindices J = (j1, . . . , jq) and where dz J = dz j1 ∧ . . . ∧ dz jq . We define

Dq+1h =
n

k=1


|J|=q

′

Zk(hJ) dzk ∧ dz J (2.4)

and

D
∗

qh =
n

k=1


|J|=q

′

Z∗k (hJ) dzk⌋dz J , (2.5)

where dzk⌋dz J denotes the contraction, or interior multiplication by dzk, i.e. we have

⟨α, dzk⌋dz J⟩ = ⟨dzk ∧ α, dz J⟩

for each (0, q− 1)-form α.
The complex Witten Laplacian on (0, q)-forms is then given by

∆(0,q)
ϕ = Dq D

∗

q + D
∗

q+1 Dq+1, (2.6)

for q = 1, . . . , n− 1.
The general D-complex has the form

L2(0,q−1)(C
n)

Dq
−→
←−

D∗q

L2(0,q)(C
n)

Dq+1
−→
←−

D∗q+1

L2(0,q+1)(C
n). (2.7)

It follows that

Dq+1 ∆(0,q)
ϕ = ∆(0,q+1)

ϕ Dq+1 and D
∗

q+1 ∆(0,q+1)
ϕ = ∆(0,q)

ϕ D
∗

q+1. (2.8)
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We remark that

D
∗

qh =
n

k=1


|J|=q

′

Z∗k (hJ) dzk⌋dz J =

|K |=q−1

′
n

k=1

Z∗k (hkK ) dzK . (2.9)

In particular, we get, for a function v ∈ L2(Cn),

∆(0,0)
ϕ v = D

∗

1 D1v =

n
j=1

Z∗j Zj(v), (2.10)

and, for a (0, 1)-form g =
n

ℓ=1 gℓ dzℓ ∈ L2(0,1)(C
n), we obtain

∆(0,1)
ϕ g = (D1 D

∗

1 + D
∗

2 D2)g = (∆(0,0)
ϕ ⊗ I)g +Mϕg, (2.11)

where we set

Mϕg =
n

j=1


n

k=1

∂2ϕ

∂zk∂z j
gk


dz j

and

(∆(0,0)
ϕ ⊗ I) g =

n
k=1

∆(0,0)
ϕ gk dzk.

In general, we have that

∆(0,q)
ϕ = e−ϕ/2 �ϕ,q eϕ/2, (2.12)

for q = 0, 1 . . . , n.
For more details, see [13,7].
In our case ϕ(z) = |z1|2 + · · · + |zn|2, we get

∆(0,q)
ϕ h =


|J|=q

′


−

1
4
△hJ +

1
2

n
j=1

(z j hJzj − zj hJzj)+
1
4
|z|2 hJ +


q−

n
2


hJ


dz J , (2.13)

for

h =

|J|=q

′

hJ dz J ∈ dom∆(0,q)
ϕ ⊆ L2(0,q)(C

n).

The spectrum of ∆(0,0)
ϕ , in an even more general form, was calculated by Ma and Marinescu; see [15] and [16].

Using (2.12) and Lemma 2.1, we get that ∆(0,q)
ϕ and �ϕ,q have the same spectrum. Hence, by Theorem 2.4, we obtain the

following theorem.

Theorem 2.6. Let ϕ(z) = |z1|2+ · · · + |zn|2 and 0 ≤ q ≤ n. The spectrum of the Witten Laplacian ∆(0,q)
ϕ consists of all integers

{q, q+ 1, q+ 2, . . .}, each of which is of infinite multiplicity.
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