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The crucial discovery reported here is that the free monoid U* on the input set U 
does not yield a sufficiently rich set of inputs when algebraic structure is placed on the 
machine. For group machines, the appropriate structure is the coproduct U~ of an 
infinite sequence of copies of U. U~ reduces to a reasonable facsimile of U* in the 
Abelian case. A structure theorem for monoids of linear systems reveals the R monoid 
of Give'on and Zalcstein as appropriate only when no distinct powers of the state- 
transition matrix have the same action. 

1. DECOMPOSABLE ~{'-MACHINES 

W e  cons ider  a linear sys tem to be  one for which  U, Y, and X are all R - m o d u l e s  

for  a fixed r ing R wi th  ident i ty  and for which  3 : X  • U - - + X  and f l :X- -+ Y are 

R- l inear ,  i.e., there  exist R- l inear  maps  F :  X - - ~  X,  G:  U---~ X and H :  X - - ~  Y such 

that  the  next -s ta te  map  3 and ou tpu t  m a p / 3  are g iven by  

8(x, u) = Fx + Gu, 
(1) 

/3(x) = Hx,  

for all x in X and u in U. 

T h e  zero-s ta te  response of  the  l inear sys tem(F ,  G, H )  is g iven by the  map  f :  U*  --+ Y 

defined by 

k 
f ( u  k ,..., Ul) = ~ HFJ-IGuj with  each u s ~ U. (2) 

j=l 

By sacrificing the  m o n o i d  s t ructure  on U* we can tu rn  the  under ly ing  set into 
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an R - m o d u l O  U * by ident i fy ing each w = (uk , . . . ,  Ul )  with the left- infinite sequence 

o3 = (..., 0,..., 0, uk ,..., Ul) and  defining addit ion,  and mul t ip l ica t ion  by  scalars, 

componentwise .  T h e  formula  (2) then  allows us to re-view f as an R- l inear  func t ion  

f~:  U ~ - +  Y. 
Now let us summar ize  what  happens  when  we apply the  Nerode  cons t ruc t ion  

[2, Section 3.4] to f*  instead o f f .  ~ 
W e  define U ! • U* --+ U*: (w, % )  ~-~ oJoJ 1 as the obvious extension of concatenat ion 

U* X U * - +  U*: 

( . . . .  0 , . . . ,  O, U k . . . . .  Ul ) (V l , . . . ,  Vl)  = ( . . . ,  0 , . . . ,  O, U k . . . .  ' Uk . . . . .  / / 1 '  Vl , . . . ,  "/)1)* 

T h e  relat ion Es * on U * is then  defined by decreeing that, for each % ,  % in U ~, 

we have 

~OlEf*~ r f*(wlO~ ) = f"(%~o) for all w in  U*. 

I t  is easily verified, f rom the l ineari ty o f f  ~, that  

waE]"w ~ ~- f " (%0 '~) = f*(%0 n) for each n ~ N,  (3) 

where  0" is the all zero sequence of length  n in  U*. F r o m  this it follows that  

X I * =  U~/Ef ~ inheri ts  the R - m o d u l e  s t ructure  of U ~ with r11%] , + r21%] , = 

[ q %  4- r2oJe] , . Fur ther ,  the next-state  map 

a?:  x ?  • u + x ? :  ([o,]~, u) ~ [o,u]~ = Co,-% + [a]~ 

and the ou tpu t  map  

/3i: X l  * --~ Y: [co],--+f~(co) 

are well defined and R-l inear ,  so that  we obta in  a l inear machine  M ( f  ~) with 

F1[~o], + Gsu : [cou], 

and  

H/[oJ], = f*(~o). 

1 It must be confessed that we did not use the distinct notation U w in [1] until Section 5 and 
did not distinguish ~ from w at all. Thus, although verbal warnings should have served to give 
sufficient contextual cues, a reader of Section 4 [1] might be forgiven if he thought we were 
imputing the R-module structure to U* on occasions when only the monoid structure was 
available. I suspect that this is at the root of the erroneous statement [3, p. 555] that "Arbib 
and Ze ige r . . .  present a heuristic discussion of dynamics which cannot be made r igorous . . .  ". 

The emphasis in [1] was not so much on the fact that the Nerode construction went through 
for linear systems but rather on the fact that it could be seen to yield a whole family of identifica- 
tion algorithms. These results need not detain us here. 
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I t  is clear that, by throwing away the action of scalars, this construction yields [4] 

a procedure for obtaining the minimal realizations of Abelian group machines. 
So far we have considered two special subclasses of machines. 

Linear machines: U, X and Y are R-modules,  and there exist linear maps F :  X--+ X, 
(7: U --+ X and H: X -+  Y such that 

3(x, u) = Fx + Gu; fl(x) -- Hx. 

Abelian group machines: U, X and Y are Abelian groups and there exist homomor-  
phisms F :  X- -~  X, G: U--+ X and H: X - +  Y such that 

3(x, u) = Fx + Gu; fl(x) = Hx. 

More generally given any category a ~g" of sets with structure including a distin- 
guished binary operation" on each structured set (we refer to a set with such a structure 

as a JU-object and call a s tructure-preserving map between two ~ - o b j e c t s  a 
~F-morphism),  we may now define the following. 

Decomposable.~r-machines: U, X and Y are ~Y'-objects, and there exist ~ - m o r p h i s m s  
F :  X --~ X,  G: U -~- X and H:  X - +  Y such that 

3(x, u) ~- Fx �9 Gu; 3(x) =-- Itx. 

Our success with linear machines and Abelian group machines may then suggest 
the following. 

FALSE CONJECTURE. Let M ~ (U, X,  Y, 8, fl) be a decomposable :)if-machine with 
f:  U* -+ Y an associated response function. Then U* may be given the structure of  a 
~Y--object U s in such a way that the fs:  U s _+ y obtained from f is a ~-morphism. 
Conversely, given a 3ff -morphism f~: U~ Y, we may apply the Nerode construction to 
the corresponding f: U* -~ Y to obtain the minimal 3if-machine with f as associated 
response function. 

Indeed,  we have seen that this holds when we take ~ r  to be sets, R-modules,  or 

Abelian groups. However, it does not hold for groups. We devote the rest of this section 

to the appropriate  counterexamples and then give the correct theory for groups in 

Section 2. 

This paper is carefully written to avoid any use of the terminology of category theory. 
However, a forthcoming paper by Manes and Arbib [5] will exploit category theory to build 
upon the insights of the present paper. For the present, a category ~ may be thought of as a 
collection of sets with structure together with a collection of structure preserving mappings 
between these sets. 
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By a group machine, 4 we shall mean a machine for which U, X, and Y are groups, 

and 

3(x, u) = F x "  Gu and fl(x) = Hx,  

for suitable homomorphisms F:  X - ~  X, G: U--+ X and H:  X--~ Y. 
We may impose a group structure on U* by identifying a sequence with any 

sequence obtained from it by preloading with a sequence of identity elements, and 
then by using componentwise multiplication. However, even in very simple cases, 
the identity-state response function is not a group homomorphism. 

EXAMPLE. Let X = U = Y be any finite non-Abelian group. Let F, G, and H 
be the identity maps. The  identity-state response function of the resultant group 
machine is then given by 

f ( u n  , Un-1 ,..., Ul) : unun_ 1 "." u 1 �9 

However, this is not a group homomorphism since the multiplication suggested 
for U* yields 

(US, ~1) : (US' 1 ) ' ( 1 ,  Ul) = ( 1 , ~ 1 ) ' ( . 2 ,  1). 

But i f f  were a homomorphism we would then have both 

and 

f ( u s ,  Ua) = f(u,~, 1) - f (1 ,  ul) = usul ,  

f ( u 2 ,  ux) = f(1,  Ul) . f ( u 2 ,  1) = u2ul,  

for all u I , u2 in U, contradicting the assumption that U is non-Abelian. 
However, the situation is even worse. I t  will be recalled that M ( f )  is reachable. 

However, the following crucial example, due to Broekett and Willsky [5], shows that 
if we restrict the state-space of a group machine to contain only states reachable from 
the identity, the resulting space may only be a subset, and not a subgroup, of the 
original group. 

EXAMPLE. Consider the machine with U = Y = Z2 and X = D 4 , the dihedral 
group with elements {e, y ,  x, xy, x s, xSy, x 3, xSy} where e is the identity, x 4 = yS = e, 
and xyx  = y (so that, for example, x y S =  x y . x y x  = x y x ' y x  = y y x  = x). 

4 This notion has, of course, been introduced by many authors. For example, it is what 
Brockett and Willsky [6] have called a homomorphic sequential group machine. 
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Define our machine by 

F(x)  ~- e, F ( y )  :-  xy  

G(0) = e, G(1) = y, 

and 

H(x)  = O, H ( y )  = 1. 

ARBIB 

(so that F(e) --  e, F(xy)  = xy, etc), 

Then  the only states reachable from the identity are those of 

..~ = {e, y ,  xy, x} 

and this is clearly not a subgroup of D , .  
While Brockett and Willsky [6] sought-conditions under which the Nerode realiza- 

tion yields a group machine and conditions under which ~ is a group, we sh'.dl instead 
take the previous examples as suggesting that U* must be replaced by some larger 
structure if we are to salvage our conjecture. 

2, TaE MINIMAL GROUP MACHLN'E 

Given a group U, the appropriate generalization of U* is, as we shall see, the 
coproduct U I of denumerably many copies of U. If, for each n �9 hl we take Un to be a 
distinct group isomorphic to U,  [e.g. U,  = {(u, n) I u �9 U) with (u, n)(u', n) == (uu', n)] 
then the elements of U ~ are of the form 

(uq ,  il)(ui, , i.,) ... (u~,, i ,)  with each u �9 U, i �9 N 

(we use A to denote the empty  string) subject to the usual restrictions, and with 
multiplication simply concatenation, with the usual simplifying operations (see 
[7, Chapter 17] where the coproduct is called a free product). 

For each n we may then define the injection 

i~: Un -+ U ~, 

which sends an element of U,, to the length one string of U ! comprising that single 
element, ix is clearly a homomorphism. 

Note that if we work in the category of Abelian groups, this does indeed reduce to 
the additive structure of the U ! of Section 1, and Manes and Arbib [5] have introduced 
decomposable machines as the appropriate general categorical explication of this 
situation. U ! is then revealed as a simple-recursive object with basis U, which is 
often constructed as a countably-infinite coproduct of copies of U. However, we shall 
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content ourselves in the rest of this paper by studying the role of the above U s in 

realization theory for group machines. 
Given a group machine M = (U, X, Y , F ,  G, H) ,  then for each n, we define the 

homomorphism 

rn: Un ~ X :  (u, n) ~-~ F"Gu.  

The  reason that coproducts were invented is that this yields a unique homomorphism 

r~: U s --~ X, 

for which r n = r ~ o i ,  for every n �9 N. We call r ~ the reachability map of M. 
Now since U s is a group and r * is a homomorphism,  it follows that rS(U ~) is a 

subgroup of X. Note, however, that since U*, considered as sequences of the form 

(U/1 , i l ) (uq ,  i2) "'" ( u i ,  i , )  for which i 1 > i S > "" > i , ,  is not a subgroup of U s it 
follows that there is no guarantee that ra(U *) is a subgroup of X, as indeed we saw 
in the last example. This  injection of U* into U s does not respect the muhiplicat ive 
structure placed on U* at the end of Section 1. 

EXAMPLE. Consider the last example in which U - Y = Z2,  X - -  D a ,  G(0) - e, 
G(1) -~ y ,  F (x )  = e and F ( y )  --- xy .  Then  r~(U ~ - -  D l ,  since for example 

x3y = x "  x .  xy  = rS((1, 1)(1, 0)) r"((l,  1)(1, 0)) rS((l, 1) 

-~ r~((1, 1)(1, 0)(I, 1)(1, 0)(1, 1)). 

Next  we define the identity-state response function of the machine to be 

f~  =_ lira: U ~- ~ Y,  

which is the unique homomorphism for which f* o in = I IFnG.  

EXAMPLE. Consider the first example in which U = X =- Y is a non-Abelian 
group, and F,  G, and H are identity maps. Then  

Off, l ) (u2 ,0 )  and (u z , 0)(u, ,  1) 

are different elements of U s, and we have 

f~( (u  1 , 1)(u 2 , 0)) : : / ~ ( u l ,  1 ) f ~ ( u 2 , 0 ) -  I I F G u  x �9 HGu~ = H ( F G u  1 �9 Gu2), 

fG((uz, O)(ua, l)) =--fS(u 2 , O)f~(u~, I) = HGu z �9 HFGul ---- H(Guz .FGu~). 

57~/7/3-4 
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Now for R-modules  we reduced the Nerode equivalence to the simultaneous 
satisfaction of the equivalences 

f '(WlO" ) = f'(w~O") 

for each n ~ N. We now set up the corresponding sequence of equivalences for the 
group case. 

For  each n, we define the successor homomorphism 

s, :  U~ ~ Ui: (u, n) ~ (u, n t -  1). 

This  then yields the unique successor homomorphism 

s: U - +  U ! 

for which s ,  = s o i ,  for every n e N. 
Given any homomorphism f~  U ~ --+ Y we then define the congruence EI! on U ~ by 

wxE~4w 2 ~ f isn(wl) = f'sn(w2) for all n ~ N. 

Let  X t be the factor group Um/Et ~, and let ~r: U~--~ U~/EIo be the canonical 
epimorphism. Then  we may define three homomorphisms as follows: 

Ff: X, ~ X,: [w] ~ [ ~ ] ,  

61." u - -  -~5: u ~ [iou], 

Hf: X s --*" Y: [w] ~+f ' (w) .  

I t  is a routine calculation to check that these three definitions do indeed yield 
well defined homomorphisms,  and that the identity-state response of the group 

machine, 

M ( f l  ) aef: ( X  1 , U, Y,  F I , G I , HI), 

is indeed f L  
We say that  a group machine (U, X I , Y , F  x , G 1 , HI) is a reduction of the group 

machine (U, X 2 , Y , F ~ ,  G ~ , / / 2 )  if there exists a subgroup X 3 of X 2 , and an 

epimorphism h: X 3 --~ X 1 such that 

G2(U ) C X~ ; hG 2 = G 1 ; hF~ : Flh on X~ ; and Hlh -- H~ on ~k~. 

THEOREM 1. M ( f  a) is minimal in the sense that it is a reduction of any group machine 

with identity-state response f L 
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Proof. Let  M : (U, X, Y, F, G, H)  be any machine with identity-state response 
f*;  and let its reachability map he r *. Let  R be the subgroup r*(U ~) of X. We claim that 

$w = r"(w2) ~ ['7.Ol] = [w2]. 

But it is clear that 

rS(s"wl) = F"rS(wl) and that f~(snwa) = HFnrS(wa). 

Thus,  

r"(w~) = rw ~ f~(snwl) =: f~(s'w2) for all n e N 

[Wi] = [W2]. 

This  allows us to define a map h: R - +  X~: r S ( w ) ~  [w], and h is clearly a homo- 
morphism since 

rS(wl) �9 rS(w ) = rs(wlW2) [wlw2] = [ w d "  

Finally, it is clear that G ( U ) C  G(U s) = R; hG = G I ;  and that on R we have 
hF = Fsh and H1h = H. Thus,  M ( f f )  is a reduction of M, as was to be shown. | 

In  some sense, all this is trivial. The  crucial point is that we had to discover the use 
of the coproduct to gain this tr iviali ty--the false conjecture of Section 1 provided 
a real obstacle to a general theory until this discovery was made. I t  is clear that 
Theorem 1 can be generalized to other classes of Jd'-machines. However, the appro- 
priate setting for the general result requires too much category theory, and we must 
refer the reader to the forthcoming study by Manes and Arbib for further information. 
Instead, we close this section by defining a sequential machine which simulates the 
response of a group machine to all of U s. 

Given U, we define the set U to be U u {r) where r is a new symbol, indicating 
a reset. 

We then define a map e: U s --~ ~ *  inductively be taking ein: Un --~ ~*:  (u, n) ~-~ u, 
and then setting 

l e [ w ' ( u , n ) ] . u '  if n > n '  
e [ w . ( u , n ) . ( u ' , n ' ) ]  = ~e[w (u,n)] r . u '  if n < n ' .  

Then  given the group machine M = (U, X, Y, F, G, H)  we define its cumulator 
/ ~  to be the machine 

for which 

= (g ,  x x x ,  

I (xax~' 1) if 
8((xl ,  x~), u) = {(xl ,Fx2 " Gu) if 

~(xl , x~) = H(xlx~). 

U = r  

u =A r 
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I f / :  /~* --+ Y is the (1, 1)-state response of M whi l e f  ! is the identity-state response 
of M it is then straightforward to verify that the following diagram commutes 

U s " + O* 

Y 

3. MONOIDS OF LINEAR SYSTEMS 

Returning now to the minimal linear system M ( f  l) which introduced Section 1, 
we note that the action of U upon X1S may be extended to U* simply by taking 

x ?  • u*  --- x ? :  ( H , ,  ~o') ~ r,o,o'],. 

What is the monoid of the minimal linear system M ( f  ~ ? We follow the usual 
procedure of starting with U* and identifying strings which move the states in the same 
way to yield the monoid of a system. In  the present case this yields the following 
development. 

T h e  monoid $I  ~ of M ( f  m) is the factor monoid U*/=,  where = is the congruence 
on U* defined for each % ,  ~o~ in U* by 

oJ 1 =- o~ <:~ [woJ1] 0 = [ww2] , for all oJ in U s. 

I f  we define the relation " I  on N by 

nx ~ 1  n2 <~  0nl  :=- 0ns, (4) 

it is a straightforward exercise to obtain the lemma [1]. 

LEMMA. For all w a , co 3 in U*, we have 

% = w 2 ~ [dJ1E1k3 2 and ] % X ~ I  I o~ I]. 

In  other words, to find whether two input strings move the states in the same way, 
we require that they correspond to the same state of the minimal realization, and then 
our only additional requirement is a length condition which has nothing to do with 
the internal structure of the strings. Actually, this is hardly surprising, for the state- 
transition of (1) is given by 

k 

(x, uk "" ul) ~ Fkx + ~ F-1Guj  , 
,/=1 
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in which the first-term depends only on the length of the string, while the second 
term is the state to which (uk "" ul) sends (F, G, H)  from the zero-state. 

Let N I = N/~-. I . Clearly N I inherits from N the structure of a monoid under 
addition, and is isomorphic to the cyclic submonoid of $ I  ~ generated by the action 
of the unit-length zero sequence 0. Call this action FI  l. I f  all powers ofF1 g are distinct, 
Ns is isomorphic to N. If, on the other hand r and r + m are the smallest distinct 
integers for which (F1w = (FIJ) r+m, then N I has r 4- m elements, and is a finite 
cyclic monoid of index r and period m. 

Let  us now use this characterization of N I , and the lemma, to characterise the 
structure of $ I  i. 

THEOREM 2. 1"he monoid $I ~ of the linear system M ( f  a) may be expressed as the 
disjoint union 

U S , ,  
7~EN[ 

where S~ -- {It;J, : i  ~ 1~"I n} and where the multiplication is given by the functions 
(for each m, n ~ NI  , with m -~ n being defined in NI) 

s,~ • & -+ &+n: ([o;d~, [o;d0 ~ [(~o~)^]~, 

where , % I ~'~I m and [ co s i ""I n. 

Now each S~ can be turned into an R-module by regarding it as a submodule 
of XI  ~. However, in the context of Sf *, it does not make sense to add elements of 
Sm and S~ for distinct m and n since the crucial length index is then destroyed. We, 
thus, deduce that in case all powers of  F1~ are distinct SI~ has the R monoid structure 
defined by Give 'on and Zalcstein [1]. 
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