Strategies for prevention of infectious complications in children after HSCT in relation to type of transplantation and GVHD occurrence

Jan Styczyński1, Lidia Gil2

Both authors contributed equally to the study.

1 Department of Paediatric Haematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
2 Department of Haematology, University of Medical Sciences, Poznań, Poland

Summary

Background
Infectious complications are a major cause of morbidity and mortality in paediatric and adult patients undergoing haematopoietic stem cell transplantation (HSCT).

Aim
Analysis of strategies for prevention of infectious complications in children after HSCT in relation to the type of transplantation and GVHD occurrence.

Materials/Methods
A review of PubMed references based on evidence-based recommendations rated by the strength of the recommendation and the quality of the supporting evidence. The risk of infection was divided into: low for autologous HSCT, moderate for MSD-HSCT without GVHD, and high for unrelated, mismatched, haploidentical HSCT, cord blood HSCT, patients with moderate-to-severe GVHD, undergoing immunosuppressive treatment, CMV infection, ex vivo T-cell depletion or CD34 selection and in vivo T-cell depletion.

Results
Prophylaxis strategy includes general infection control in hospital environment and pharmacological approach, related to antibacterial, antifungal and antiviral agents. Most studies were done on adult patients only, while some included both paediatric and adults patients. However, no differences in prophylaxis strategy and efficacy between age groups were reported in these studies. Recommendations for use of specific drugs in prophylaxis in transplantation period and recommendations for vaccination are presented in this paper.

Conclusions
With changing practices, transplant teams are encouraged to review local patterns of infections and associated complications and communicate regularly with infection control committees for guidance on the evolution of isolation needs for the immunosuppressed patient before and after HSCT.

Key words prophylaxis • infection • haematopoietic stem cell transplantation • strategy • vaccination
Infectious complications are a major cause of morbidity and mortality in paediatric and adult patients undergoing haematopoietic stem cell transplantation (HSCT). The incidence and the severity code of infections depend on the function of the host’s immune system. This function is strongly correlated with the application of immunosuppressive therapy and the time of immune reconstitution after HSCT. The risk of infection is higher in patients after allogeneic than autologous transplantation, and in patients with GVHD than without it. Patients with GVHD have severe immunological deficiencies due to the disease and the therapy itself. The risk of infection is higher in patients with delayed immune reconstitution, especially after haploidentical and cord blood transplantation (Table 1). Host defences compromised by HSCT that make patients vulnerable to infections can be divided into an early (before day +30), intermediate (days 30–100) and a late phase (after day +100). Each phase is related to increased risk of specific complications and specific infections that occur at variable frequency, but each of them carries relative life-threatening potential [1].

AIM

Review and analysis of strategies and recommendations for prevention of infectious complications in children after HSCT in relation to the type of transplantation and GVHD occurrence.

METHODS OF DATA COLLECTION

References were retrieved using the online database of the National Library of Medicine (PubMed; http://www.ncbi.nlm.nih.gov/PubMed) up to October 2006 (with emphasis on the latest randomized clinical trial reports). Terms used included: haematopoietic stem cell transplantation, infection, prophylaxis, strategy, guidelines, randomized clinical trials (RCT), meta-analysis, children, vaccination. The retrieved references were supplemented by references from the author’s own database. The presented strategy is based on evidence-based recommendations (Table 2) rated by the strength of the recommendation and the quality of the supporting evidence [1].

RESULTS

Determination of the risk for infection in specific patient populations is accomplished by evaluating various risk factors (exposure, state of immunosuppression and organ damage). For practical purposes, risk groups of infection after HSCT with respect to the type of transplantation can be divided into: (A) Low risk: autologous HSCT; (B) Moderate risk: MSD-HSCT with no GVHD (myeloablative, low-toxicity, reduced-intensity conditioning); (C) High risk: unrelated, mismatched, haploidentical HSCT (including cord blood HSCT), patients with moderate-to-severe GVHD, undergoing treatment with immnosuppressive agents (e.g. corticosteroids), CMV infection, ex vivo T-cell depletion or CD34
selection of the allograft, in vivo T-cell depletion with ATG, anti-CD52 or fludarabine [2–4]. Multivariate analysis identified the use of steroids as the most significant variable associated with infectious episodes. Peripheral blood HSCT was associated with more infections in the postengraftment period [5].

A. General infection control in hospital environment

Sources of infectious agents both in hospitals and in houses include mainly: air, dust, construction area, ventilation system, potted plants, flowers, cereals, nuts, spices, carpets and water with secondary aerosolization.

Intensive infection control measures that include isolation of patients within protective hospital environments have become a standard practice during allogeneic stem cell transplantation. There are no studies indicating the role and range of environment control with respect to autologous HSCT. The foremost principle of infection prophylaxis is minimization of the possibility that encounters with the health care team and exposure to the hospital environment place patients at greater risk for acquired infection.

General recommendations for the prevention of opportunistic infections in HSCT recipients include a wide range of interventions related to the management of: ventilation systems, BMT unit construction and cleaning, isolation and barrier precautions, interactions with health-care workers and visitors, skin and oral care, infection surveillance, and the prevention of specific nosocomial and seasonal infections. Isolation procedure is essential for all allogeneic HSCT patients who must enter the system aimed at reducing exposure to contagious agents, which includes: (a) Preventing dust accumulation by cleaning all surfaces, isolating patient care wards from outside air (recommendation AII), maintaining positive room pressure and providing patients with masks when moving into unprotected areas (BIII); (b) Stay in rooms with greater than 12 air exchanges per hour with high-efficiency particulate air (HEPA) filters (AII) capable of removing particles >0.3 μm in diameter; (c) Investigating potential outbreaks; (d) Avoiding patient exposure to tap water during severe immunosuppression, using sponge baths instead of showers and cleaning the showering facility prior to use. Measures to reduce hospital-acquired candidal infections in these patients rely on hand washing (AIII), an important, simple and inexpensive infection control strategy [6]. These practices should also be implemented both before and after patients’ discharge, with stress on avoiding risk of environmental exposure and decontamination of food (CIII).

B. Pharmacological preventive strategies

Antibacterial primary prophylaxis

During the neutropenic period, the risk of infection is comparable regardless of HSCT type; thus antibacterial prophylaxis should be adjusted to the length of neutropenia and mucosal injury. Mucositis is usually lower in RIC and low-toxicity conditioning, so risk of infection is decreased in these HSCTs. The advantage of use of cotrimoxazole and quinolones in antibacterial prophylaxis in neutropenia after allo-HSCT in RCT and meta-analyses has been documented (AI) [7,8]. Widely used prophylaxes include quinolones, which decrease the risk of G-infection, but not mortality [9,10]. After both allo- and auto-HSCT, prophylaxis with oral penicillin derivatives is compulsory (AI) against encapsulated G+ bacteria (Table 3) [11].

Antifungal prophylaxis

Antifungal prophylaxis should be based on risk stratification. High-risk group patients obviously
should be given antifungal prophylaxis. There is no recommendation for antifungal prophylaxis in all patients in the low-risk group. The most controversial is the moderate group, which is a heterogeneous group. It is believed that those patients should be offered antifungal prophylaxis or frequent HRCT and laboratory screening.

Transplantation strategies that reduce the duration and degree of mucosal injury, the duration of myeloid, macrophage and Th1-type immunodeficiency, the severity of GVHD, and the need for corticosteroids, parenteral nutrition or intravenous catheters, would all contribute to a decrease in invasive fungal infections. Candida spp. is a mucocutaneous commensural organism and violating the integrity of these surfaces is directly related to the risk for infection. Outbreaks of candidal infections have also been associated with transmission via the skin and nails of healthcare workers. In contrast, the incidence of aspergillosis has been shown to be related to environmental exposures, which may have occurred prior to the diagnosed infection [3]. Central to the prevention of aspergillosis is the avoidance of inhalation of spores. In the outpatient setting, there are no proven methods to decrease risk of colonization. Avoidance of contact with soil and plants, gardening, or maintenance of compost piles would be prudent (AII). The optimal duration of this prohibition is not clear [6,29].

Administration of fluconazole 2×200 mg until day +75 (both in children and adults, Table 3) decreases the risk of infection and mortality with Candida albicans [30]. Prophylaxis against moulds is accepted with relevant active agents only as secondary prophylaxis. There is a lack of RCT, but it seems that posaconazole, voriconazole, amphotericin and echinocandines are of important value [20,31]. The value of itaconazole is diminished by limited oral availability and more adverse effects [32,33]. The duration of anti-mould prophylaxis remains to be established, as median time to invasive aspergillosis far exceeds day +100 [34]; thus immunological recovery at 1 year after HSCT in patients without GVHD might be recommended as the end of prophylaxis.

Antiviral primary prophylaxis

CMV: The preventive strategies for CMV disease include the use of appropriate blood products, and use of antiviral agents either as chemoprophylaxis or pre-emptive therapy (AI). There are two general approaches to prevention of CMV disease, using either gancyclovir or foscarnet: (a) treatment of all at-risk patients for the defined period of risk as pre-emptive therapy, and (b) treatment

Table 3. Recommendations for antimicrobial prophylaxis.

<table>
<thead>
<tr>
<th>Prophylaxis</th>
<th>Indication</th>
<th>First and second recommendation</th>
<th>Beginning</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial</td>
<td>All patients</td>
<td>Ciprofloxacin (AI)</td>
<td>Conditioning</td>
<td>Engraftment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ofloxacin, Levofloxacin [11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumocystis jiroveci</td>
<td>All patients</td>
<td>Cotrimoxazole (AII)</td>
<td>Conditioning/</td>
<td>End of IST or GVHD (>6 months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentamidine [12–14]</td>
<td>Engraftment</td>
<td></td>
</tr>
<tr>
<td>Yeasts</td>
<td>All patients</td>
<td>Fluconazol (AI)</td>
<td>Conditioning, 1: Day +1</td>
<td>Day +75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Itraconazole [15,16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moulds</td>
<td>Secondary prophylaxis (AII)</td>
<td>Posaconazole, Voriconazole, Itraconazole, Micafungin [4,17–21]</td>
<td>Conditioning, 1: Day +1</td>
<td>At the earliest of engraftment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV</td>
<td>High-risk patients</td>
<td>Ganciclovir (AI)</td>
<td>Engraftment</td>
<td>Day +100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foscarnet, Cidofovir [22,23]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV</td>
<td>IgG positive patients</td>
<td>Acyclovir (AI)</td>
<td>Day +1</td>
<td>Day +30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valacyclovir [24–26]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZV</td>
<td>Secondary prophylaxis</td>
<td>Acyclovir</td>
<td>Day +1</td>
<td>End of IST or GVHD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valacyclovir [27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>Secondary prophylaxis</td>
<td>Cotrimoxazole</td>
<td>Conditioning</td>
<td>End of IST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clindamycine or pyrimethamine+LV [28]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinations</td>
<td>All patients (AII)</td>
<td></td>
<td>6-12 months</td>
<td></td>
</tr>
</tbody>
</table>

IST – immunosuppressive therapy.
of early blood-borne CMV infection prior to onset of disease. Pre-emptive therapy is the most common and effective prophylactic strategy in patients with CMV reactivation. Intravenous ganciclovir prophylaxis is an effective strategy for the prevention of CMV disease and could be used in subgroups of allogeneic HSCT patients at high risk for CMV disease (AI) [22,23,35]. Oral valganciclovir could be a useful alternative to intravenous ganciclovir [36,37]. In randomized studies both acyclovir and valacyclovir were shown to reduce the risk of CMV infection, but not CMV disease [38,39]. However, their use must be combined with CMV monitoring and preemptive therapy (AI). Intravenous immunoglobulin (IGIV) for the prevention of CMV infection or disease is not recommended (DII) [40]. New concepts in CMV prophylaxis in a selected group of patients include immunotherapy with donor T lymphocytes sensitized to CMV antigens, but this is still an experimental approach.

Other herpes viruses: Prophylaxis against Herpes simplex (HSV) with acyclovir should be introduced in seropositive patients only, in –1 to +30 days (Table 3). Acyclovir effectively and safely prevents VZV disease during the first year after haemapoietic cell transplantation. Periods of prophylaxis longer than 12 months may be beneficial for those haemapoietic cell transplant recipients on continued immune suppression. Acyclovir significantly reduced VZV infections at 1 year after transplantation [41]. For other herpes viruses there are no standard pharmacological recommendations, as reviewed by Kruger et al. [19]. Prospective studies are needed to further examine management strategies for these viruses.

C. Vaccination strategy

Vaccination is a potentially important strategy for reducing the risk for vaccine-preventable infections after SCT. The EBMT recommendations for vaccination of HSCT recipients published in Bone Marrow Transplantation in 1995 and in 2005 [42] updated with current knowledge are presented in Table 4.

Table 4. Recommendations for vaccinations after stem cell transplantation [42,43].

<table>
<thead>
<tr>
<th>Type of vaccine</th>
<th>Beginning of vaccination</th>
<th>Doses</th>
<th>Indications</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>Inactivated</td>
<td>4–6</td>
<td>1</td>
<td>Every year</td>
</tr>
<tr>
<td>Polio</td>
<td>Inactivated</td>
<td>6–12</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Hepatitis B*</td>
<td>Inactivated</td>
<td>6–12</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Inactivated</td>
<td>6–12</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>MMR</td>
<td>Alive</td>
<td>24</td>
<td>1</td>
<td>Individually</td>
</tr>
<tr>
<td>Varicella</td>
<td>Alive</td>
<td>24</td>
<td>Optional</td>
<td>CIII [48, 49]</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Alive</td>
<td>24 (or before)</td>
<td>1</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Bacterial					
H. influenzae B*	Conjugated	6	3	Yes	BII [50, 51]
N. meningitidis A i C	Polysaccharide	6–12	1	Optional	CII [52]
N. meningitidis C	Conjugated	6	1	Optional	CIII [42]
Tetanus*	Toxoid	6–12	3	Yes	BII [53]
Diptheria	Toxoid	6–12	3	Yes	BII [42]
Bordetella pertuis	Acellular	6–12	3	Optional	CIII [42]
S. pneumoniae	Polysaccharide	12	1	Yes	BII [49, 54]
S. pneumoniae *	Conjugated	?	3	Yes	All [55-57]
Tuberculosis	Alive	No	0	No	EII [58]

* recommended donor vaccination.
There are new data indicating the benefit of donor vaccination before HSCT. This is of proven value for prophylaxis of infections with viral hepatitis B [59,60], Haemophilus influenzae [50,51], Streptococcus pneumoniae with conjugated vaccine [55,56] and tetanus [61]. In all cases, early recipient vaccination post-HSCT is recommended.

DISCUSSION

Most studies were done on adult patients only, while some included both paediatric and adult patients; however, no differences in prophylaxis strategy or efficacy between age groups were reported in these studies.

Local conditions, microbiological characteristic and patient situation should decide the specific pharmacological prophylaxis. This concerns first of all antifungal prevention, but may play a key role also in antibacterial and antiviral prophylaxis. Hand washing is of utmost importance to avoid transmission of infectious agents from one patient to another and from staff to patients. Avoidance of any exposure to infection and decontamination of food are always very important practices. Bacterial surveillance cultures have been found to be useful in detecting antibiotic-resistant bacteria [62].

Apart from general control and pharmacological strategy, adjunctive measures like growth factors, IGIV supplementation and granulocyte transfusions might have an important role in infection prophylaxis. Controlled trials of administrations of haematopoietic growth factor G-CSF have failed to show improved outcome in either HSCT [63] or non-HSCT neutropenic patients, other than shortening of neutropenia duration and antibiotic utilization. Keratinocyte growth factors have abilities to enhance mucosal stem cell growth and decrease local injury [64]. IGIV is regarded not to show benefit, both in autologous HSCT [65] and in MSD-HSCT patients [5]. Modest, but significant, benefit of G-CSF-mobilized HLA-matched prophylactic granulocyte transfusions, expressed by reduction of febrile days and intravenous antibiotic usage, was demonstrated in neutropenic allogeneic HSCT recipients, but it is still controversial [66].

CONCLUSIONS

With changing practices, transplant teams are encouraged to review local patterns of infections and associated complications and communicate regularly with infection control commit-

tees for guidance on the evolution of isolation needs for the immunosuppressed patient before and after HSCT.

REFERENCES:

34. Grow WB, Moreh JS, Roque D et al: Late onset of invasive aspergillosis infection in bone marrow transplant patients at a university hospital. Bone Marrow Transplant, 2002; 29: 15–9

35. Winston DJ, Ho WG, Bartoni K et al: Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipi-
45. Parkkali T, Stenvik M, Ruutu T et al: Randomized comparison of early and late vaccination with inactivated poliovirus vaccine after allogeneic BMT. Bone Marrow Transplant, 1997; 20: 663–8
52. Parkkali T, Kayhty H, Lehtonen H et al: Tetravalent meningococcal polysaccharide vaccine is immunogenic in adult allogeneic BMT recipients. Bone Marrow Transplant, 2001; 27: 79–84
53. Parkkali T, Olander RM, Ruutu T et al: A randomized comparison between early and late vaccination with tetanus toxoid vaccine after allogeneic BMT. Bone Marrow Transplant, 1997; 19: 933–8
60. Wimperis JZ, Brenner MK, Prentice HG et al: Transfer of a functioning humoral immune system

