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Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to re-
solve and a chronic inflammatory response is established this process can become dysregulated resulting in
pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure
to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney

and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases
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where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a
vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article
is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Physiological wound repair is a complex, highly orchestrated pro-
cess that allows for the replacement of dead or damaged cells and is
critically important in restoring homeostasis to a tissue after injury.
Wound repair can be loosely defined by three overlapping stages; an
initial response, a recovery of integrity, followed finally by resolution
of the wound back to a functional epithelium. It requires a tightly reg-
ulated spatial and temporal response from key structural cells in the
organ such as epithelial cells, endothelial cells and fibroblasts but
also from immune and progenitor cells drawn from the circulatory
system [1]. Acute inflammation is a recognised part of normal
wound healing by serving as an innate immune response to the
disrupted epithelial surface until it is reinstated. However, when
inflammation fails to resolve and a chronic inflammatory response is
established this process can become dysregulated resulting in patho-
logical wound repair and the accumulation of permanent fibrotic
scar tissue at the site of injury (Fig. 1). This fibrosis is characterised
by the excessive accumulation of extra cellular matrix (ECM) compo-
nents including collagens, fibronectin and hyaluronic acid at the site
of tissue injury, leading to a decrease in organ function and, in
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some cases, organ failure and death [2]. It is estimated that 45% of
deaths in the western world can now be attributed to diseases
where fibrosis plays a major aetiological role [3]. Fibrosis can affect
any organ including the lung, skin, heart, kidney and liver and may
represent an aberrant response to a single major injury but more com-
monly is a response to a persistent or repetitive injury. In this review
we examine the evidence for cytokines released as part of an acute
or chronic inflammatory response in driving fibrosis in injured tissues.

2. Pathogen and damage associated molecular patterns in fibrosis

A functional epithelium provides an efficient barrier against mi-
croorganisms and other potentially harmful molecules via a wide
range of mechanisms including mucociliary clearance, maintenance
of epithelial adherence and tight junctions, homeostasis of ion and
water transport and secretion of antibacterial, antimicrobial and
antiprotease molecules [4]. However the epithelium is often located
on vulnerable surfaces that receive significant challenges to their
integrity such as the gut, skin and lungs. These tissues are routinely
exposed to the external environment and a range of harmful mole-
cules including bacteria and viruses, tobacco smoke, asbestos, silica
and diesel exhaust that can lead to epithelial activation and, in cases
of chronic exposure, epithelial damage, shedding and denudation.

Numerous fibrotic diseases are believed to have an infectious
aetiology with bacteria (Pseudomonas aeruginosa, Mycobacterium
tuberculosis), viruses (HCV, Respiratory syncytial virus), fungi (As-
pergillus fumigatus, Cryptococcus neoformans) and multi-cellular para-
sites (Schistosoma mansoni, Toxoplasma gondii) driving wounding,
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Fig. 1. Pathological vs. physiological wound healing. Infection or exposure to harmful molecules can lead to epithelial damage and loss of epithelial integrity. Following injury
fibroblasts, endothelial cells, and neighbouring epithelial cells release a range of soluble factors that trigger clotting and initiate the development of a provisional ECM. The aggre-
gation and subsequent degranulation of platelets triggers increased blood flow, vasculature dilation and vasculature permeability allowing the effective recruitment of inflamma-
tory cells to the site of tissue injury. The first responders are the neutrophils, eosinophils and basophils that are responsible for neutralising any invading pathogens via an oxidative
burst response and eliminating cell debris/dying cells by phagocytosis. The granulocyte number in the site of epithelial injury peaks rapidly, within minutes, but is followed by a
rapid decline. Once in the wound micro-environment the recruited monocytes mature to increase the number of macrophages in the wound and perform similar functions to
those described for granulocytes. In addition they produce cytokines and chemokines that amplify the wound response by promoting the formation and stabilisation of a provision-
al ECM and promoting angiogenesis. Myofibroblast numbers are increased at the wound site from several sources (see Fig. 2). Once recruited to the wound area the myofibroblasts
become activated and traverse the provisional ECM until they reach the edge of the wound and initiate contraction of the wound. Finally epithelial cells at the edge of the wound
loosen adherence junctions and migrate over the ECM to restore a continuous epithelium and tissue homeostasis. At this point the myofibroblasts in the wound area undergo
apoptosis and the macrophage numbers are significantly reduced via egress into the lymphatic system. Fibrosis occurs when the initial wound is severe, the wound repair process
becomes dysregulated or the source of epithelial damage persists resulting in repeated injury and chronic inflammation.

chronic inflammation and subsequent fibrosis in multiple organs It is also increasingly apparent that PRRs provide mechanisms for
[5-13]. Pathogen by-products including bacterial DNA and double mounting inflammatory and wound-healing responses to sterile tissue
stranded RNA, peptidoglycan, lipopolysaccharide and flagellin, collec- trauma [19]. When epithelial cells are damaged or dying their mem-
tively referred to as pathogen-associated molecular patterns (PAMPs), branes lose integrity and intracellular proteins leak into the external

are recognised by pattern recognition receptors (PRR) on a wide environment. These damage associated molecular pattern molecules
range of cell types including immune cells (macrophages, neutrophils, (DAMPs) or alarmins include high-mobility box group 1 (HMGB-1),
T-cells, B-cells, dendritic cell, eosinophils) and structural cells (epitheli- heat-shock proteins (HSP60, HSP70), interleukin (IL)-33 and IL-1c
al cells, fibroblasts, adipocytes) [ 14,15]. The interaction between PAMPs among others [20]. DAMPs can trigger innate immune responses in a
and PRR provides an evolutionarily conserved mechanism that provides wide variety of cell types via engagement of PRR and provides an impor-
the first line of defence against invading pathogens and activates nu- tant homeostatic mechanism by which the immune system can sense
merous proinflammatory cytokine and chemokine pathways, leading and mount wound-repair responses in damaged tissues [21]. However,
to the eradication of the pathogen. The failure to clear the pathogen or there is also evidence that DAMPs can contribute to the pathogenesis of
its PAMPs provides a persistent source of tissue injury, chronic inflam- many inflammatory and fibrotic diseases. For example IL-33 is strongly
mation and creates an environment that might favour fibrosis. For ex- associated with fibrosis in chronic liver injury [22] and is increased in
ample persistent colonisation of the allograft with Pseudomonas systemic sclerosis patients, correlating with the extent of skin sclerosis
aeruginosa following lung transplantation is strongly associated with and the severity of pulmonary fibrosis [23]. In addition HMGB-1 levels
the subsequent development of bronchiolitis obliterans syndrome are elevated in the bronchoalveolar lavage (BAL) of patients with idio-
(BOS) [16] and prolonged infection with hepatitis C virus (HCV) or hep- pathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis [24].
atitis B virus (HBV) leads to loss of liver architecture and function and Fibroblasts express a number of PRR including toll-like receptors
ultimately cirrhosis [17,18]. (TLR) and IL-1R therefore PAMPs and DAMPs can directly activate
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them and drive their differentiation to myofibroblasts [7,25,26]. It has
also recently been suggested that there are differences in TLR expres-
sion and activation between normal fibroblasts and those isolated
from patients with severe idiopathic pulmonary pneumonia [7,27].
Taken together these data suggest that myofibroblasts in a fibrotic en-
vironment may be maintained in a heightened state of readiness,
primed to respond to small quantities of DAMPs and PAMPs. There-
fore inhibiting TLR signalling may represent a novel approach to
limit activation of the innate immune response, decrease inflamma-
tion and limit or reverse fibrosis.

3. Origin of myofibroblasts in fibrotic tissues

The origin of the myofibroblasts during fibrosis, and the relative con-
tribution of myofibroblasts from each source to fibrosis, is a matter of
on-going debate (Fig. 2). It was originally thought that the activation
or proliferation of local resident stromal cells and their differentiation
into myofibroblasts was the only source of myofibroblasts during fibro-
sis [28-33]. In healthy tissue fibroblasts are quiescent and are primarily
involved in routine maintenance of the ECM during homeostasis.
During both physiological and pathological wound repair the fibro-
blast is activated and differentiates into a myofibroblast [31,34,35].
Transforming growth factor-p1 (TGF-B1) continues to be regarded as
the key growth factor involved in driving fibrosis [36] and can drive fi-
broblast to myofibroblast differentiation both in vitro and in vivo
[37,38]. In addition to TGF-B1, a range of cytokines and growth factors
have been shown to drive myofibroblast differentiation including IL-4,
IL-13, and platelet derived growth factor (PDGF) among others [39-47].

It is also now widely believed that myofibroblasts could be derived
from at least four other sources [48-50]. Fibrocytes were originally de-
scribed as fibroblast like, peripheral cells that migrate into regions of tis-
sue injury [51]. They express fibroblast specific proteins as well as the
hematopoietic stem cell marker (CD34) and the leukocyte common

antigen (CD45). Fibrocytes migrate to wound sites in response to differ-
ent chemokine signals including secondary lymphoid chemokine
(CCL21) and stromal cell-derived factor (CXCL12) [52-54].

Over time the expression of CD34 and CD45 is reduced and the
cells differentiate into myofibroblasts [55,56]. Fibrocyte differentia-
tion is regulated by multiple soluble mediators such as IL-4, IL-13
and PDGF [52,55]. There is significant literature indicating that
fibrocytes are associated with organ fibrosis in pulmonary fibrosis,
bronchial asthma, skin wounds, intimal hyperplasia and kidney fibro-
sis [49,52,54,57-60)].

Epithelial to mesenchymal transition (EMT) describes the
transdifferentiation of an epithelial cell to a cell with myofibroblast-
like features. During EMT epithelial cells downregulate epithelial
marker expression, upregulate mesenchymal markers expression
and gain functional characteristics of mesenchymal cells [50,61,62].
TGF-A1 continues to be regarded as the masterswitch regulating fi-
brosis [63-65] and EMT driven by TGF-31 has been suggested to
play a role in fibrosis in multiple organs [66-68]. The ability of other
cytokines to drive EMT directly remains more controvertial. For ex-
ample there is conflicting data reqarding the ability of TNFo to
drive EMT in the absence of TGF-B1 [62,69-73]. However, there is
compelling evidence that cytokines including TNFo and II-13 are
able to accentuate TGF-R1 driven EMT in a range of cell types
[71,73-78]. However, recently the contribution of myofibroblasts de-
rived via EMT to fibrosis has been questioned due to contradicting re-
ports using lineage tracing models in mice [68,79-91] (for a more
comprehensive assessment of the role of EMT in fibrosis please see
Epithelial injury and lung repair — Harold Chapman, Renal epithelial
injury — Wilhelm Kriz, Epithelium ER stress as a fibrotic stimulus —
Timothy Blackwell also in this special issue).

More recently endothelial to mesenchymal transition (EnMT) has
been suggested as a potential source of myofibroblasts during wound
healing and fibrosis. EnMT was originally thought to be a phenomenon
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Fig. 2. Proposed origins of myofibroblasts in fibrosis. It was originally thought that the activation or proliferation of local resident stromal cells and their differentiation in to
myofibroblasts was the only source of myofibroblasts during fibrosis. However it is also now widely believed that myofibroblasts are derived from at least four other sources;
through the recruitment and differentiation of fibrocytes, through the activation and proliferation of pericytes, via epithelial to mesenchymal transition (EMT) or via endothelial

to mesenchymal transition (EnMT).
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confined to embryonic development but in 2007, Zeisberg et al. pub-
lished evidence suggesting that up to 35% of fibroblasts present in the
fibrotic myocardium of mice with aortic banding originated from endo-
thelial cells [92]. Consequently several other studies have suggested an
important role for EnMT in cardiac, renal and pulmonary fibrosis
[93-98]. Like EMT, EnMT can be driven by TGF-p1 and TGF-32 [92]
and accentuated by cytokines such as TNFa and IL-13 [99-101].

Pericytes are cells of mesenchymal origin that are intimately in-
volved in the development, maturation, stabilisation and remodelling
of the vasculature during homeostasis and angiogenesis [102].
Recently Lin and colleagues identified that pericytes are closely asso-
ciated with the vasculature in normal kidney cortex and medulla.
However in response to injury these pericytes detach from the vascu-
lature, rapidly up regulate collagen production and at-smooth muscle
actin (a-SMA) expression, migrate into the interstitial space and
increase myofibroblast numbers [103]. A subsequent study adopting
a genetic fate mapping approach to label pericytes (as well as
mesangial cells and smooth muscle cells) identified that in a range
of kidney injury models the number of labelled cells increased ap-
proximately 15 fold in 2-3 weeks strongly suggesting an important
role for pericytes in fibrosis in the kidney [87]. Consequently a role
for pericytes as a precursor for myofibroblasts has been proposed in
other tissues including the spinal cord, lung, skin and skeletal muscle
[91,104-107].

The challenge remains to effectively identify the quantity of
myofibroblasts derived from each of the above sources in a fibrotic
organ and determining the relative contribution of each to disease
pathology to improve our understanding of the mechanisms driving
fibrosis and allow the development of novel therapeutic targets.

4. TGF-B dependent and independent fibrosis

TGF-B is the most extensively studied molecule in fibrosis. There are
three TGF-3 isoforms (TGF-31-3); all have similar biological activity,
although each isoform is expressed in a distinct pattern under control
of a unique promoter [108,109]. Although a wide variety of cell types
produce and respond to TGF-3 it is TGF-B1 that has been primarily
linked to tissue fibrosis [110]. TGF-31 is released from cells in a latent
complex formed by binding to latency-associated protein (LAP), which
holds TGF-B1 in an inactive state. To achieve an active state, TGF-B1
must dissociate from LAP, a process that can be catalysed by a range of
agents including cathepsins, plasmin, calpain, thrombospondin, matrix
metalloproteinases (MMPs) and integrins [109,111-114] (for a more
comprehensive assessment of the role of integrin biology please see
Integrin biology and ECM interactions — Dean Sheppard also in this spe-
cialissue). Once activated TGF-31 has been shown to signal primarily via
heteromeric complexes of type Il and type I serine/threonine kinase re-
ceptors which activate the SMAD signalling pathway, a homolog of the
mothers against decapentaplegic drosophila proteins, and modulates
the transcription of important target genes including pro-collagen [
(COL1A1) and pro-collagen III (COL3A1) [115-118].

Numerous animal models have demonstrated an important role
for TGF-3 in the pathogenesis of fibrotic conditions [38,119-122].
For example TGF-R inhibition attenuated hepatic, renal and cardiac
fibrosis in various animal models [123-125]. Extensive evidence sug-
gests that the canonical TGF-p3 type I receptor (ALK5)/Smad3 path-
way is critically involved in the pathogenesis of fibrosis driven by
TGF-f in many tissues. For example, the oral administration of an in-
hibitor of the kinase activity of ALK5 inhibited fibrosis in a rat model
of TGF-p1-induced pulmonary fibrosis [126] and Smad3 null mice
show attenuated fibrosis in bleomycin induced pulmonary fibrosis,
renal interstitial fibrosis and cardiac fibrosis [127-130].

However, not all fibrosis is dependent on TGF-31 and several
Smad3/TGF-B1 independent mechanisms of fibrosis have been
described in the lung and other tissues [131-133] suggesting that
other mediators can act separately from the Smad3/TGF-31 pathway.

5. Th2 cytokines in fibrosis

The T-helper 2 (Th2) cytokines IL-4 and IL-13 share many biolog-
ical functions as both exploit the same IL-4Rat/Stat6 signalling path-
way [134]; for example IL-4 and IL-13 can drive the differentiation
of resident fibroblast and recruited fibrocytes to myofibroblast in a
range of tissues [39,41,43-45]. However the development of IL-13
transgenic mice and knockout mice, as well as IL-13 specific antago-
nists, has revealed unique and non-redundant roles for IL-4 and
IL-13 in vivo [135-138].

Although the contribution of IL-4 to fibrosis varies in different dis-
eases it is considered a potent fibrotic mediator with one study
suggesting that IL-4 is nearly twice as effective as TGF-p in inducing
collagen synthesis from human skin derived fibroblasts [139]. One
of the first in vivo reports to investigate the contribution of IL-4 in fi-
brosis was a study of Schistosomiasis in mice, in which neutralising
antibodies to IL-4 were shown to significantly reduce the develop-
ment of hepatic fibrosis [12]. Subsequently inhibitors of IL-4 were
also found to reduce dermal fibrosis in a chronic skin graft rejection
model and in a mouse model of scleroderma [140,141]. In addition
IL-4 is found at increased levels in BAL fluids of patients with IPF, in
the pulmonary interstitium of individuals with cryptogenic fibrosing
alveolitis and in peripheral blood mononuclear cells (PBMCs) of pa-
tients suffering from periportal fibrosis of the liver [142-144].

When IL-4 and IL-13 were inhibited independently, IL-13 was
identified as the dominant effector cytokine of fibrosis in several
experimental models [135,145-149]. For example the overexpression
of IL-13 in the lung triggered significant subepithelial airway fibrosis
in mice in the absence of any other inflammatory stimulus [137]. In con-
trast, despite developing an intense inflammatory phenotype, the
overexpression of IL-4 in the lung was not associated with evidence of
subepithelial fibrosis [150]. Anti-IL-13 treatment has been shown to
markedly reduce collagen deposition in the lungs of animals challenged
with Aspergillus fumigatus conidia [146]. In schistosomiasis, collagen
deposition was decreased by more than 85% following IL-13 blockade
although the egg-induced inflammatory response was maintained, in-
cluding no attenuation of IL-4 production [135,151,152]. IL-13 binds
to two primary receptor chains, IL-13Ra1, which also binds IL-4 and
thus accounts for the functional overlap of the cytokines, and IL13Ro2
[138,153]. IL-13Rx2 is generally considered to be a decoy receptor for
IL-13 since it has a short cytoplasmic tail which is devoid of signalling
activity [154]. IL-13Ra2 binds IL-13 with four orders of magnitude
higher affinity and specificity than IL-13Ra1 [155] and is believed to
exert an inhibitory function by blocking the formation of functional
IL-13-IL13Ra1 complexes [138]. In agreement with this, mice lacking
the IL-13Ra2 decoy receptor have enhanced IL-13 activity [156].
When infected with Schistosoma mansoni the IL-13Ro2-deficient mice
had significantly increased liver fibrosis despite no change in the in-
flammatory response [157] suggesting that IL-13Ra2 directly inhibits
the ECM-remodelling activity of IL-13. Soluble IL-13Ra2-Fc is a highly
effective inhibitor of IL-13 that has been shown to ameliorate the pro-
gression of established fibrotic disease [135,138,151,158] suggesting
that modulation of the IL-13 signalling pathway may be a viable thera-
peutic target in fibrosis.

Macrophages demonstrate remarkable plasticity and change their
physiology in response to the microenvironment [159]. Interestingly,
selective depletion of macrophages in a model of liver fibrosis revealed
distinct populations of macrophages associated with both injury and re-
covery phases of inflammatory scarring [160]. IL-4 and IL-13 promote
the transition of resident macrophages into M2 or alternatively activat-
ed macrophages (AAMo). In vitro and in vivo studies in mice have
shown that this phenotype is characterised by elevated expression of
the mannose receptor (CD206), Ym1, Relm-c, (also known as FIZZ-1),
major histocompatibility complex class II antigens and arginase-1
[161]. Expression of arginase-1 by AAMo is of particular interest be-
cause this enzyme controls L-proline production, which is required for
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collagen synthesis by activated myofibroblasts [162]. AAMo have also
been implicated in the development of Th2 effector responses, produc-
tion of fibrogenic cytokines and recruitment of fibrocytes [163,164]
leading to suggestions that AAM¢ are important inducers of wound
healing and fibrosis. However a recently published study employing
LysMC™IL-4Ro. ~/1°% mice, in which Cre-mediated recombination re-
sults in deletion of the IL-4Ra chain in the myeloid cell lineage and
therefore macrophages cannot recognise IL-4 or IL-13, demonstrated
that egg-induced granulomas and liver fibrosis developed normally in
the absence of AAMo following infection with Schistosoma mansoni
[165]. Surprisingly depleting arginase-1 activity specifically in AAMe
exacerbated the development of liver fibrosis and increased the Th2
immune response suggested that AAMo are required for the suppres-
sion and resolution of fibrosis [166]. The data suggest that AAM¢ may
compete with myofibroblasts for L-arginine which is required for colla-
gen synthesis and could be exploited to ameliorate fibrotic disease.
However first it will be important to investigate if AAMo have similar
inhibitory roles in other models of fibrosis.

IL-5 may also play an important role in fibrosis through the
recruitment, differentiation and activation of eosinophils. IL-5 and
eosinophils have been observed in a variety of diseases including
skin allograft rejection and pulmonary fibrosis and eosinophils are
an important source of pro-fibrotic cytokines and growth factors
such as TGF-31 and IL-13 [141,167,168]. Anti-IL-5 and IL-5 gene dele-
tion have been shown to suppress eosinophilia and remodelling in
murine models of allergic asthma [169-171] and decreased granulo-
ma size in chronic Schistosoma mansoni infection [172]. However
several other studies have failed to show a reduction in fibrosis in
liver, skin and lung raising doubts about the importance of IL-5 and
eosinophils in disease [173-175]. A recent study by Huaux et al. par-
adoxically demonstrated that IL-5—/— mice are not protected from
bleomycin induced pulmonary fibrosis but that excessive amounts
of IL-5 can exacerbate bleomycin induced pulmonary fibrosis [175]
suggesting that IL-5 may be accentuating rather than driving fibrosis.

IL-10 is a multifunctional cytokine with diverse effects on most
hemopoietic cell types that was first identified for its ability to inhibit
the activation and effector function of T cells, monocytes, and macro-
phages. The primary function of IL-10 appears to be to limit and ulti-
mately terminate inflammatory responses [176]. In agreement with a
role as a suppressive cytokine, IL-10 deficient animals show signifi-
cantly more severe hepatic and pancreatic fibrosis in response to
challenge with carbon tetrachloride (CCL4) and cerulein respectively
and mice treated with endogenous IL-10 develop significantly less
liver, lung and pancreatic fibrosis [177-180]. This provides supportive
evidence for the important role that pro-inflammatory inflammation
can play in fibrogenesis. One potential mechanism of action for
IL-10 may be via the direct inhibition of collagen synthesis and secre-
tion from fibroblasts. For example culturing human scar derived
fibroblasts with IL-10 induced a decrease in typel pro-collagen pro-
tein and mRNA and the addition of anti-IL-10 to cultured hepatic
stellate cells caused enhanced collagen production under basal or
stimulated condition [181,182]. Consequently some success in clinical
studies have been reported including a reduction in serum alanine
aminotransferase (ALT), hepatic inflammation and a reduction in
fibrosis score in chronic hepatitis C patients treated with IL-10 [183].

6. IL-17A and its role in fibrosis

Th17 cells are a subset of CD4 + T-helper cells that differ from Th1
and Th2 cells in development and function and are characterised by
the production of their signature cytokine IL-17. Differentiation of
Th17 cells requires the combined actions of TGF-f, IL-6, and IL-21 in
mice, whereas IL-6 and IL-21 can be replaced by IL-23 or IL-1( in
humans [184-186]. These cytokines induce the expression of the
orphan nuclear receptor RORyt that is the key transcription factor
that orchestrates the differentiation of this effector cell lineage

[187]. Once established the expression of IL-23 is required for
stabilisation and expansion of these cells in vivo [188,189]. The devel-
opment of Th17 cells can be suppressed by IFNy, IL-2, IL-27 and IL-4
[190-194].

[I-17 is recognised as an inflammatory cytokine that exerts its
function mainly on myeloid cells, epithelial cells and mesenchymal
cells to induce the expression of a range of cytokines and chemokines,
which in turn increase granulopoiesis and recruitment of leukocytes,
mainly neutrophils, to the site of inflammation [195,196]. IL-17A an-
tibody neutralisation reduced neutrophil influx during the early lung
response to silica particles and endotoxin exposure [197,198] and
intratracheal instillation of human recombinant IL-17 selectively
recruited neutrophils into rat airways [199,200]. IL-17A expression
is associated with the persistent neutrophilia observed in a variety
of diseases including bacterial pneumonia and cystic fibrosis in the
lung, acute lesions in atopic dermatitis and in renal allografts during
acute rejection where the number of IL-17 positive cells are indepen-
dent predictors of worse graft outcome [201-205]. IL-17 has also
been shown to be elevated in the BAL of patients with IPF, with the
recruitment of neutrophils to the BAL an important predictor of
early mortality in IPF patients [206,207].

Several studies have suggested a possible contribution for IL-17A
in the development of chronic fibroproliferative diseases [187]. For
example Th17 cytokines are increased during the development of
bleomycin induced skin fibrosis and IL-17A promotes the develop-
ment of dilated cardiomyopathy, with blockade of [L-17A attenuating
myocarditis-induced cardiac fibrosis and ameliorating ventricular
function [208,209]. Several studies have also revealed that the devel-
opment of hepatic granulomas in mice infected with Schistosoma
mansoni is in part dependent on Th17 responses and that treatment
with IL-17 neutralising antibodies significantly reduces granuloma
formation in some strains of mice [210-212]. IL-17A has also been
shown to be important for the development of pulmonary fibrosis
after exposure to bleomycin. Detailed mechanistic studies in mice
with bleomycin-induced fibrosis suggested that bleomycin-induced
IL-17A production is also highly dependent on TGF-31 signalling, and
recombinant IL-17A-driven fibrosis is dependent on the downstream
profibrotic activity of TGF-1, suggesting co-dependent roles for
IL-17A and TGF-31 in the development of pulmonary fibrosis [207].

The aforementioned data suggest that targeting components of
the IL-17A signaling pathway is a potential strategy for the develop-
ment of novel therapeutic agents against fibroproliferative diseases.

7. Th1 cytokines in fibrosis

Numerous experimental models of fibrosis have documented po-
tent anti-fibrotic functions of the archetypical Th-1 cytokine IFNvy.
For example IFN<y inhibits the activation and proliferation of hepatic
stellate cells (HSC) and subsequent ECM deposition in a rat model
of liver fibrosis induced by dimethylnitrosamine [213]. In addition
IFNy treatment ameliorates bleomycin induced lung fibrosis and re-
duced glomerulosclerosis and tubulointerstitial fibrosis in the rat sub-
total nephrectomy model [213,214]. Mechanistically, IFNvy is believed
to inhibit fibrosis by antagonising the pro-fibrotic activity of TGF-p1.
TGF-B1 induced phosphorylation of Smad3 and its subsequent trans-
location to the nucleus is inhibited by IFN<y resulting in the decreased
activation of TGF-B1 responsive genes. In addition, acting through
Janus-associated kinase (Jak1) and Stat1, IFNvy induces the expression
of Smad7, an antagonistic SMAD, which prevents the interaction of
Smad3 with the TGF-B receptor, further attenuating TGF-R-induced
signalling [215]. IFNvy can also directly inhibit fibroblast proliferation,
TGF-p1 induced expression of the genes encoding procollagen I and
procollagen III, and collagen synthesis in activated myofibroblasts as
well as inhibiting the Th2 cytokine induced differentiation of fibrocytes
into myofibroblasts [216,217]. Similar antifibrotic activity has been
reported for IL-12, primarily via its ability to stimulate IFNy production
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in Th1 cells. In schistosomiasis, treatment with recombinant IL-12
significantly reduced collagen deposition associated with chronic
granuloma formation, while having no effect on the establishment of
infection [218] and IL-12 treatment caused a significant reduction in
the hydroxyproline content of the lung in the bleomycin mouse
model of lung fibrosis [219].

However despite compelling evidence supporting an antifibrotic
role for IFN<y both in vitro and in vivo, clinical studies employing the
use of I[FNy have generated conflicting results. Positively, IFNy treat-
ment reduces liver fibrosis progression in people chronically infected
with HCV [220]. In contrast, large randomised placebo controlled
clinical trials in patients with IPF have revealed that treatment with
IFNy did not significantly improve survival, lung function, gas
exchange, or the quality of life. In addition more patients in the
IFNy group had constitutional signs and symptoms (influenza-like
illness, fatigue, fever, and chills) than those on placebo [221,222].

The M1 or classically activated macrophages (CAMe) are pro-
duced during cell mediated responses and are a vital component
of host defence. Such macrophage activation depends on IFNvy, a cyto-
kine network involving IL-12 and exposure to microbial products.
These macrophages secrete high levels of pro-inflammatory cytokines
including TNFa and IL-1( and their activation must be tightly controlled
because the cytokines and mediators they produce can lead to
host-tissue damage [223]. TNFa and IL-13 have been identified as
important targets in a variety of fibrotic conditions including IPF and as-
bestosis [224,225] and the overexpression of either TNFa or IL-1p in
the lungs of mice leads to spontaneous pulmonary fibrosis [226,227].
Studies have subsequently identified that TNF« is essential for the de-
velopment of bleomycin and silica induced pulmonary fibrosis, CCL, in-
duced hepatic fibrosis and non-alcoholic steatohepatitis in mice
[228-231]. Recently clinical trials employing inhibitors of the TNFa
pathway such as etanercept and infliximab have been initiated to evalu-
ate the potential clinical benefit for the treatment of IPF and other fibrot-
ic diseases. One study in IPF reported that etanercept was well tolerated
and showed a non-significant reduction in disease progression in several
physiologic, functional, and quality-of-life endpoints [232].

Additionally, several studies have documented profibrotic activity
for IL-1R in pulmonary fibrosis induced by bleomycin and silica, liver
fibrosis in hypercholesterolemic mice, renal interstitial fibrosis
resulting from unilateral ureteric obstruction and cardiovascular
fibrosis after myocardial infarction [233-235]. IL-13 was found to be
increased in the BAL of patients with IPF and acute respiratory dis-
tress syndrome (ARDS), with persistent elevation predicting poor
outcome [207,236]. Recent studies have shown IL-1 driven pulmo-
nary fibrosis to be dependent on IL-17A [207,237]. IL-1p has also
been shown to drive EMT and myofibroblast differentiation via a
TGF-R1 dependent mechanism, confirming that it functions as a po-
tent upstream driver of fibrosis [238]. In addition, IL-13 and TNFa
have been demonstrated to accentuate TGF-31 driven EMT and
EnMT [71,73,74,76,99-101] highlighting another potential mecha-
nism by which IL-1(3 and TNFa drive fibrosis.

8. Fibrosis — lessons from lung transplantation

The ability to investigate the role of the immune system in early
fibrotic disease is limited as patients often present with established
fibrosis and significant loss of organ function already. However
there is a condition where it is possible to study the fibrotic
remodelling process very early in disease and even before it has
begun. Obliterative bronchiolitis (OB) affects 50% of lung transplant
recipients limiting survival to a median of approximately 5 years
and provides a valid human model of chronic inflammatory airway
disease leading to dramatic fibrotic remodelling and loss of lung func-
tion over a short time course. The rate of disease progression, as mea-
sured by reduction in forced expiratory volume in 1 second (FEV1),
can be ten times that seen in other chronic progressive inflammatory

airways diseases such as chronic obstructive pulmonary disease
[239]. Two decades of research of this condition have identified
important mechanisms linking inflammation, the immune response
and the development of fibrosis post lung transplant.

Several studies highlight an important role for innate immunity,
PAMPs and PRR in the fibrotic remodeling seen in OB. For example,
the acquisition of Pseudomonas aeruginosa in the transplanted airway
is associated with an increased risk of developing in OB [16,240,241].
In addition, lung transplant patients with loss of function polymor-
phisms in TLR4 demonstrate significantly less acute rejection and a
trend towards reduced severity of OB [242]. Similarly, patients with
gain of function polymorphisms in CD14, which binds LPS and pro-
motes signaling through TLR4, develop OB earlier after transplant and
demonstrate increased OB related deaths. Interestingly, patients with
a gain of function polymorphism in CD14 also have significantly greater
TNFa and IFNv in the peripheral blood implying a heightened state of
innate immune activation drives the development of increased post-
transplant rejection [243].

There is growing interest in the role of the macrophage as an effector
cell in allograft injury and fibrosis. In the murine heterotopic tracheal
transplant model depletion of recipient macrophages significantly abro-
gates obliteration of the transplanted airway [244]. Furthermore airway
macrophages isolated from post-transplant patients secrete increased
levels of pro-inflammatory cytokines compared to control patients
[245,246] leading to an elevated expression of a variety of acute inflam-
matory cytokines in the BAL of patients with OB including TNFq, IL-13
and IL-8 [247,248)]. It has been demonstrated that there is an early ele-
vation in Th1-cytokines in lung transplant patients who developed OB
compared to stable recipients and normal control subjects [249].
Furthermore, CD4+ T cells in patients who developed OB are of a
Th1-phenotype suggesting that the microenvironment within the
lung allograft may skew the immune response towards a Th1 pheno-
type that predisposes to OB [250].

Several studies have shown that the neo-macrolide azithromycin
given at sub-minimum inhibitory concentration for respiratory patho-
gens can reverse the decline in lung function in some patients with OB
[251,252]. Furthermore a randomised placebo controlled study dem-
onstrating that patients receiving azithromycin after lung transplanta-
tion had a lower incidence of OB compared with those receiving
placebo in their first two years post transplantation [253]. Neo-
macrolides are a group of antibiotics that are bacteriostatic and only
bactericidal at high concentrations. Independently of their antimicro-
bial activity, macrolides possess immunomodulatory properties that
may contribute to clinical benefits observed in patients with OB.
The mechanism of action was initially believed to be through a reduc-
tion in airway neutrophilia and IL-8 in the lung [254]. However,
azithromycin has recently been shown to modulate inflammation by
shifting macrophage polarisation towards an AAM¢ phenotype iden-
tifying another possible mechanism of action [255].

The development of OB in a mouse model is associated with a
significant elevation in TNFa levels at the onset of fibrosis [256] and
neutralising antibodies to TNFo prevents the development of OB in
this model [257]. Similar effects have also been reported in OB in rat
tracheal allografts [258] and in a heterotopic porcine bronchial trans-
plantation model [259]. However, to date there have been no
reported trials of using biological agents targeting TNFo in OB post
lung transplantation, although there is a single case report indicating
improvement in wellbeing and FEV1 after Infliximab therapy in a
child who developed OB following bone marrow transplantation
[260]. Lung transplant recipients who go on to develop OB also
showed an elevation in IL-17 compared to stable lung transplant re-
cipients [247] and neutralising IL-17 prevented OB in the heterotopic
tracheal transplant model in mice [261]. To date no studies have
reported investigated the efficacy of anti-IL-17 therapies in OB.

TGF-B1 is present in elevated levels in the BAL of patients with OB
[262] and blocking TGF-p1 or its downstream signalling inhibits OB in
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the heterotopic tracheal transplant model [263,264]. Mechanistically,
bronchial epithelial cells isolated from stable lung transplant recipi-
ents undergo EMT when exposed to TGF-31 [62] and this can be
accentuated by the addition of TNFa or IL-1B or by co-culturing the
cells with a Pseudomonas aeruginosa activated macrophage cell line
[78,265]. In addition co-localisation of both epithelial (E-cadherin)
and mesenchymal (a-SMA) markers in epithelial cells of post-
transplant patients has been reported [62] highlighting EMT as one
potential source of myofibroblasts in the development of OB. As
well as an elevated level of TGF-31, it has also been reported that
IL-13 is elevated and biologically active in BAL during the develop-
ment of BOS. Furthermore translational studies using a mouse
model of OB showed that neutralisation of IL-13 reduced airway allo-
graft matrix deposition and OB [148]. Both TGF-31 and IL-13 can drive
the differentiation of resident fibroblasts to myofibroblasts identify-
ing a likely second source of myofibroblasts in OB. Finally, a higher
proportion of circulating fibrocytes was measured in patients with
OB Grade >1 than in those with OB Grade 0 (p) [266] highlighting a
possible role for fibrocytes in allograft rejection. In agreement with
this, inhibiting CXCL12 blocks fibrocyte migration and differentiation
and attenuates OB in the murine heterotopic tracheal transplant
model [267].

The aforementioned data highlight the complex nature of fibrosis
in the transplant lung and the large number of potential therapeutic
targets to limit disease progression. However, due to the ability to
accurately identify patients that are likely to develop the disease be-
fore they present with clinical symptoms and the rapid decline in
FEV1 as an experimental indication of disease progression, the devel-
opment of OB after lung transplant could also be a valuable and cost
effective tool for testing novel therapeutic strategies in the develop-
ment of fibrosis.

9. Conclusion

A review of the literature pertaining to the role of cytokines in
fibrosis highlights the wide range of functions a single cytokine can
perform on numerous cell types and provides the possibility that
targeting a single cytokine may provide a way of blocking/reversing
at least some of the fibrotic process in disease. However the literature
also tells us that a wide number of cytokines can perform several very
similar functions and therefore compensate for the loss of another.
How do we choose which cytokine/cytokines to target as potential
therapeutics? And are these targets going to work universally or
will there be organ specific and disease specific roles identified?
Given the diverse importance for Th1, Th17 and Th2 cytokines de-
scribed in the literature in driving fibrosis in different organs, and in-
deed different diseases in the same organ, it seem unlikely that the
treatment of fibrosis will be universal or organ specific and instead
will likely be disease specific. Depending on the stage of disease
when a patient is diagnosed, the treatment approach may also be
tailored. For example if a patient presents early, i.e. with progressive
fibrosis, the inhibition of ECM production is an obvious target to
limit the development of fibrosis. However if a patient presents late
in disease, i.e. with established fibrosis, the resolution of already
deposited ECM is critical. Given the vast number of potential thera-
peutic targets and strategies it is important that a well-defined and
considered approach to translating the wealth of experimental
knowledge into clinically beneficial therapies is applied. The slow
progression of many fibrotic diseases makes clinical trials expensive
and prohibitive. Therefore quantitative clinical endpoints such as
serum bio-markers and imaging techniques to accurately measure
the rate of disease progression are desperately needed. The burden
of diseases where inflammation and fibrosis plays an important role
continues to grow and therefore the need for safe and effective
anti-fibrotic therapies is great and is also likely to increase.
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