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Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, whose expression is frequently down-regulated in
several types of cancers. In the present study, we demonstrated that Pdcd4 knockdown up-regulates MAP kinase
kinase kinase kinase 1 (MAP4K1) expression and increases phosphorylation of c-Jun. Over-expression of c-Myc in
HEK293 cells increases the levels of MAP4K1, MAP4K1 promoter activity, and phospho-c-Jun. Mutation analysis
showed that the c-Myc binding site at −536 bp (relative to the initiation ATG) of map4k1 promoter responds
to c-Myc regulation. In addition, chromatin immunoprecipitation demonstrated that c-Myc directly binds to
map4k1 promoter at this site. Down-regulation of c-Myc reverses MAP4K1 expression and AP-1 activation in
Pdcd4 knockdown cells. Moreover, over-expression of dominant negative Tcf4 decreases expression of c-Myc
andMAP4K1, JNK activation, and AP-1 dependent transcription. Thus, activation of β-catenin/Tcf dependent tran-
scription in Pdcd4 knockdown cells up-regulates MAP4K1 expression and AP-1 activity via c-Myc. The study
presented here further reveals in detail the mechanism of how Pdcd4 inhibits tumor cell invasion and provides
a functional connection between β-catenin/Tcf and AP-1 dependent transcription.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Programmed cell death 4 (Pdcd4) is a novel tumor suppressor that
is frequently down-regulated in several types of cancers. The pdcd4
gene was first identified as a differentially expressed mRNA when cells
were treated with apoptosis inducers [1]. Over-expression of Pdcd4 has
been shown to induce apoptosis in breast MDA-MB-231 and hepato-
cellular carcinoma HCC cells [2,3]. In consistence with the induction
of cell death, depletion of Pdcd4 promoted cell proliferation [4] and
over-expression of Pdcd4 inhibited proliferation [5–7]. However,
over-expression of Pdcd4 in human HEK293 and chicken DT40 cells
had no effects on apoptosis or cell proliferation [8,9]. In addition,
Eto et al. [10] showed that loss of Pdcd4 induced apoptosis in HeLa
and C2C12 cells. Thus, the role of Pdcd4 in programmed cell death re-
mains unclear.

Despite the action in programmed cell death, the inhibitory
role of Pdcd4 in tumorigenesis has been clearly demonstrated in
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vitro and in vivo. Over-expression of pdcd4 cDNA inhibits 12-O-
tetradecanoylphorbol-13-acetate (TPA)-induced transformation and
tumor phenotype in mouse JB6 cells [11,12]. Pdcd4 transgenic mice
that overexpress Pdcd4 in the epidermis show significant reductions
in 7,12-dimethylbenz(a)anthracene (DMBA)/TPA induced skin papillo-
ma formation and carcinoma incidence [13]. Conversely, knockout of
Pdcd4 expression in mice increases DMBA/TPA induced skin papilloma
formation and carcinoma occurrence [14]. In addition to inhibiting the
tumor promotion stage, Pdcd4 has also been demonstrated to be in-
volved in tumor progression stage. Overexpression of Pdcd4 inhibits
colon, breast, and ovarian tumor cell invasion [5,15–18], while knock-
down of Pdcd4 promotes tumor cell invasion [17,19,20]. Inhibi-
tion of tumor cell invasion by Pdcd4 is attributed, at least in part,
by suppressing activator protein-1 (AP-1) dependent transcription
that is through inhibiting the transactivation of c-Jun or c-Fos
[8,12]. Pdcd4 blocks c-Jun activation by inhibiting the expression of
mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1)
(also known as hematopoietic progenitor kinase 1), a kinase up-
stream of Jun N-terminal kinase (JNK) [18]. MAP4K1 is a mammalian
STE-20-like protein serine/threonine kinase which regulates the JNK
signaling pathway [21]. MAP4K1 activates JNK through the signaling
pathway MAP4K1→TAK1→MKK4→ JNK [22] and does not affect
otherMAPK signaling pathways, including the ERK and p38 signaling
pathways [23]. MAP4K1 is involved in the stress response, prolifera-
tion, and apoptosis of hematopoietic cells; however, the expression
regulation and functions of MAP4K1 outside of the hematopoietic cells
is poorly understood. We previously reported that over-expression of
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Pdcd4 suppressed MAP4K1 expression, with consequent inhibition of
c-Jun activation and AP-1-dependent transcription [18]. In addition, ec-
topic expression of map4k1 cDNA enhanced c-Jun phosphorylation and
activated AP-1 dependent transcription [18], suggesting that MAP4K1
plays a crucial role in c-Jun activation. However, how Pdcd4 regulates
the expression of MAP4K1 remains unknown.

Recently, we demonstrated that knockdown of Pdcd4 expression in
colon tumor GEO and HT29 cells led to a fibroblast-like morphological
change and promoted invasion [19]. In addition, Pdcd4 knockdown
resulted in down-regulation of E-cadherin expression, accumulation
of β-catenin into the nuclei, and activation of β-catenin/Tcf and AP-1
dependent transcription [19]. Promoting tumor cell invasion by Pdcd4
knockdown was contributed at least in part by c-Myc elevation since
knockdown of c-Myc inhibited invasion induced by Pdcd4 knockdown
[20]. c-Myc, a proto-oncogene encoding transcription factor, frequently
up-regulated protein in all types of human cancers, whose expression is
highly correlated with high-grade premalignancy and invasive tumors
[24]. c-Myc is an essential protein for embryogenesis and is involved
in cell migration, invasion, and metastasis [24,25]. Being a transcription
factor, c-Myc is able to function as transcription activator or repressor
depending on the recruiting factors [26]. For example, c-Myc can stim-
ulate cyclin D2 and cyclin-dependent kinase 4 expression as repressed
p27KIP1 expression for promoting cell cycle progression [24]. In addi-
tion, c-Myc also globally influences chromatin structure and affects ge-
netic program [27].

In this study, we provide mechanistic insights of how c-Myc, a tar-
get of β-catenin/Tcf dependent transcription, regulates the expres-
sion of MAP4K1 and activation of AP-1 dependent transcription.

2. Materials and methods

2.1. Tissue culture

The colon GEO (a gift from Dr. Douglas Boyd, MD Anderson Cancer
Center, Houston, TX, USA) and HT29 cells (American Type Culture Collec-
tion, ATCC, Manassas, VA) were grown in McCoy's medium containing
10% FBS, 2 mM L-glutamine, and 100 U/ml penicillin–streptomycin.
HEK293 cells were purchased from ATCC and were grown in DMEMme-
dium containing 10% FBS, 2 mM L-glutamine, and 100 U/ml penicillin–
streptomycin. Cells were incubated at 37 °C in a humidified atmosphere
of 5% CO2 in air.

2.2. Western blot analysis

Aliquots containing 20 to 40 μg of protein were separated through
SDS-PAGE, and transferred to nitrocellulose membranes as described
previously [11]. Subsequently, the membrane was incubated with pri-
mary antibodies overnight followed by horseradish peroxidase-linked
secondary antibody for 1 h. The target protein was visualized by chemi-
luminescence. The band intensity was quantified using VisionWork LS
image acquisition and analysis software (UVP, Upland, CA). The follow-
ing antibodies were used: MAP4K1 (1:200 dilution), Xpress (1:5000 di-
lution), c-Myc (1:1000 dilution), phospho-JNK (1:1000 dilution),
phospho-c-Jun (Ser-73) (1:1000 dilution), phospho-ERK (1:1000 dilu-
tion), JNK (1:1000dilution), ERK (1:1000dilution), and c-Jun (1:1000di-
lution). MAP4K1 antibody was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA) and Xpress antibodywas from Life Tech-
nologies (Grand Island, NY), while the rest of the antibodies were pur-
chased from Cell Signaling (Danvers, MA).

2.3. Site-specific mutagenesis

The −792 bp to −51 bp 5′-flanking region of human map4k1
promoter was generated by PCR and ligated into pGL3-basic vector
(Promega, Madison, WI) as described previously [18]. The consensus
sequence of the c-Myc binding site at −536 bp on the map4k1
promoter was mutated from CACGTG to TATATA (mutated nucleo-
tides are underlined) using wild-type pMAP4K1(792)-LUC as the tem-
plate and the produced mutant was named as 536m. The site-specific
mutagenesis was performed using QuickChange II XL Site-DirectedMu-
tagenesis kit (Agilent Technologies, Santa Clara, CA). Dominant negative
Tcf4 construct (pcDNA4-dnTcf4) was generated using wild-type Tcf4
cDNA as the template. The first 92 bp were deleted using QuickChange
II XL Site-Directed Mutagenesis kit (Agilent Technologies) and
sub-cloned into pcDNA4/HisMax vector (Life Technologies). The
wild-type Tcf4 cDNA was purchased from Origene (Rockville, MD). All
constructs were verified by DNA sequencing.
2.4. Cell transfection and luciferase activity assays

For map4k1 promoter activity assays, 3×104 cells were transiently
transfected with 0.2 μg of pMAP4K1(792)-LUC (or 536m) along with
10 ng of pRL-SV40 using jetPRIME transfection reagent (Polyplus-
Transfection Inc., New York, NY). For the specificity assay, 0.1 μg of
pcDNA, pCMV-Myc, or pCMV-β-gal and 0.2 μg of pMAP4K1(792)-LUC
were transfected along with 10 ng of pRL-SV40 using jetPRIME trans-
fection reagent as above. For AP-1 dependent transcription assays,
3×104 cells were transfected with various amounts of dnTcf4 expres-
sion plasmid (pcDNA-dnTcf4) and 0.2 μg of 4× AP-1-Luc plasmid [11]
and 10 ng of pRL-SV40 plasmid. After 48 h, the cells were lysed in 1×
lysis buffer (Promega) and the luciferase activity was determined as
previously described [20].

For over-expression of c-Myc, 2 μg or otherwise indicated of
c-Myc expression plasmid (Origene) was transiently transfected
into HEK293 cells (2×105 cells/60 mm dish) using Fugene HD re-
agent (Promega). After 72 h, cells were collected for RNA extraction
or cell lysates.
2.5. Real-time PCR (qPCR)

The total RNA isolation and real-time PCR were performed as de-
scribed previously [19]. Briefly, after synthesis of the first strand
cDNA using the Superscript First-Strand Kit (Invitrogen), mRNA levels
of map4k1, c-myc, or GAPDH were quantified by real-time PCR in a
LightCycler 480 (Roche Applied Science, Indianapolis, IN). The PCR cy-
cling was performed at 95 °C for 6 min followed by 40 cycles of dena-
turation (95 °C for 15 s), annealing (61 °C for 30 s), and extension
(72 °C for 20 s). To determine the specificity of the PCR, the amplified
products were subjected to melt-curve analysis using the standard
machine method. The target mRNA level was normalized to the inter-
nal control, GAPDH, using the formulaΔCT=CT (target)−CT (GAPDH)
(CT: threshold cycle). The level of target gene expression in control
cells was designated as 100%. The relative expression levels were cal-
culated using the equation 100×2−[average ΔCT (test)−average ΔCT (control)]

[28]. The primers used for amplifyingmap4k1, c-myc, and GAPDHwere
purchased from SA Biosciences (Frederick, MD).
2.6. Chromatin immunoprecipitation (ChIP) assay

GEO-shLacZ and GEO-shPdcd4 cells as well as HT29-shLacZ and
HT29-shPdcd4 cells were grown to 70–80% confluence and fixed with
formaldehyde. ChIP assay was performed using ChIP-IT™ Express kit
(Active Motif, Carlsbad, CA) according to the manufacturer's protocol.
The c-Myc antibody was used and the preimmune mouse serum was
used as the negative control. The immunoprecipitated DNAwas quanti-
tated by qPCR. The following primers were used to amplify human
map4k1 promoter: forward, 5′‐CATCTGCCTGGATACCTGTG; reverse,
5′‐TCTCCATTAGGTTCCGGTCT. The input DNA not subjected to immu-
noprecipitation was used as control in PCR reaction. PCR products
were analyzed onto 2% agarose/Tris-borate EDTA gels.
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Fig. 2. Over-expression of c-Myc stimulates MAP4K1 expression and activates c-Jun.
(A) Over-expression of c-Myc increases map4k1 mRNA. The mRNA levels of map4k1 and
GAPDH were determined by qPCR using total RNA isolated from HEK293 cells transfected
with either control or c-Myc expression plasmid for 72 h. The ratio of map4k1/GAPDH in
cells transfectedwith the control vector is designated as 100%. Two independent experiments
were performed with 3 replicates for each sample. The data are shown and expressed as
mean±SD. The asterisk indicates a significant difference as determined by one-way
ANOVA (Pb0.01). (B) c-Myc enhances the promoter activity ofMAP4K1. Increasing amounts
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2.7. Knock-down of c-Myc and expression of dnTcf4

GEO-shPdcd4 cells (5×105 cells on a 60 mmplate)were transfected
with 4.4 μl of 10 μM siRNA (Santa Cruz Biotechnology) (or 0.8 μg of
pcDNA-dnTcf4) along with 0.4 μg of pMACS Kk.II plasmid (Miltenyi
Biotec, Auburn, CA) using jetPRIME transfection reagent (Polyplus-
Transfection Inc.) according to the manufacturer's protocol. Twenty-
four hours post-transfection, the transfected cells were enriched by
H-2Kk antibody conjugated magnetic beads according to the
manufacturer's protocol (Miltenyi Biotec). The eluted cells were then
cultured for additional 48 h for qPCR, Western blot, or transfection
assays.

2.8. Statistical analysis

Statistical analyses were performed using one-way ANOVA (http://
faculty.vassar.edu/lowry/anova1u.html). Data are shown as the
mean±standard deviation (SD) with at least three replicates (n≥3).
Differences were considered statistically significant at the P≤0.05
level. Each experiment was repeated at least twice to confirm the
results.

3. Results

3.1. Pdcd4 knockdown stimulates MAP4K1 expression and activates the
JNK signaling pathway

Previously, we have demonstrated that over-expression of Pdcd4
resulted in inhibition of MAP4K1 expression [18]. To test whether
knockdown of Pdcd4 up-regulates MAP4K1 expression and activates
JNK and c-Jun, the stable Pdcd4 knockdown (GEO-shPdcd4) and vector
control (GEO-shLacZ) GEO cells were used [20]. The total mRNAs from
these cells were isolated and themap4k1 mRNA levels were compared
between GEO-shLacZ and GEO-shPdcd4 cells by qPCR using MAP4K1
specific primers. As shown in Fig. 1A, the map4k1 mRNA expression
was increased by approximately 50% by Pdcd4 knockdown. In addition,
the protein level of MAP4K1 also increased in GEO-shPdcd4 cells com-
paring to the GEO-shLacZ cells (Fig. 1B). MAP4K1 is a kinase upstream
(0–100 ng) of pCMV6-Myc plasmid and pMAP4K1-LUC (0.2 μg) along with 10 ng of
pRL-SV40 were transfected into HEK293 cells. The total DNA was maintained at 0.3 μg by
adding the empty vector pcDNA 3.1 DNA. The activity of cells transfected with 0 ng of
pCMV6-Myc is designated as 100%. Three independent experiments were performed with
5 replicates for each sample. The represented data are shown and expressed as mean±SD
(n=5). The asterisk denotes a significant difference compared to transfection with 0 μg of
pCMV6-Myc as determined by one-way ANOVA (Pb0.005). (C) Stimulation of map4k1
promoter by c-Myc is specific. The pcDNA, pCMV-Myc, or pCMV-β-gal (0.1 μg) and
pMAP4K1-LUC (0.2 μg) along with 10 ng of pRL-SV40 were transfected into HEK293
cells as described in (B). The activity of cells transfected with pcDNA and pMAP4K1-LUC
is designated as 100%. The asterisk denotes a significant difference as determined by
one-way ANOVA (Pb0.005). (D) Over-expression of c-Myc elevates c-Jun phosphoryla-
tion. Cell lysate from HEK293 cells transfected with either control or c-Myc expression
plasmid for 72 h was used. Western blot analysis was performed using antibodies against
c-Myc, phospho-c-Jun (ser-73), and GAPDH. The ratio of phospho-c-Jun (ser-73)/GAPDH
in control cells is designated as 1.0.
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Fig. 1. Pdcd4 knockdown stimulates MAP4K1 expression and activates the JNK signaling
pathway. (A) The mRNA level of map4k1 is up-regulated in Pdcd4 knockdown cells. The
mRNA levels of map4k1 and GAPDH were determined by qPCR using total RNA isolated
from GEO-shLacZ and GEO-shPdcd4 cells. The ratio of map4k1/GAPDH in GEO-shLacZ
cells is designated as 100%. Three independent experiments were performed with tripli-
cates for each sample. The data are shown and expressed as mean±standard deviation
(SD). The asterisk indicates a significant difference as determined by one-way ANOVA
(Pb0.01). (B) The protein level ofMAP4K1 is increased and its downstream targets are ac-
tivated in Pdcd4 knockdown cells. Western blot analysis was performed using antibodies
against MAP4K1, phospho-JNK, phospho-c-Jun (ser73), JNK, c-Jun, and GAPDH.
of JNK that regulates the activation of JNK [22]. In order to determine
whether Pdcd4 knockdown activates the JNK signaling pathway, the
Western blot analysis was performed. The phospho-JNK and phospho-
c-Jun (ser-73) were expressed at a much higher level in GEO-shPdcd4
cells than in GEO-shLacZ cells in which they were barely detectable,
whereas the levels of total JNK and c-Jun proteins were similar in
GEO-shLacZ and GEO-shPdcd4 cells (Fig. 1B). These results suggest that
Pdcd4 knockdownelevatesMAP4K1 expression and activates the JNK sig-
naling pathway. It is noteworthy that the level of phospho-c-Jun at Ser-63
is similar in both control and Pdcd4 knockdown cells [19]. Thus, Ser-73 is
probably the primary phosphorylation site in the activated c-Jun in Pdcd4
knockdown cells. The differential phosphorylation at Ser-63 and Ser-73 of
c-Jun has been reported previously [29].
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Fig. 3. The c-Mycbinding site at−536of themap4k1promoter responds to c-Myc regulation.
(A) Pdcd4 knockdown stimulatesmap4k1 promoter activity. The pMAP4K1(792)-LUC (WT)
or 536m promoter construct (0.2 μg) was transfected into GEO-shLacZ and GEO-shPdcd4
cells along with 10 ng of pRL-SV40. The activity of GEO-shLacZ cells transfected with WT is
designated as 1. Three independent experiments were performed with 5 replicates for each
sample. The represented data are shown and expressed as mean±SD (n=5). The asterisk
denotes a significant difference compared with cells transfected with WT as determined by
one-way ANOVA (Pb0.0001). (B and C) c-Myc directly binds to the map4k1 promoter in
Pdcd4 knock-down cells. ChIP assays were performed with cell lysates from either
GEO-shLacZ orGEO-shPdcd4 cells using control preimmune IgG (Pre) or anti-c-Myc antibody
(c-Myc). The DNAs from cell lysate (input) and ChIP enrichedwere quantified by qPCR using
primers for amplifying the c-Myc binding site at−536 bp on the promoter of MAP4K1. The
representative PCR products were resolved onto 2% agarose gels (B). The level of the target
gene in immunoprecipitated DNA of each sample is compared to that in input chromatin,
which is equivalent to 100% (C).
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3.2. Over-expression of c-Myc stimulates MAP4K1 expression and
activates c-Jun

Recently,we reported that knockdownof Pdcd4up-regulated c-Myc
expression [20]. Since c-Myc regulates the expression of numerous
genes, we thus hypothesize that up-regulation of c-Myc contributes to
the stimulation of MAP4K1 expression. To test this, the c-Myc expres-
sion plasmid (pCMV6-Myc) was transiently transfected into HEK293
cells and the MAP4K1 expression and c-Jun activation were examined.
After 72 h, the cells were harvested, and total RNA and cell lysate were
prepared. The level ofmap4k1mRNA was assayed by qPCR. As shown in
Fig. 2A, the mRNA level of map4k1 is approximately 50% higher in the
cells transfected with pCMV6-Myc (c-Myc) than in the cells transfected
with empty vector (control). To test whether c-Myc also activates
map4k1 promoter activity, the map4k1 promoter luciferase construct
[pMAP4K1(792)-LUC] was transfected along with pCMV6-Myc into
HEK293 cells. After 48 h, cells were lysed and the luciferase activity was
assayed. The −792 nt to −51 nt (relative to the initiation ATG) in the
5′ flanking region of human map4k1 promoter was amplified by PCR
and ligated into pGL3-basic vector and named as pMAP4K1(792)-LUC.
Transient co-transfection of pCMV6-Myc and pMAP4K1(792)-LUC plas-
mids stimulatedmap4k1 promoter activity in a concentration dependent
manner (Fig. 2B). Themap4k1 promoter was activated by approximately
2-folds when 100 ng of pCMV6-Myc plasmid was transfected. Activation
of map4k1 promoter by c-Myc is specific as transient expression of
β-galactosidase did not stimulate map4k1 promoter activity (Fig. 2C). To
test whether c-Myc regulates c-Jun activation, the level of phospho-
c-Jun was analyzed by Western blot analysis using phospho-c-Jun
(ser-73) antibody. The level of phospho-c-Jun was approximately
3-folds higher in c-Myc expressing cells than that in control cells
(Fig. 2D), revealing that over-expression of c-Myc not only stimulates
MAP4K1 expression but also activates c-Jun.
3.3. The c-Myc binding site at−536 of the map4k1 promoter responds to
c-Myc regulation

To investigate how MAP4K1 expression is regulated in the
Pdcd4 knockdown cells, the pMAP4K1(792)-LUC was transfected
into GEO-shLacZ and GEO-shPdcd4 cells. The luciferase activity in
GEO-shPdcd4 cells was approximately 4.5-folds of that seen in
GEO-shLacZ cells (Fig. 3A, WT), indicating that map4k1 promoter
activity (−792 bp to −51 bp) is enhanced by Pdcd4 knockdown.
This region ofmap4k1 promoter contains a potential c-Myc binding
site located at −536 bp (Fig. 3A). To test whether this potential
c-Myc binding site mediates the stimulation of map4k1 promoter
activity in Pdcd4 knockdown cells, we mutated the c-Myc binding site
and transfected the mutated construct (536m) into GEO-shLacZ and
GEO-shPdcd4 cells. The 536mexhibited an approximately 6-fold reduc-
tion of map4k1 promoter activity in the GEO-shPdcd4 cells (Fig. 3A,
filled bars). A similar reduction was also observed when the 536m
was transfected into GEO-shLacZ cells (Fig. 3A, open bars), suggesting
that this c-Myc binding site is essential for MAP4K1 expression. Trans-
fection of 536m into HT29-shPdcd4 cells (HT29 cells with Pdcd4 knock-
down) also showed a dramatic reduction of map4k1 promoter activity
(Supplementary Fig. 1). Since the c-Myc protein level in GEO-shPdcd4
cells is approximately 2.5-folds higher than that in GEO-shLacZ cells
[20], it is expected that more c-Myc molecules bind to themap4k1 pro-
moter in GEO-shPdcd4 than in GEO-shLacZ cells. To test this, ChIP as-
says were performed to examine the binding of c-Myc to the map4k1
promoter using map4k1 primers which amplified the c-Myc binding site
at position−536 bp. The input chromatin without immunoprecipitation
was used as the control in PCR reaction. A high level of PCR products
(185 bp) was observed using c-Myc antibody precipitated chromatin
from lysates of GEO-shPdcd4 cells (Fig. 3B, lane 6), wherein the band in-
tensity of the PCR productwas approximately 20-folds higher than that of
the pre-immune serum precipitated chromatin (Fig. 3C). However, using
c-Myc antibody precipitated chromatin from GEO-shLacZ cell lysates, the
same primers only generated a low level of PCR products (Fig. 3B, lane 3),
whose band intensity is similar to that of the pre-immune serum precip-
itated chromatin (Fig. 3C). Similar resultswere also observedwhen c-Myc
antibody was used to precipitate chromatin from HT29-shLacZ and
HT29-shPdcd4 cell lysates (Supplementary Fig. 2). These results directly
show that c-Myc binds to themap4k1 promoter to stimulateMAP4K1 ex-
pression in Pdcd4 knockdown cells.
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lation of JNK and c-Jun (ser-73). The cell lysates from control and si-Myc cells were
subjected to Western blot analysis using various antibodies as indicated. The ratio of
target protein/GAPDH in control cells is designated as 1.0. (C) Knockdown of c-Myc in-
hibits AP-1 dependent transcription. The relative luciferase activity in control cells is
designated as 100%. Three independent experiments were performed with 5 replicates
for each sample. The represented data are shown and expressed as mean±SD (n=5).
The asterisk indicates a significant difference as determined by one-way ANOVA
(Pb0.005).
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3.4. Down-regulation of c-Myc reverses MAP4K1 expression in Pdcd4
knockdown cells

If c-Myc contributes to MAP4K1 expression in Pdcd4 knockdown
cells, knockdown of c-Myc should inhibit MAP4K1 expression. In order
to enhance the population of c-Myc knockdown cells, pMACS Kk.II plas-
mid was co-transfected with c-myc siRNA into GEO-shPdcd4 cells. The
pMACS Kk.II plasmid produces a mouse MHC class I H-2Kk protein on
the cell membrane with a truncated cytoplasmic domain. Twenty-four
hours post-transfection, the cells with successful transfection were
enriched by H-2Kk antibody conjugated magnetic beads. As shown in
Fig. 4A, transient transfection of c-myc siRNA resulted in reduction of ap-
proximately 50%of c-mycmRNA. The level ofmap4k1mRNA is about 20%
lower in the cells transfectedwith c-myc siRNA (si-Myc) than in the cells
transfected with scramble siRNA (control), suggesting that down-
regulation of c-Myc reverses MAP4K1 expression in Pdcd4 knockdown
cells. Although knockdown of c-Myc inhibits about 20% of map4k1
mRNA expression, this inhibition is significantly enough to affect the ac-
tivation of downstream targets. The level of phospho-JNK and phospho-
c-Jun in the si-Myc cellswas approximately 30% and 50%of that observed
in the control cells, respectively (Fig. 4B). In contrast, the total JNK pro-
tein level was similar between control and si-Myc cells (Fig. 4B). In addi-
tion, the levels of phospho-ERKwere similar between si-Myc and control
cells, suggesting that knockdownof c-Myc did not affect the ERK signaling
pathway. Interestingly, the total c-Jun protein levelwas slightly decreased
in the si-Myc cells, whichmight be due to the feedback inhibition of c-Jun
expressionby inactivating c-Jun [30].Moreover, knockdownof c-Myc also
inhibited approximately 50% of AP-1 dependent transcription (Fig. 4C).
These results suggest that c-Myc enhances MAP4K1 expression which
contributes to the activation of JNK, c-Jun, and AP-1 dependent transcrip-
tion in Pdcd4 knockdown cells.

3.5. β-catenin/Tcf dependent transcription regulates MAP4K1 expression,
JNK activation, and AP-1 dependent transcription

To study the functional significance of β-catenin/Tcf dependent
transcription in regulating MAP4K1 expression, we tested whether dom-
inant negative Tcf4 (dnTcf4) inhibits the expression of MAP4K1 and acti-
vation of the JNK signaling pathway. The dnTcf4 expression plasmid
(pcDNA4-dnTcf4) and pMACS Kk.II plasmids were transfected into
GEO-shPdcd4 cells and the transfected cells were enriched byH-2Kk anti-
body conjugated beads. ThemRNA levels of c-myc andmap4k1 in control
and dnTcf4 expressing (dnTcf4) cells were determined by qPCR. The
dnTcf4 is lacking the β-catenin interaction domain and expression of
dnTcf4 has been known to inhibit the β-catenin dependent transcription
[31]. As shown in Fig. 5A, over-expression of dnTcf4 cDNA decreased
by approximately 20% and 40% in c-myc and map4k1 mRNA levels,
respectively, indicating that dnTcf4 suppressed c-Myc and MAP4K1
expression. To further confirm that dnTcf4 regulatesMAP4K1 expression,
the pcDNA4-dnTcf4 was transfected along pMAP4K1(792)-LUC
into GEO-shPdcd4 cells. Expression of dnTcf4 inhibited map4k1 pro-
moter activity in a dose dependent manner (Fig. 5B). The map4k1
promoter activity was reduced to approximately 35% when 0.6 μg
of pcDNA4-dnTcf4 plasmid was transfected. To further investigate
the effects of over-expressing dnTcf4 on the JNK signaling pathway, a
series of Western blotting analyses was performed. The c-Myc protein
expression was suppressed by about 3-folds by dnTcf4 (Fig. 5C). The
levels of phospho-JNK and phospho-c-Jun in dnTcf4 cells were approx-
imately 15% and 35% of that seen in control cells, respectively (Fig. 5C).
The total JNK protein levels were similar between control and dnTcf4
cells while the total c-Jun levels were suppressed in the dnTcf4 cells.
Moreover, over-expression of dnTcf4 cDNA resulted in the inhibition of
AP-1 dependent transcription (Fig. 5D). Transfection of 0.2 or 0.4 μg of
pcDNA4-dnTcf4 plasmid displayed approximately 50% inhibition. It
has been known that c-Myc is a target of the β-catenin-dependent tran-
scription in the Pdcd4 knockdown cells [20]. Thus, these results suggest
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that the β-catenin/Tcf4 complex regulates the c-Myc expression to me-
diate theMAP4K1 expression in Pdcd4 knockdown cells resulting in the
change of JNK activity and AP-1 dependent transcription.
4. Discussion

In this study, we demonstrated that MAP4K1 expression is up-
regulated by elevating c-Myc expression. Knockdown of c-Myc expres-
sion results in inhibition of MAP4K1 expression, c-Jun activation, and
AP-1 dependent transcription. In addition, over-expression of dnTcf4
suppresses c-Myc and MAP4K1 expression as well as the activation of
c-Jun and AP-1 dependent transcription. Our results suggest that activa-
tion of β-catenin/Tcf dependent transcription by Pdcd4 knockdown
up-regulates MAP4K1 expression and activates the JNK signaling path-
way through c-Myc (Fig. 6).

Elevated or deregulated expression of c-Myc has been detected in a
wide range of human cancers, and is often associated with aggressive,
poorly differentiated tumors [24]. In human colon cancer, c-Myc expres-
sion is frequently elevated at both early and late stages of colon carcino-
genesis [32]. Although it has been well understood that c-Myc regulates
cell cycle progression and cell proliferation, several studies also implicat-
ed that c-Myc might be involved in tumor cell invasion and metastasis.
For example, c-mycmRNA levels were higher in metastatic lesions than
in primary lesions [33,34]. Over-expression of c-Myc can reverse the in-
hibitory effect of F box only protein 8 on tumor invasion [35]. In addition,
we recently demonstrated that c-Myc contributes to colon tumor cell in-
vasion induced by Pdcd4 knockdown because down-regulation of c-Myc
results in inhibition of invasion in the Pdcd4 knockdown cells [20]. These
Pdcd4 

Tcf4 -catenin 
c-Myc 

MAP4K1 

JNK 

c-Jun 

AP-1 

c-Myc 

Fig. 6. A model depicting the correlation between β-catenin and AP-1 dependent tran-
scription in Pdcd4 knock-down cells.
findings suggest that c-Myc is an important regulator of tumor cell
invasion.

How does c-Myc regulate colon tumor cell invasion? The present
study extends this mechanistic understanding to now implicate that
MAP4K1 expression is regulated by c-Myc. Knockdown of Pdcd4
up-regulates MAP4K1 expression (Fig. 1) and stimulates MAP4K1
promoter activity (Fig. 3). Over-expression of c-Myc increases
MAP4K1 mRNA level (Fig. 2A), while c-Myc knockdown decreases
MAP4K1 mRNA level (Fig. 4A). Mutation of the c-Myc binding site
on the MAP4K1 promoter decreases the promoter activity dramati-
cally (Fig. 3A and Supplementary Fig. 1). In addition, the regulation
of MAP4K1 expression by c-Myc is further supported by the direct
binding of c-Myc to the promoter region of MAP4K1 (Fig. 3B,C, and Sup-
plementary Fig. 2). These findings collectively indicate that MAP4K1 ex-
pression is regulated by c-Myc. MAP4K1, a kinase three steps upstream
of JNK, regulates JNK activation. In turn, JNK regulates the activation of
c-Jun by phosphorylating it at Ser-63 and Ser-73 and subsequently acti-
vates AP-1 dependent transcription. Our data also suggest that regulation
of the JNK signaling pathway by c-Myc is specific since knockdown of
c-Myc did not affect ERK phosphorylation (Fig. 4B). Ectopic expression
of dominant negative MAP4K1 in which methionine substituted the
place of lysine 46 inhibits c-Jun phosphorylation, AP-1 dependent
transcription, and invasion [18]. Conversely, overexpression of MAP4K1
cDNA increases phosphorylation of c-Jun [18]. AP-1 is a transcription fac-
tor complex composed of Jun-Jun homodimers or Jun-Fos heterodimers.
The Jun protein family includes c-Jun, JunB, and JunD. The Fos protein
family contains c-Fos, Fra-1, Fra-2, and FosB. Immunohistochemical
studies of human colon cancer tissues revealed that c-Jun and Fra-1 ex-
pression is frequently elevated in adenoma, adenocarcinoma, and neuro-
endocrine carcinoma [36]. Activation of AP-1 activity by over-expression
of Jun or Fos proteins enhances invasion and metastasis [30]. In addition,
inhibition of AP-1 activity by the dominant negative c-Jun, TAM67, sup-
presses the invasive ability of a keratinocyte [37], fibroblast [38], and
squamous carcinoma [39]. Thus, activation of AP-1 dependent transcrip-
tion by Pdcd4 knockdown is likely to contribute, at least in part, to the
promotion of colon tumor cell invasion through elevation of MAP4K1 ex-
pression, which is regulated by c-Myc.

The Tcf transcription factor family consists of four members, Tcf1,
Tcf3, Tcf4, and LEF1. In the presence of Wnt signaling, β-catenin trans-
locates into the nucleus and binds with a member of the Tcf family to
form a β-catenin/Tcf complex resulting in the activation of transcription
of the β-catenin/Tcf target genes, including c-Myc [40]. The finding that
expression of dnTcf4 attenuates JNK phosphorylation, c-Jun phosphory-
lation, and AP-1 transactivation (Fig. 5) suggests that β-catenin/Tcf de-
pendent transcription affects the JNK signaling pathway. On the other
hand, it has been suggested that JNK/c-Jun regulates β-catenin/Tcf de-
pendent transcription since the expression of Tcf4 is elevated in JNK1
transgenic mice while depletion of c-Jun expression significantly re-
duces Tcf4 expression [41]. Thesefindings reveal a feedbackmechanism
of regulation between theWnt signaling pathway and the JNK/c-Jun sig-
naling pathway. It is noteworthy that themap4k1mRNA level decreases
more in dnTcf4 expressing cells (Fig. 5A) than in c-Myc knockdown cells
(Fig. 4A). This finding suggests that other target(s) of β-catenin/Tcf de-
pendent transcription besides c-Myc may regulate MAP4K1 expression,
which needs to be further investigated.

In conclusion, our results show that elevation of c-Myc expression
by Pdcd4 knockdown stimulates MAP4K1 expression resulting in the
activation of JNK, and c-Jun, and transactivation of AP‐1. These find-
ings provide a molecular explanation of how Pdcd4 knockdown acti-
vates AP-1 dependent transcription and connects β-catenin/Tcf
dependent transcription and AP-1 dependent transcription.
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