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A B S T R A C T

Protein translocation between organelles in the cell is an important process that regulates many cellular
functions. However, organelles can rarely be isolated to purity so several methods have been developed
to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the
distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two
approaches: an isotopic labelling and a label-free approach.
ã 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

After the completion of the human genome sequencing in 2001,
the efforts in molecular and cellular biology research have turned
to the delineation of the proteome. Such delineation involves not
only assessing protein abundance but also consideration of the
spatial organisation of proteins, as knowledge of subcellular
location brings insight into the function and interaction partners of
proteins. Moreover, external stimuli or a certain disease can have
implications for the organelle location of proteins and may lead to
translocations of proteins between organelles. In a recent study,
the trafficking of proteins between the nucleus and the cytoplasm
was found to have a crucial role in cell cycle regulation [1].

Traditional methods to study organelle location are either
focused on individual proteins visualised by microscopy, or use
mass spectrometry to identify proteins in an isolated organelle.
However, different types of problems are associated with these

methods. The standardmethods involvingmicroscopy are typically
low-throughput while the more high-throughput techniques,
using mass spectrometry characterisation of isolated organelles,
require an organelle preparation free of contamination. This is both
time-consuming and impossible to achieve for some organelles,
such as the endoplasmic reticulum that forms a continuum with
the nuclei and Golgi vesicles. Even in a highly purified such
organelle fraction, it is difficult to discriminate contaminating
proteins from the true residents of the organelle [2].

Recently, partial separation of organelles by density-gradient
centrifugation followed by proteomic quantification by mass
spectrometry has evolved as a valuable tool for organelle
proteomics. Simultaneous analysis of fractions from the whole
cell makes it both easier to distinguish contaminants from true
residents and gives the possibility to use the approach for tracking
movement of proteins between organelles, for instance as the
effect of different stimuli. In thismethod, each protein is quantified
across the gradient fractions, creating a distribution profile.
Proteins residing in the same organelle are assumed to co-
fractionate, thereby obtaining the same profile. The profiles can
therefore be compared to the ones of known organelle markers. An
organelle marker is defined as a single or several proteins that are
known to reside in a certain organelle, which creates a blueprint
for unknown protein profiles acquired from the analytical set-up,
and comparison to a marker therefore lets proteins with a similar
profile to be assigned to their respective organelles. Consequently,
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high-throughput organelle characterisation is possiblewithout the
need for highly purified organelle preparations. Density organelle
centrifugation is commonly performed using sucrose gradients,
but self-generating Iodixanol gradients have emerged as an
attractive alternative since they are very reproducible and simple
to handle [3].

Different proteomics techniques exist for the quantification of
proteins; isotopic labelling and label-free being two frequently
used. Several groups have successfully used stable isotope labelling
with amino acids in cell cultures (SILAC) for subcellular proteomic
analysis [4,5]. The capability of the SILAC-technique for multi-
plexing is limited due to few available heavy labelled amino acids,
if not combined with other labelling techniques [6], wherefore
other options must be considered for density-gradient purposes
[7]. Dunkley et al. [3] have developed the LOPIT (localization of
organelle proteins by isotope tagging) technique and it has been
applied on samples from plant, fruit fly and chicken [8–10] and
Foster et al. [4] used label-free quantification in combination with
the PCP (protein correlation profiling) technique to identify the
organelle proteome of mouse.

PCP infers protein location by a x2 score, defined as the
normalized squared deviation of a protein profile from known
markers [11]. The advantage of PCP is a relative ease of
computation, as well as requiring very few organelle markers.
The x2 score is however computed fraction-wise, resulting in
increased technical variation and reproducibility requirements
[12]. It should be noted that the score is peptide based, resulting in
a x2 score distribution for every protein. Andersen et al. [11] used
the median of the peptide x2 values to represent the protein score,
where an upper limit of 0.05 was set for organelle allocation [4]. A
measure of score dispersion, such as the MAD (median absolute
deviation) could however be interesting to take into account,
giving a more complete picture of the protein profile. The
distribution information could also aid in selecting a representa-
tive set of peptides used for PCP, as the protein will be
characterized by only one peptide when using the median value,
which can differ depending on the identifications in the experi-
ment.

LOPIT employs clustering assessment by PCA followed by
supervised classification using e.g. PLS-DA (partial least squares
discriminant analysis) [8–10] or support vector machines (SVM)
[13]. The technique simultaneouslymakes use of the entire protein
profile, but necessitates a larger marker set. This, however, also
puts less emphasis on individual markers. Furthermore, the
predictive power resulting from the multivariate supervised
classification facilitates generalization of the analysis. Interesting-
ly, label-free data has traditionally been analysed by PCP, while
LOPIT has been used for labelled data [12], although the formerMS
quantification strategy in general results in larger numbers of
identified proteins [14–16].

In this study, we have performed LOPIT analysis on both a
peptide labelling and label-free analysis of density-gradient
fractions from a human breast cancer cell line. Principal compo-
nent analysis (PCA) was used for visualization and clustering
assessment and organelle affiliation prediction was done by
training a support vector machine (SVM) on the marker profiles
An SVM classifier with a non-linear kernel was selected over PLS-
DA as the latter is based on an assumption of linearity. SVM has
furthermore been shown to have higher predictive accuracyaswell
as robustness to noise in a comparison between the techniques
[17]. Equivalent clustering and organelle affiliation results, with
roughly a quarter of the identified proteins assigned to organelles,
were obtained using either quantification method, with the
advantage of label-free quantification resulting in larger numbers
of identifications. Furthermore, consistent results were found
between using manually selected organelle markers and GO

annotations followed by a variance-based outlier removal strategy.
This, in combination with the rapidly increasing viability of label-
free quantification for biomarker discovery [18], shows that
organelle separation techniques will in the near future be an
important factor for biological inference in high-throughout, third-
generation proteomics experiments.

2. Materials and methods

2.1. Materials

Acrylamide, urea, Tris, magnesium acetate, DTT and iodoace-
tamide were from Sigma–Aldrich (Stockholm, Sweden). 12.5%
Criterion Precast SDS-PAGE gels were from BioRad (Hercules, CA,
USA). Sequencing-grade modified trypsin was purchased from
Pierce (SDS diagnostics, Falkenberg, Sweden). The Micro-Lowry
Protein Assay Kit was from Sigma Diagnostics (Stockholm,
Sweden). All HPLC solvents were from Fluka (Sigma–Aldrich,
Stockholm, Sweden). UltraMicroSpin C18 and UltraMacroSpin C18

columns were from the NestGroup (Southborough, MA, USA).

2.2. Cell culture

The human breast cancer cell lineMDA-MB-231was cultured in
RPMI-1640 supplemented with 10% foetal bovine serum (FBS) and
1 % L-glutamine (Invitrogen, Carlsbad, CA) at 37 �C in a humidified
atmosphere at 5% CO2.

2.3. Subcellular fractionation by density-gradient centrifugation

MDA-MB-231 cells were cultured as described above and
subsequently washed twice with PBS and then resuspended in a
hypotonic homogenisation buffer (10mM HEPES pH 7.9, 10mM
KCl,1.5mMMgCl2, 0.5mMDTT, CompleteMini EDTA-free protease
inhibitor). 5 milllion cells were used for each separation. Samples
for each of the two conditions were run in biological duplicate. The
cells were kept on ice for 10min and then disrupted using
35 strokes with a tight pestle in a 7mL Dounce homogeniser until
90% of the cells were broken as determined by microscopy.
Subsequently, nuclei were pelleted and saved in the freezer. The
post-nuclear supernatant was diluted in homogenisation buffer
and centrifuged at 100,000� g for 1h at 4 �C to pellet the
organelles. The organelles were resuspended in 0.5mL PBS and
layered on top of a preformed 5–45% continuous iodixanol
gradient. The gradient was centrifuged at 200,000� g in a
Beckman SW41 rotor at 4 �C for 2h. Subsequently, 10 fractions
of 1.2mL were collected from the top of the gradient and the
refractive index of each fraction was measured using a refractom-
eter (Atago, Tokyo, Japan). The fractions were washed twice in
20mM Na2CO3 and once with water. The membranes were
collected by centrifugation at 100,000� g for 1h. The membrane
pellets were resuspended in 10mM Tris–HCl, 2% SDS and the
protein concentrations were determined using the Micro-Lowry
Assay Kit (Sigma–Aldrich, Stockholm, Sweden).

2.4. Separation of chromatin-associated and nucleoplasm fractions

Nuclear pellets were thawed on ice and washed once with ice-
cold PBS and once with extraction buffer (15mM Tris–HCl pH 7.4,
1mM EDTA, 400mM MgCl2, 10% glycerol, 10mM b-mercaptoe-
thanol) before resuspending in 500mL extraction buffer and
incubation 1h on ice. Samples were then centrifuged for 30min at
16,000� g and the supernatant was diluted in hypotonic buffer
(10mM Tris–HCl pH 7.4, 10mM KCl, 1.5mM MgCl2, 10mM
b-mercaptoethanol) and saved as the nucleoplasm fraction.
Subsequently, pellets were washed and resuspended in
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micrococcal nuclease buffer (20mM Tris–HCl, 10mM KCl, 2mM
MgCl2, 1mM CaCl2, 300mM sucrose, protease inhibitor cocktail).
Three units of S7 nuclease were added and incubated with the
samples for 30min on icewithmixing of the tubes every 4min. The
nuclease was inactivated by the addition of 10mL 0.5M EDTA and
the samples were centrifuged for 3min at 1500g. The supernatant
was diluted in hypotonic buffer and saved as chromatin-associated
fraction. The two nuclear fractions were precipitated by adding
DOC to a concentration of 0.08% (w/v) and incubating 1 hour on ice,
followed by an addition of TCA to a concentration of 2.5% (w/v) and
30min incubation on ice. The precipitated proteins were collected
by centrifugation at 4000 g for 30min and the pellet was washed
with acetone. Proteins were then resuspended in 10mM HEPES
and the protein concentration was determined using the Micro-
Lowry Assay Kit.

2.5. Label-free experimental design

Fractions 8, 9 and 10were pooled in order to obtain the required
protein amount and 25mg of protein from each fractionwasmixed
with sample buffer (0.05M Tris–HCl, 0.05M SDS, 5% v/v glycerol,
0.1% DTT) and heated at 98 �C for 5min. The samples were
separated on a 12. % Criterion Precast SDS-PAGE gel (BioRad,
Hercules, CA, USA) at 25 �C. The gelwas stained using Gel Code Blue
Stain Reagent (Pierce). Each of the lanes was cut into 10 slices that
were destained in 50% acetonitrile and 25mM NH4HCO3. The gel
slices were reduced with 10mM TCEP in 50mM NH4HCO3 at 56 �C
for 1h. Alkylationwas performed by adding 55mM iodoacetamide
acid in 50mM NH4HCO3 and incubating for 45min at RT in the
dark. The slices were then washed once with 100mM NH4HCO3

and several times using ACN and ddH2O. Trypsin (20mL of 12.5mg/
mL trypsin in 100mM TEAB) was added to the dehydrated gel
slices. The samples were left for 30min at 4 �C prior to incubation
at 37 �C overnight (approximately 18h). The peptides were
extracted from the gel by adding 1% TFA in 75% ACN and incubating
at RT for 30min. This was repeated once and the liquid from the
two extractions were pooled together. Subsequently, the volume
was reduced using a Speed vac and the samples were then
dissolved in 10mL 0.1% formic acid.

Table 1
Minimum SVM scores necessary for a protein to be allocated to an organelle. N/A
indicates not applicable.

Label-free TMT

Cytosol/cytoplasm 0.87666 0.89528
Endoplasmic reticulum 0.93127 0.61553
Golgi apparatus 0.35416 N/A
Mitochondrion 0.5331 0.43353
Plasma membrane/cell membrane 0.87022 N/A
Ribonucleoprotein complexes 0.28922 0.54973

[(Fig._1)TD$FIG]

Fig. 1. PCA analysis of protein distribution using onlymanual markers. Nomarker outlier removal has been performed. Panel A shows the 439 proteins from the TMT dataset
with 51 manual markers identified and Panel B the 1696 proteins from the label-free dataset with 111 markers identified.
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2.6. TMT experimental design

25mg of protein from each fraction was prepared as described
for samples for label-free analysis, except that the gel was run for
shorter time and the whole sample was kept in one slice instead of
10. The peptides extracted from the gel were resuspended in
150mL 200mM TEAB and a reference pool was created by mixing
25mL of each fraction. A TMT labelling kit (Thermo Scientific) was
used to label the samples with isotopic tags and the labelling was
performed according to the manufacturers protocol. The fractions
were labelled as follows: fraction 1 and 6,126; fraction 2 and 7,127;
fraction 3 and 8/9/10, 128; fraction 4 and chromatin fraction, 129;
fraction 5 and nucleoplasm fraction, 130; reference pool, 131. The
labelled peptides were combined into two samples: Sample A
(Fraction 1,2,3,4,5,reference pool) and Sample B (fraction 6,7,8/9/
10, chromatin, nucleoplasm, reference pool). Sample A and B were
subsequently cleaned and fractionated on an SCX column (ICAT
Strong Cation Exchange Cartridges (Applied Biosystems, Foster
City, CA, USA)) at a flow rate of 100mL/min. The samples were
loaded on the pre-equilibrated cartridge and then eluted in 500mL
fractions by injecting KCl at increasing concentrations (0,10, 25, 40,
60, 80, 100, 150, 250, 400 and 600mM) in 5mM KH2PO4, 25% ACN.
The volume of the fractions was then reduced to less than 10mL
using a speed vac. The fractions were desalted using Ultra-
MicroSpin C18 columns (the NestGroup, Southborough, MA, USA)
before eluting the peptides in 100mL 0.1% formic acid, 60% ACN.
Subsequently they were dried in a speed vac until less than 5mL
remained, resuspended in 0.1% FA and analysed by RP-HPLC-MS/
MS.

2.7. Western blotting

10mg from each fraction was run on NuPAGE 10% Bis–Tris gels
(Invitrogen, Carlsbad, CA, USA) under reducing conditions for
�45min at 130V. Separated proteins were blotted on PVDF iBlot

Transfer stacks in the iBlot gel transfer device (both Invitrogen).
The PVDFmembraneswere blockedwith 5%milk-PBS buffer for 2h
and probed with the following antibodies: PCNA (Chemicon,
1:1000), EEA1 (AbCAM, 1:2000), ATP Synthase (AbCAM, 1:4000),
Calnexin (AbCAM, 1:2000). HRP-conjugated swine anti-rabbit
antibody (DAKO) was used as secondary antibody and the blots
were developed with SuperSignal West Femto Max Sensitivity
Substrate (Pierce Biotechnology Inc., Rockford, IL), according to the
protocol of the manufacturer. Detection was made with a CCD-
camera (Odyssey FC Imager from LI-COR Biosciences UK Ltd
(Cambridge, England)) and analysed in the Quantity One software
(Hercules, CA, USA).

2.8. LC–MS/MS analysis

The fractions were run (TMT in duplicate) on an Eksigent 2D
NanoLC system (Eksigent Technologies, Dublin, CA, USA) coupled
to an LTQ OrbitrapXL (Thermo Electron, Bremen, Germany).
Peptides were loaded with a constant flow of 10mL/min onto a
pre-column (Acclaim PepMap 100, C18, 5mm, 5mm�0.3mm,
Thermo Fischer Scientific, Hägersten, Sweden) and subsequently
separated on a 10mm fused silica emitter, 75mm�16 cm (PicoTip
Emitter, New Objective, Inc., Woburn, MA) packed in-house with
Reprosil-Pur C18-AQ resin (3mm Dr. Maisch GmbH) at a flow rate
of 400nL/min. The peptides were eluted with a 55min linear
gradient of 5–40 % ACN (0.1% FA) followed by a 5min linear
gradient from 40 to 80% ACN (0.1% FA). The LTQ-Orbitrap was
operated in a data-dependent mode, simultaneously acquiring MS
spectra in the Orbitrap (fromm/z 400 to 2000) andMS/MS spectra
in the LTQ. The ion trap loading was set to 30,000 with an MS/MS
threshold of 500 counts using a normalised collision energy set to
35%. Each Orbitrap-MS scan was acquired at 60,000 FWHM
nominal resolution settings using the lock mass option (m/z
445.120025) for internal calibration. The dynamic exclusion list
was restricted to 500 entries using a repeat count of two with a

[(Fig._2)TD$FIG]

Fig. 2. Panel A shows the distribution profiles of organelle markers by label-free quantification, with normalized protein abundance (intensity) on the Y-axis and fraction
number on the X-axis. The chromosomal associated protein fraction is labelled Ch and the nucleoplasm is labelled N. There was not enough material in fraction 8,9, and 10 so
thesewere combined and run as one. Panel B shows theWestern blotting of the fractions fromdensity gradient centrifugation. Themarkers are: ATP synthase (mitochondria),
EEA1 (early endosome), calnexin (endoplasmic reticulum) and PCNA (nucleus).
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repeat duration of 20 s, and with a maximum retention period of
120 s. Precursor ion charge state screening was enabled to select
for ions with at least two charges and rejecting ions with
undetermined charge state. The seven most intense ions were
selected for fragmentation with a dynamic exclusion window of
2min. For TMT labelled samples the top three ions were subject to
CID and HCD fragmentation.

2.9. Data processing

Initial data processing was done in the Proteios Software
Environment [19] version 2.18.0. Raw spectra were converted to
mzML [20] and Mascot Generic Format (MGF) using Proteowizard
[21]. From the Proteiosworkspace, themzMLfiles andMGFfiles for
the TMT and label-free data, respectively, were independently
searched against the human part of SwissProt as of 2011-08-17,
containing separate isoform entries and a reverse sequence
database of equal size, totalling 71,324 entries. Searches were
performed using X!Tandem (version TORNADO (2008.12.01.1))
with both native and K scoring [22], as well as Mascot version
2.3.01. The mass tolerance was set to 3ppm for parent ions and
0.4Da for fragment ions and one missed protease cleavage was
allowed. Cys carbamidomethylation was set as fixed modification,
with TMT 6plex (K- and N-terminal) added for the TMT data, and
Met oxidation as variable modification. Searches were combined
and the False Discovery Rate (FDR) computed using reverse
sequences [23]. msInspect [24] feature detection with default

settings was used for label-free quantification, followed by an in-
house developed alignment algorithm for retention time correc-
tion and sequence propagation [25]. An FDR of < 0.01 was used on
both peptide and protein level.

2.10. Location analysis

Quantitative protein reports were exported from Proteios and
processed using MATLAB R2011a version 7.12.0.635 (www.math-
works.org). The TMT data was normalized to the reference pools
and Sample A and B combined. Profiles of proteins identified in
both technical replicates were averaged. For the label-free data,
only profiles having no missing values were extracted. For both
types of data, the profiles were normalized to the sum of all
fractions.

Organelle location was inferred both from manually acquired
markers as described and used in [26] (Supplementary information
Table1)andGOannotations.Here, aprotein is referredtoasamarker
if itwas identified either in the list ofmanually selectedmarkers or a
GO annotated marker which passed the outlier removal process
describedbelow. If a proteindiffered in subcellular locationbetween
the manual markers and GO annotations, the manual marker
information was used. The marker profiles were subsequently
subjected to outlier removal. A profilewas considered as an outlier if
it deviated more than 3 times the interquartile range from the
median in at least one fraction or 1.5 times the interquartile range in
2 ormore fractions. This process was iterated until nomore outliers

[(Fig._3)TD$FIG]

Fig. 3. PCA plots showing the markers acquired through combination of manual markers and GO annotations. Panel A TMT with 101 markers and Panel B label-free with
302 markers.
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were found.Onlyorganelles representedbyat least 10markerswere
considered for further classification. In addition, 10% of the markers
foreachorganellewere set aside forassessingpredictionscore limits
after classification.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.plantsci.2004.08.011.

Protein profiles as well as markers were subsequently imported
into pRoloc version 0.99.8 [27]. R package version 0.99.8 (2013) was
used, where an SVM with a radial basis function (RBF) kernel was
trained on themarkers.Weights corresponding to the inverse of the
class sizes were used. First, parameter settings were optimized by
partitioning data, where 80% was used for stratified 5-fold cross-
validation in combination with parameter grid search and the
remaining 20% to evaluate the best parameter set using the F1 score.
The F1 score is defined as the harmonic mean of precision=TP/
(TP+ FP)= 1-FDR and recall (sensitivity) = TP/(TP+FN), where TP –

true positive, FP – false positive and FN – false negative. This process
was repeated100 times to acquire an F1distribution fromwhere the
optimal parameters could be extracted. The final SVM was
subsequently trained on the entire marker set, using the acquired
settings. Organelle classification and corresponding SVMprediction
scores were extracted to MATLAB, where an automated organelle
score limit based on maximizing precision was computed. A true
positivewas defined as amarker not used for classification that had
been predicted to belong to the correct organelle (from the 10%
excluded markers) and a false positive an incorrectly classified
marker. Proteins that had no previously assigned organelle location
were disregarded in the calculations.

3. RESULTS

In this study, we describe the analysis of the subcellular
locations of proteins from the human breast cancer cell line MDA-
MB-231. Organelles were isolated by gentle disruption of the cell

membrane, spin-down of the nucleus and ultracentrifugation of
the post-nuclear supernatant to pellet the organelles. The
organelles were layered on top of a continuous iodixanol gradient
and separated according to their density by ultracentrifugation.
The resultant distribution of proteins was analysed by two
differentMS quantificationmethods: Label-free and TMT labelling.

3.1. Initial cluster analysis of the label-free and isotopic labelling
approaches

Fig. 1A and B show PCA plots for the two experiments, totalling
439 proteins for TMT and 1696 for the label-free dataset,
respectively. Only manually acquired markers are annotated
(51 identified for the TMT dataset and 111 for the label-free
dataset). Although roughly equivalent clustering is seen, the label-
free analysis showed a greater spread of the manual markers.
Despite the clear separation seen in the TMT PCA plot, the low
number of identified markers necessitated adding GO annotated
markers. This was performed for both datasets, including marker
outlier removal as described above, resulting in 101 and
302 markers for the TMT and label-free dataset, respectively.
Fig. 2A shows the combined GO and manual protein marker
profiles after outlier removal, while Fig. 2B shows the correspond-
ing antibody markers used to monitor the extent of organelle
separation. Partly overlapping distributions were seen for the ER
and mitochondrion, while the endosome and nucleus had very
distinct profiles (Figure 2B). This is reflected in the PCA plots in
Fig. 3A and 3B, where the ER and mitochondrion markers are
closely clustered (at least fromwhat can be inferred from the first
two principal components). The same can be seen for the Golgi and
plasma membrane markers, while the nucleoplasm/chromatin
cluster is clearly separated. Marker profiles showed considerable
agreement between the two quantification techniques and profiles
for all investigated organelles can be found in Supplementary

[(Fig._4)TD$FIG]

Fig. 4. Pie chart showing the distribution of proteins amongst the organelles.
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Fig. 1A and B. In Fig. 4, the marker organelle distributions are
presented as pie charts. Interestingly, the distributions differ
somewhat between the two quantification methods, with a higher
percentage of endoplasmic reticulum (ER) proteins and ribonu-
cleoprotein complexes in the labelled approach and more plasma
membrane (PM) and cytosolic proteins in the label-free data. Close
inspection of the marker profiles (Supplementary Fig. 1) showed
that cytosolic proteins in the labelled data showed a small peak
corresponding to the ER marker, which could indicate some
cytosolic proteins being misclassified as ER. This is not seen in the
label-free profiles and as the percentage of ER and cytosolic
proteins combined are virtually the same (37% for TMTand 39% for
label-free data, respectively), the distribution is therefore most
likely closer to what is seen in the label-free case. The contrary can
however be said for the ribonucleoprotein complexes and the
mitochondria markers for the label-free dataset. Evidently,
resolution needs improvement for separation of organelles in
both experiments, which is elaborated on in theDiscussion section.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.plantsci.2004.08.011.

3.2. Multivariate classification

Organelles represented by at least 10 markers were selected for
further analysis that resulted in six organelle groups for the label-
free data (cytosol/cytoplasm, ER, Golgi, mitochondrion, PM and
ribonucleoprotein complexes) and four for the TMT data (cytosol/

cytoplasm, ER, mitochondrion and ribonucleoprotein complexes).
In pRoloc, the svmOptimize function was runwith default settings
and added class weights, resulting in a gamma value of 0.1 for both
datasets and a cost of 8 and 16 for the TMT and label-free data,
respectively. These parameters were subsequently input to the
svmClassify function, againwith class weights. Resulting organelle
classifications and their respective scores were analysed based on
precision, resulting in the minimum scores presented in Table 1.
461 proteins were assigned an organelle location for the label-free
and 113 for the TMT dataset, respectively. Corresponding PCA plots
can be seen in Fig. 5A and B,where triangularmarkers are classified
proteins. Although not used for classification, all groups are
represented in the PCA plots for comparison with Figs. 1 and 3 as
can be seen, no immediate misclassifications are apparent. Fig. 6
shows the distribution of the organelle allocations, which roughly
correspond to the marker distributions seen in Fig. 4. This can be
expected, assuming the markers are representative of the
organelle distribution of the respective datasets. The classifications
were subsequently compared to GO annotations, were a large
fraction of proteins with multiple locations were detected (Fig. 7).

4. DISCUSSION

Previous proteomic studies of organelle locations have mainly
been focused on one compartment, thus suffering from the
inability of assessing contamination. In this study, we perform
quantification of all fractions from an organelle density-gradient

[(Fig._5)TD$FIG]

Fig. 5. Classification results from the SVM. Triangular markers denote classified proteins, the smaller the triangle, the lower the score. (A) TMTwith the 101 original markers
and 113 classified proteins. (B) Label-free with the 302 markers and 416 classified proteins.
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and in total identify more than 1000 proteins from a number of
organelles. This indicates that density-gradient experiments are
valuable resources for studying multiple locations of proteins,
which is one of the complicationswhenworkingwith organelles in

the dynamic environment of a cell with its proteins trafficking
between different compartments.

We have here successfully performed both a labelling experi-
ment and a label-free analysis of the density-gradient fractions.
1697 proteins were identified with the label-free method

[(Fig._6)TD$FIG]

Fig. 6. Pie chart showing the distribution of all markers amongst the organelles.

[(Fig._7)TD$FIG]

Fig. 7. Pie chart summarising the types of classifications obtained. Correct organelle classification: our classification concordant with GO annotation. Multiple location,
correct organelle classification: our classification concordant with one out of several GO annotations. Multiple location, other organelles: our classification not concordant
with GO annotation. No GO annotation: protein that had no previous GO annotation.
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compared to only 439with TMT labelling, consistent with previous
studies in which label-free quantification gives a larger number of
quantified proteins [14–16]. In our case, this is partly due to the
experimental setup, inwhichwe had two groups of 5 samples each
for the labelling experiment. In order for a protein to obtain a
distribution profile over the entire gradient, it had to be identified
in both groups and was otherwise discarded. However, in general,
quantification through labelling is thought to be more reliable in
terms of accuracy and precision. This is consistent with the clearer
separation of the manual markers seen in Fig. 1A compared to the
label-free dataset in Fig. 1B. The lower number of identified
markers did however result in less material for classification,
limiting the applicability of this quantification technique for a
LOPIT analysis. Increasing the marker cohort with GO annotations
did nevertheless result in an equivalent ratio of organelle
allocations; roughly a quarter of the original datasets were
assigned subcellular location, demonstrating that for this type of
organelle proteomic experiment, both quantification methods are
able to distinguish between the major organelle proteins. The
viability of using GO annotatedmarkers has been discussed further
in [28], where manually selected markers proved preferable, but
selecting GO annotations based on uniqueness and experimental
evidence showed similar results, albeit with some additional noise.
Naturally, the number and especially quality of markers are
extremely important for a successful experiment. Here, as
mentioned above, the label-free quantification strategy produced
considerably more markers, even though only proteins without
missing values were selected for further analysis from the original
dataset. More markers as well as a larger dataset could be acquired
by e.g. a nearest neighbour imputation strategy [28], followed by a
more advanced data filtering procedure for clearer separation and
classification since comparing the assigned organelle locations to
GO annotations (Figure 7) showed a large ratio of proteins with
multiple locations. This is consistent with other studies estimating
the multiple locations to be more than 50% of the proteins [29].
There was, however, a considerable portion of allocations not
consistent with existing GO annotations. While this is not an error
per se, manual investigation of the GO information showed a
considerable amount of proteins having been classified to an
organelle closely clustered in the PCA plots. The density of label-
free data in particular could be alleviated by implementing a more
elaborate data filtering approach, where only profiles containing
pronounced peaks are analysed, such as in [4], where peaks were
extracted by considering a fraction's intensity deviation from
neighbouring fractions. Also, a more sophisticated outlier removal
than presented here could be used for the GO markers, such as a
clustering technique for removal of deviating profiles and/or
including abundance estimates into the selection as higher
abundance proteins are generally more reliable in terms of
quantification.

In addition, the initial separation is crucial and density-gradient
experimental designs often involve collection of at least 20 frac-
tions [4,8]. Recently, a combination of gradients has been proposed
to increase separation [13]. Nevertheless, this indicates that
density gradient experiments are valuable resources for studying
multiple locations of proteinswhenworkingwith organelles in the
dynamic environment of the cell with its proteins trafficking
between different locations.

With the present design of (most) density-gradients proteomic
experiments including defining organelle cut-off values from
marker proteins, it is obvious that the data analysis is very
dependent on the reliability of the marker proteins. This can be
questioned in several ways, since there are major problems
associated with discrepancies in organelle location databases.
These discrepancies are due to the variance in type of sample,
experimental conditions and techniques; leading to many false

assignments. Many of the existing annotations today originate
from GFP tagging experiments or antibody staining experiments.
Tagging of proteinsmight change the location of a protein resulting
in misleading organelle annotations [30] and since the antibody
staining of a protein is often seen in dual locations, but to different
extents, it can be difficult to determine the major location of a
protein using antibody staining. Proteomic quantification by mass
spectrometry on the other hand, is a fast and accurate technique
without those previously mentioned limitations.

In conclusion, we argue that density-gradient approaches for
organelle proteomics have the potential to become implemented
in a majority of proteomic experiments in combination with
careful quantification and data analysis. We argue that label-free
quantification (high number of identifications) in combination
with automatic marker selection (and processing) has the
necessary prerequisites for biological inference in high-through-
put proteomics experiments. The technique is easy to use with
several options existing for protein quantification and can be
adapted for different conditions, thereby generating important
information that adds to the sought-after complete picture of the
dynamic human cell.
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