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Twisted polynomial rings and localizations thereof have been used as 
counterexamples to many conjectures. In this paper we extend the results 
of Cozzens in Ref. [l], who was concerned with the following two properties: 

(Pr) Every simple R module is injective. 

(Pa) There is only one isomorphism class of simple R modules. 
In addition, we look at 

(Ps) There exist infinitely many nonisomorphic simple R modules. 

By suitably modifying the field of a twisted polynomial ring, we show 
that P, and Pa are completely independent, and that P, and Pa may simul- 
taneously hold. We also show that Pa may hold on the right but not on 
the left. 

The following meanings of p, F, R, R, and D will be assumed throughout 
the entire paper. 

Let F be a field of characteristic p > 0, and let cr : F ---f F be the endomor- 
phism of F defined by cr(a) = G for all 01 c F. Let i? be the ring of twisted 
polynomials with coefficients on the left, 

where addition is polynomial addition, multiplication is defined by the 
associative and distributive laws, and 

for all a: E F. 

xcx = a(cd)X 

2 is a principal left ideal domain with left Euclidean algorithm with 
precisely one two-sided ideal, viz., (X). (See Jacobson, Ref. [3]). Moreover, 
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for every r E i?, there exists s E i7 such that Xr = sX, so that one may 
form R = the left ring of quotients of R with respect to X, viz., 

R is a simple ring, and, being the localization of a principal left ideal domain, 
is also a principal left ideal domain. Moreover, R may be considered as 
the localization of the right twisted polynomial ring (F[X-r; 01)~ with respect 
to X-l, so R is also a principal right ideal domain although i? is not unless 
F is perfect. 

Cozzens shows in Ref. [l] that R has properties P, and P, ifF is algebraically 
closed. By further analysis of the situation, we show the complete inde- 
pendence of these two properties. 

1. NUMBER OF SIMPLE MODULES 

PROPOSITION 1. Let 

r = X-~(&x,X+R. 

Thz RR~ C R(X - y) for some nonzero y E F ;f and only if y is a nonzero 
root of the polynomial 

p(y) = -f ,n-kyt7-‘i-1m-1). 
k=O 

proof. zzEo aiXi = (Crzi j?,Xi)(X - 7) if and only if 

Assume the equations (*) and that 

where a sum with smaller top than bottom index is equal to zero. This 
is true ifj = 1 by the first equation of (r). 
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Then 

By induction, 

n-1 n-k-1 I 
p. = 1 an-g=- p ) = -“oy-l 

k=O 

and multiplying by y and transposing gives y is a root of P(Y) since 

ZoPZ = (P”’ - 1)/Q - 1). 

If y is a root of P(Y), define ,13,+r = E% and Pnej inductively by (*). The 
above calculations then show the required factorization holds, since /lo 
indeed equals -CAM+. 

We make two observations about P(Y). 

(i) P(Y) = P’(Y)Y + 01~) so a0 f 0 implies P has all distinct roots. 

(ii) The degree of P(Y) . is relatively prime to p since each nonzero 
exponent of Y is congruent to 1 modulo p. 

PROPOSITION 2. Let 01, ,!3 E F - (0). Then 

R/R(X - rx)xnb 23 R/R(X - p) 

(resp. R/R(X - ol)X” - - M R/R(X - /3)) if and only if there is a j E w (m = 0 
and for j = 0) such that the polynomial 

has a root in F. 

Q(Y) = YP-1 - a”*p-l 

Proof. Any T E R is of the form Y = p + q(X - ,8) for some p EF, 
q E R. Hence R(X - /3) (&X - 8)) is maximal. R(X - CC)X~~ is maximal if 
and only if m = 0. Moreover, since R(X - a) is a maximal left ideal of R 
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and since the map R -+ RIR(X - a) given by 1 --+ X-” + R(X - a) has 
kernel R(X - a)Xm, R/R(X - (Y)X” M R/R(X - a) so we may assume 
m = 0 in this case also. 

Now R/R(X - a~) = R/R(X - /3) if and only if there exists j E w (j = 0 
in the case of @ and p EF - (0) such that 

(X - a)X-up E R(X - ,k?). 

But (X - ol)X-i = X-i(X - a”‘), so this holds if and only if 

(X-C$)~E~R(X-/~)=~(X+) 

if and only if there exists T EF - (01 such that 

or 

pPX - ix”‘p = 7x - r/3, 

7 = p”, p(p”-1p - Cx”j) = 0. 

We observe that, in the case of R, one cannot necessarily assume j = 0 
unless p = 2. For example, let p be odd, F’ a purely transcendental extension 
of Z/pZ, F”the separable closure ofF’, and F = F”[cW] for some a! EF” - Z/pZ. 
Then Yp-r - c&P has no root in F, but Ye-l- 01 does. 

Just as for P, Q has no multiple roots and degree relatively prime to p. 
In order to use the above calculations, we need a way of obtaining particular 

fields in which polynomials which need roots have them. 
Let q be a prime integer, and let K be any field with algebraic closure K. 

Let 

5 =(L[Lafield, K_CLCK,andlEL 

+ degree 2 over K is relatively prime to q}. 

K E 3, and 3 is clearly inductive. 

DEFINITION. A q-field over K is a maximal element of 5. 

PROPOSITION 3. Let L be a q-$eld oaer K, and let f E L[X] have degree 
relatively prime to q. Then f has a root in L. If g E K[X] is irreducible in K[X] 
and has degree divisible by q, then g has no root in L. 

Proof. Since all of the irreducible factors off over L cannot have degree 
divisible by q, one, say f. , has degree relatively prime to q. Let B be a root 
off0 in K, and let 4 E L[B]. Then 4 is contained in K,[B] where K,, contains 
all the coefficients of f0 and is a finite extension of K in L. KJB] is of 
K-dimension relatively prime to q since its separable part is generated by 
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a single element of L and dimensions multiply. Then degree (p divides 
(degf,,)(K-dim K,,) which is relatively prime to cf. Thus L[B] E 5, and by 
the maximality of L, L[B] = L, i.e., 0 EL is a root of f~ 

The second part is immediate from the definition of 5. It is possible 
that g may factor over L, but all such factors must have degree divisible by q= 

PROPOSITION 4. Let K be any field of characteristic p > 0, and let F be a 
p-field OWY K. Then R has only one isomoTphism class oj- simple lef2 R modules, 
and i? has two. 

Proof. Let X-J(~~=~ o~~X~)X~~, o+, # 0, generate a maximal left ideal of R 
(for R, set j = 0). Since X-i is a unit in R we may ignore the X-i, By 
Propositions 3 and 1, CyzO c+Xi must be linear, so every maximal left ideal 
of R (R) is generated by an element of the form (X - y)X”, y EF - (01 
(or = RX). By Propositions 3 and 2, R/R(X - y)Xlfi w R/R(X - I>. 
(In the case of a, one has also the possibility y = 0 and the unique non- 
faithful simple R/RX.) 

We can also show that roots of all P and Q occurring in Propositions 1 
and 2 must exist for R to have only one (and R two) isomorphism class 
of simples. 

PROPOSITION 5. Let Y = CyzO aiXi generate a maximal ideal of R (or w) 
where ol,aO # 0, n > 1. Then RIRr $ R/R(X - y) for any y + 0 EF. 

Proof- Any s E R is of the form X-Q + qr, q E R, j E CO, t E a, degree 
t < ?z - 1. Then (X - y)s E Rr if and only if (X - ypj)t is a polynomial 
of degree <n in Rr. Since r has constant term f 0, the only such polynomials 
are of the form M, 01 EF. But then Rr 2 Rt, a contradiction. 

Although R has enough symmetry to ensure that there is only one isomor- 
phism class of left simple R modules if and only if there is only one isomor- 
phism class of right simple R modules (if and only if the polynomials P(Y) 
and Q(Y) in Propositions 1 and 2 always have roots), the situation with w 
is quite different unless F is perfect (so symmetry again holds). Although 
roots of all P and Q insure only two nonisomorphic simple left R modules, 
it is possible to have infinitely many simple right a modules. 

PROPOSITION 6. Let {pi 1 i E 3> be a basis for F ooer FP. Then for any 
{yi 1 i E 9> C F, I = C @ (&X - y$? is a maximal right ideal of a. 

Proof. Let Y = x:C0 oliXi E g, 01, # 0, n f 0. Then CL, = CF=, ,Bi,sjp for 
some (Sjj C F, (ij> C 4, and Y - J&, c/&,X - yj,) 6,Xn-r has degree <n. 
Hence r E i? is congruent to some constant modulo 1. Moreover, 
Cpl (/3,.X - yi )rj EF with some yi # 0 is impossible since the pi. are 
linearly ‘indepeddent modulo Fp. Hence 1 is proper and the sum is direct. 

4x1/18/4-7 
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PROPOSITION 7. Assume that the Fp dimension of F is equal to the cardinality 
of F = K, and that 3 is the Jirst ordinal with cardinality X. Then i? has at 
least K nonisomorphic simple right a modules. 

Proof. Set yi,s = 0, I, = 2 (/3,X - y$,s)R. Let j < 9, and assume for 
all k < j, Iti = C (p,X - yi,,JR has been defined such that R/Ik w R/Ik, if 
and only if k = k’. Let i + 01~ be a one-one indexing of F - (0) by 9. 
Let a& = CIESi ,B16fi, where Si is some finite subset of Y. Then 

has cardinality < 8. Let yisi be any element of F not in this set. Then for 
all m < j, 

dPiX - YJ - ( c (PJ - Y,.,,) &,i = 01 # 0 EF 
lESi 

so 4/w - Y&j) ~Inz * 
Set Ij = C &X - yi,JR. Th en no nonzero 01~ E F sends Ij into Ik for 

k < j so R/Ij .$ R/I, for k < j. Transfinite induction completes the proof. 

COROLLARY. Let F be a p jield over a purely transcendental extension K 
of Z&Z, where K has injnite transce&nce degree. Then a has precisely two 
nonisomorphic simple left modules but an injinite number of simple right modules. 

2. DIVISIBILITY OF SIMPLE MODULES 

For a commutative ring, every simple is injective if and only if the ring 
is regular (see Ref. [7]). Cozzens showed this was not true in the noncom- 
mutative case since the ring of differential polynomials over a universal 
differential field and the ring R for F algebraically closed have this property. 
We will use this second result to study precisely when every simple R module 
is injective. 

We first observe that since R is a principal left ideal domain, divisibility 
is equivalent to injectivity. Thus a cyclic R module R/Rb is injective if 
and only if for all a # 0 E R, aR + Rb = R. The same remark holds for 2, -- 
but in that ring it is clear that XR + i?X + i?, so R/RX cannot be injective. 

Let a’ = X-“a, b’ = X-lb, a, b E a. Then a’R + Rb’ = R if and only 
if X’“a’R + XkRb = XkR if and only if aR + Rb = R. Moreover, if 
aR + l?b = i? for all a, b E i? with nonzero constant terms, then for all 
X+ E R, let c = a’r, + r,b where ax-” = X-la’Xk. Then 

X-k = X-la’r, + X-Zr,b = aX-Z-krl + X-Zr,b E aR + Rb 
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so every proper cyclic R module is divisible if 

aR + Wb = R 

for every a, b E R - RX. 
For completeness we include the following minor modification of Cozzen’s 

result [l].l We will need the second portion of this in what follows. 

PROPOSITION 8. Let F be separably closed. Then every simple R module 
is injective. Moreover, so is evHy proper cyclic R module. 

Proof. By Proposition 1, every r E a is a product of linear factors. Hence 
RlRa is divisible if and only if it is divisible by every (X - y), y + 0. 
Now for y, DI E F - (01, 

(X-y)R+R(X-a)=R 

if and only if for all /3 E F there exists p and T E F such that 

(X - YIP + 7(X - 4 = F 

if and only if 7 = pp and -‘yp - p% = /3. Since y + 0 and F is separably 
closed, this equation has a root in F. 

We give an alternate proof of the injectivity of all simple modules using 
a criterion attributed to Villamayor that every simple is injective if and only 
if every proper ideal is an intersection of maximals. Clearly R is Jacobson 
semisimple so zero is an intersection of maximals. Let r j; 0 E W - RX. 
By Proposition 1, there are precisely (1 - pdesreer)/(l - p) distinct maximal 
ideals R(X - 7) containing RY, and their intersection is generated by an 
element giving rise to a P having all the y’s as roots, i.e., P. For ideals RrXm, 
one uses the fact that postmultiplication by Xm is an isomorphism to express 
them as an intersection of ideals R(X - r)Xln. 

Now for r E a - RX, RIRrX”” and RIRr have composition series (obtained 
by expressing Y as a product of irreducible elements of R). Since a simple -- 
(# R/RX) is divisible by all r E R - RX, RlRr and R/RrX” are also SD 
divisible, and so RIRrXn7 is injective. 

If F does not contain a root of every polynomial P(Y) in Proposition 1, 
the above analysis is inedequate to show that every simple is injective since 
we must look at more than linear polynomials. 

1 Added i?z Proof. As a matter of fact, this is not really a modification. Indeed, 
R = K[X; u] where K = UnmC, X-“FX” is the perfect closure of F, and if P is 
separably closed, so is K. Replacing F by K would also eliminate the necessity of 
looking at ideals of the form pX” in R, since any element # 0 in K[X; G] is of the 
form Xmp’ where p’ has constant term + 0. 
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PROPOSITION 9. Let F be a field such that every polynomial of &gree 
pi has a root in F (e.g., take a q-Jield over a field K for some q f p). Let -- 
b + 0 E a - i?X. Then RIRb is injective (RIRb is injective if F is perfect). 

Proof. Let a = EYE, a@, b = Cr &J?, 01s # 0. Without loss of gen- 
erality m = n. Then ai? + l?b = a if and only if for all c = CFIi yiXi E a, 
there exists r = x:10’ paXi E a such that c E ar + Rb if and only if there 
exists t = Cizl riXi E w such that c = ar + tb. The problem then reduces 
to solving for the pi and ri . If 

(i cxixf$ PiX”) + (2 TiX$)(f pixi) = z yixt 
i=O 220 i=O 

and y1 = 0 for all n < I < 2n - 1, by equating coefficients we get 

iz, %oi(Pi) + 1 Tiui(Pj) = 7-k 
ii-j==12 

for 0 < k < 2n - 1. These equations may be written as 

where the Ai are matrices over F[u; D] (m i? under CJ +j X) and p, T, and y 
are the appropriate column matrices. Now A, and A, are the lower triangular 
matrices 

and since PO i: 0, A, has an inverse over F. Then 

T = -AilAlp + A& 

i.e., we can solve for the 7i in terms of polynomials in the pi all of whose 
exponents are powers of p. Then 

A,p + A4(-A;lAS + A;ly) = 0 
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We now apply some linear algebra and the Euclidean algorithm in A. The 
standard commutative argument goes through except that we have no right 
algorithm. Let 

% = (UBV 1 U and J/ invertible in (FLU; o])~,~:. 

We observe that permutation matrices and elementary matrices of the form 
I, f rEij , i # j are invertible and premultiplication by one of them performs 
the row operation used to obtain them from I, , whereas postmultiplication 
performs the column operation. 

LElUhK4. There exists B’ E % such that B’ is upper triangular, i.e., (B’)i.i = 0 
for i <i. 

ProoJc. If B = 0 or 71 = 1 there is nothing to prove. Now assume B + 0 
and n > 1. Let C E ‘3 possess a nonzero entry r of smallest degree in (T. 
Pre- and post-multiplication by appropriate permutation matrices will bring 
r to the 1, 1 position. Subtracting multiples of row one from succeeding 
rows will make every entry in column one either 0 or of degree less than 
that of r by the Euclidean algorithm in F[a; e]. By minimality of degree r, 
there is a C’ E ?I of the form 

By induction on n, there exist u’ and V’ invertible in (F[a; ~]>~-i,~-i 
such that u’C”V’ is triangular. Then for 

1 0 
u”=. u” ( ) v” = (:, ;,, , 

we have 

is triangular, where U and V are invertible. 
Returning to the proof of Proposition 9, we note that Bp = Ay if and 

only if B’(V-lp) = UAy, where B’ is the triangular matrix of the Lemma. 
Set Ye = (B’),,i. One can then find a set of pi that will show divisi- 

bility provided one can successively solve the equations r,ap,, = (UA), , 

rkPk + fk(pk-!-l ,-..j p,J = (UA), for the appropriate polynomials flz = If these 
equations are compatable (any zero ri corresponds to a zero (UA)& then 
one has a series of polynomials of degree a power of p, and every such 
polynomial has a root in F. But over the separable closure of F these equations 
have a solution by Proposition 8 since every cyclic over the corresponding 
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localized twisted polynomial ring is divisible. Hence one can find p and 7 -- 
in F such that ar + tb = c. Divisibility of R/Rb by X follows from the 
perfectness of F. 

EXAMPLES. (a) Let K = Z,(r), x an indeterminant, p odd, q = 2. Let 
F be a two-field over K and (ni 1 i E UJ} the (infinite) set of primes of Z,[xJ. 
Then R/R(X - CTJ a R/R(X - 7rk) for i f k if and only if for some j > 0 
there is an 01 E F such that 

a!--1 - 7if’/7rk = 0. 

But the polynomial ,rr,YP-l - z-f3 is irreducible over K since 

Pj 
1 P-1 1 

=Ti ( 1 Y - 
rr,~F _ i 1 Y 

is by Eisenstein’s criterion, and so cannot have a root in F. Then R satisfies 
Pr and P3 . 

(b) Let K = Z, , F a two-field over K. By a minor modification of 
the proof of Proposition 8, (zc - l)R + R(x - 1) = R if and only if for 
all /3 EF the polynomial Y2 + Y + /3 h as a root in F. But that polynomial 
is irreducible over Z, for /3 = 1, and hence has no root in F. Thus R satisfies 
P2 but not PI . 

Although Proposition 8 shows that the condition PI on R says nothing 
about perfectness of F, the situation in the case of i? is significantly different. 
For a separably closedF, every simple w module is divisible by any polynomial 
with constant term # 0 by Proposition 8 and the observation that R/RX is 
so divisible. However, we have 

PROPOSITION 10. Let a = ~~zO oliXi E i?, a not a unit iri i?. Then if -- 
RlRa is divisible by X, F must be perfect. 

Proof. Since ii is not divisible by X, a # 0. Without loss of generality, 
a, = 1, n > 0. Then for all 2;:: yzXi, there exists Cy$r piXi and 7 such that 

x @lPiXi) + 7 (i c$Xf) = ni1 yixz. 
i=O i=O i=O 

But then pzpl + 7 = 0, so r EF~‘, and all y. EF are in q,FP, i.e., F = FP. 
We have observed that, conversely, if a0 + 0 and F is perfect, then RlRa 

is always divisible by X since XE = RX. By Propositions 1 and 8, if F is -- 
algebraically closed, then every simple i? module except R/RX is injective. 

Remarks. Although P, and P, hold for F separably closed and P, and P, 
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hold for F a two-field over a rational function field and p > 2, it is difficult 
to envision a field for which R has P, but neither P, nor P, . One not only 
has to worry about polynomials of the same degree yielding a finite set of 
simples, but one must also consider polynomials of different degrees. Thus 
for p = 2: simples of the form R/R(X - a) are all isomorphic, but there 
may well be other distinct unfactorable polynomials of different degrees 
yielding other simples. If one could have at least one root for each polynomial 
P of Proposition 1 without simultaneously having roots for all Q of Proposi- 
tion 2, then one might be able to have only a finite number (+ 1) of 
nonisomorphic simples, but this seems difficult also. 

In the case of differential polynomials, Cozzens in his thesis characterizes 
the situation when all simples are injective and isomorphic. It seems much 
more difficult to get a nice description for twisted polynomials. The problem 
is that not every separable polynomial is a P or Q or of the formf(o)(Y) + a, 
fEF[cq CT], CT(Y) = YP. 

In the simple ring case (R rather than R) one can ask whether R may 
have both injective and noninjective simples. This seems highly unlikely. 
For example, if R/R(X - cx.) is divisible, one obtains roots for all equations 
of the formf(o)(Y) + p = 0, so all simples are injective. 

It is also of interest to ask if, for a noninjective simple R module Ail, 
the inject&e hull of M can have finite length. This also seems to be a difficult 
problem. 
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