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We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their 
thermodynamic properties and discuss the role of these solutions for the existence of first order phase 
transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be 
interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are 
antiperiodic on the compact coordinate.
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1. Introduction

We construct analytic neutral hairy soliton solutions in Anti de 
Sitter (AdS) spacetime and discus their properties. This analysis is 
important in the context of AdS/CFT duality [1] because bulk solu-
tions correspond to ‘phases’ of the dual field theory [2].

There is by now a huge literature on (locally) asymptotically 
AdS solutions in both phenomenological models and consistent 
embedding in supergravity. We will consider theories of gravity 
coupled to a scalar field with potential V (φ). AdS spacetime is not 
globally hyperbolic, which means that the evolution is well defined 
if the boundary conditions are imposed. In particular, since for the 
same self-interaction there exist many boundary conditions for the 
scalar field (that may or may not break the conformal symmetry 
in the boundary), one can ‘design’ a specific field theory [3] with a 
given effective potential [3–5].

Different foliations of AdS spacetime lead to different defini-
tions of time and so to distinct Hamiltonians of the dual field 
theory. Since the classical (super)gravity background, with possible 
α′ corrections, is equivalent to the full quantum gauge theory on 
the corresponding slice, one expects physically inequivalent dual 
theories for different foliations. Indeed, when the horizon topology 
of the black hole is Ricci flat and there are no compact directions, 
there are no first order phase transitions similar to the Hawking–
Page [6] phase transitions that exist for the spherically symmetric 
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black holes. However, when some of the spatial directions are com-
pactified on a circle asymptotically, one expects the existence of 
a negative Casimir energy of the non-supersymmetric field the-
ory that ‘lives’ on the corresponding topology. Horowitz and Myers 
have shown in [7] that, indeed, there exists a (bulk) gravity so-
lution dubbed ‘AdS soliton’ with a lower energy than AdS itself. 
This solution was obtained by a double analytic continuation (in 
time and one of the compactified angular directions) of the planar 
black hole. This fits very nicely with the proposal of Witten [2] that 
a non-supersymmetric Yang–Mills gauge theory can be described 
within AdS/CFT duality by compactifying one direction and impos-
ing anti-periodic boundary conditions for the fermions around the 
circle.

Hairy neutral AdS solitons were previously analysed (see, e.g. 
[8–14]), though most of these studies are using numerical meth-
ods. Hence, it would be interesting to find examples of analytic 
hairy AdS solitons and investigate their generic properties. In re-
cent years, analytic regular neutral hairy black holes in AdS were 
constructed, e.g. [15–21] and so one expects that constructing an-
alytic soliton solutions could be also possible. We use some par-
ticular exact planar hairy black hole solutions in four and five 
dimensions of [15,16] and obtain the corresponding solitons by us-
ing a double analytic continuation as in [7]. The hairy AdS solitons 
are the ground state candidates of the theory [22].

Since the AdS soliton is the solution with the minimum energy 
within these boundary conditions [23,24], it is natural to investi-
gate the existence of phase transitions with respect to this thermal 
background. In the nice work [25], it was shown that there exist 
first order phase transitions between planar black holes and the 
AdS soliton. We construct the hairy AdS soliton and compute their 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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mass by using the counterterm method of Balasubramanian and 
Kraus [26] supplemented with extra counterterms for the scalar 
field as was proposed in [27]. We investigate then the existence of 
first order phase transitions with respect to the hairy AdS soliton 
and discuss the effect of ‘hair’ on the thermodynamical behaviour.

2. Hairy AdS soliton

In this section we construct exact hairy AdS soliton solutions in 
four and five dimensions and compute their energy. In five dimen-
sions [15,16], we obtain a new hairy black hole solution, which 
corresponds to a parameter ν that at first sight makes the moduli 
potential divergent. However, by taking the right limit, we show 
that the theory is in fact well defined and the solution is regular.

2.1. AdS soliton

We start with a short review of [25], though, to connect this 
analysis with the rest of the paper, the computations are done by 
using the counterterm method of Balasubramanian and Kraus [26].

We consider the usual AdS gravity action supplemented with 
the gravitational counterterm proposed in [26]

I[gμν ] =
∫
M

d4x (R − 2�)
√−g + 2

∫
∂M

d3x K
√

−h (1)

−
∫

∂M

d3x
4

l

√
−h

where � = −3/l2 is the cosmological constant (l is the radius of 
AdS), 16πG N = 1 with G N the Newton gravitational constant, the 
second term is the Gibbons–Hawking boundary term, and the last 
term is the gravitational counterterm. Here, h is the determinant 
of the induced boundary metric and K is the trace of the extrinsic 
curvature. The planar black hole solution is

ds2 = −
(

−μb

r
+ r2

l2

)
dt2 +

(
−μb

r
+ r2

l2

)−1

dr2 (2)

+ r2

l2
(dx2

1 + dx2
2)

where μb is the mass parameter and we consider the compactified 
coordinates 0 ≤ x1 ≤ Lb and 0 ≤ x2 ≤ L. The normalization is such 
that the time coordinate and the coordinates x1 and x2 have the 
same dimension and so the analytic continuation for obtaining the 
AdS soliton produces the same boundary geometry.

The role of the counterterm is to cancel the infrared divergence 
of the action so that the final result is finite:

I E
b = 2LLbβb

l4

(
−r3

b + μbl2

2

)
= − LLbβbr3

b

l4
(3)

The horizon radius is denoted by rb and βb is the periodicity of 
the Euclidean time that is related to the temperature of the black 
hole by:

T = β−1
b = (−gtt)

′

4π

∣∣∣∣
r=rb

= 3rb

4π l2
(4)

Using the usual thermodynamic relations and free energy F =
I E
b /βb , we obtain the energy and entropy of the planar black hole:

E = −T 2 ∂ I E
b

∂T
= 2LLbμb

l2
(5)

S = −∂(I E
b T ) = LLbr2

b
2

= A
(6)
∂T 4l G N 4G N
The AdS soliton solution was obtained in [7]

ds2 = − r2

l2
dτ 2 +

(
−μs

r
+ r2

l2

)−1

dr2 (7)

+
(

−μs

r
+ r2

l2

)
dθ2 + r2

l2
dx2

2

by using a double analytic continuation t → iθ , x1 → iτ of the 
planar black hole metric (3). To distinguish from the black hole 
solution, we denote by μs the mass parameter of the AdS soli-
ton and, in the Euclidean section (τ → iτE ), the periodicity is 
0 ≤ τE ≤ βs . To obtain a regular Lorentzian solution, the coordi-
nate r is restricted to rs ≤ r, where

−μs

rs
+ r2

s

l2
= 0 (8)

and to avoid the conical singularity in the plane (r, θ), we impose 
the following periodicity for θ :

Ls = 4π
√

gθθ grr

(gθθ )′

∣∣∣∣
r=rs

= 4π l2

3rs
(9)

The finite on-shell Euclidean action and mass of the AdS soliton 
can be obtained in a similar way (but we do not present the details 
here):

I E
s = − LLsβsμs

l2
(10)

and the mass can be obtained by using the thermodynamical rela-
tions with the free energy F = I E

s /βs = M (or from the quasilocal 
stress tensor) and the result is

M = − LLsμs

l2
(11)

The mass of the AdS soliton corresponds to a Casimir energy asso-
ciated to the compact directions of the dual boundary theory, and 
so it is negative.

With this information it is straightforward to check the exis-
tence of first order phase transitions. To compare the Euclidean so-
lutions, one should impose the same periodicity conditions, which 
become in the boundary (r → ∞), βb = βs and Ls = Lb . Let us 
know compare the actions (free energies):

�I = I E
b − I E

s = L

l4

(
4π l2

3

)3

Lbβb[L−3
s − β−3

b ] (12)

= L

l4

(
4π l2

3

)3

Lbβb

[
1

L3
s

− T 3
]

The change of sign is an indication of a first order phase tran-
sition between the planar black hole and the AdS soliton. It was 
shown in [25] that the small hot black holes (with respect to rs) 
are unstable and decay to small hot solitons, but the large cold 
black holes are stable. Note that the phase transition is controlled 
by the dimensionless parameter z = T Ls .

2.2. Hairy AdS soliton in 4-dimensions

We consider the exact regular hairy black hole solutions with a 
planar horizon [15,16,28]. The action is

I[gμν,φ] =
∫
M

d4x
√−g

[
R − (∂φ)2

2
− V (φ)

]
(13)

+ 2
∫

d3xK
√

−h
∂M
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and we are interested in the following moduli potential1:

V (φ) = �(ν2 − 4)

3ν2

[
ν − 1

ν + 2
e−φlν (ν+1) + ν + 1

ν − 2
eφlν (ν−1) (14)

+ 4
ν2 − 1

ν2 − 4
e−φlν

]

+ 2α

ν2

[
ν − 1

ν + 2
sinh φlν(ν + 1)

− ν + 1

ν − 2
sinhφlν(ν − 1) + 4

ν2 − 1

ν2 − 4
sinhφlν

]

We focus on the concrete case of ν = 3, though hairy AdS 
solitons for other values of ν probably also exist but the analy-
sis is technically more involved and we do not investigate them 
in the present work. In this case, the scalar field potential be-
comes

V (φ) = 2�

27

(
5e−φ

√
2 + 10eφ

√
2/2 + 16e−φ

√
2/4

)
(15)

+ 4α

45

[
sinh

(
φ
√

2

)
− 10 sinh

(
φ
√

2/2

)

+ 16 sinh

(
φ
√

2/4

)]

The potential has two parts that are controlled by the param-
eters � and α. Asymptotically, where the scalar field vanishes, 
just the parameter � survives and it relates to the AdS radius as 
� = −3l−2.

Using the following metric ansatz

ds2 = �(x)

[
− f (x)dt2 + η2dx2

f (x)
+ dx2

1

l2
+ dx2

2

l2

]
(16)

the equations of motion can be integrated for the conformal factor 
[15,16,28,33,34]

�(x) = 9x2

η2(x3 − 1)2
(17)

With this choice of the conformal factor, it is straightforward to 
obtain the expressions for the scalar field

φ(x) = 2
√

2 ln x (18)

and metric function

f (x) = 1

l2
+ α

[
1

5
− x2

9

(
1 + x−3 − x3

5

)]
(19)

where η is the only integration constant. The parameter α is posi-
tive for x < 1 and negative otherwise. We shall focus below on the 
case x < 1.

The conformal boundary is at x = 1, where the metric becomes

ds2 = R2

l2

[
−dt2 + dx2

1 + dx2
2

]
(20)

and we use the following notation for the conformal factor:

R2 ≡ 1

η2(x − 1)2
(21)

1 For some particular values of the parameters, it becomes the one of a truncation 
of ω-deformed gauged N = 8 supergravity [29], see [30–32].
The geometry where the dual field theory ‘lives’ has the metric

ds2
dual =

l2

R2
ds2 = γabdxadxb = −dt2 + dx2

1 + dx2
2 (22)

The regularized Euclidean action for these black holes was ob-
tained in [27] (see, also, [35]) (in what follows we use the same 
notations as in the previous section for βb and Lb):

I E
B H = βb

(
− AT

4G N
+ 2LLb

l2
α

3η3

)
= − LLbαβb

3l2η3
(23)

where the area of the horizon and black hole temperature are

A = LLb�(xh)

l2
, T = α

4πη3�
(24)

The mass of the hairy black hole is [27,36]

Mb = 2LLbμb

l2
, μb = α

3η3
(25)

as can be also checked by using the usual thermodynamical rela-
tions. Using this expression of the mass, one can also easily check 
the first law of thermodynamics.

Let us now construct the hairy AdS soliton. By using again a 
double analytical continuation x1 → iτ and t → iθ in (16), the 
metric becomes

ds2 = �s(x)

[
−dτ 2

l2
+ λ2dx2

f (x)
+ f (x)dθ2 + dx2

2

l2

]
. (26)

Similarly with the hairy black hole case, the conformal factor (17)
is

�s(x) = 9x2

λ2(x3 − 1)2
(27)

but now we denote the integration constant with λ to distinguish 
it from the integration constant η of the black hole. To get rid of 
the conical singularity in the plane (x, θ), we have to impose the 
periodicity:

Ls = 4πλ

f ′

∣∣∣∣
x=xs

= 4πλ3�s

α
(28)

where xs is the minimum value of x, namely the biggest root of 
f (xs) = 0. After imposing the right periodicity on θ and restrict-
ing the coordinate x so that the metric is Lorentzian, we obtain a 
well-defined regular solution.

We use the method of [27] to compute the regularized Eu-
clidean action and the result is

I E
soliton = − Lβs�s(xs)

4l2G N
+ 2LLsβs

l2
α

3λ3
= − LLsβs

l2

(
α

3λ3

)
(29)

from which the mass can be immediately read off:

Msoliton = − LLsμs

l2
, μs = α

3λ3
(30)

As a check, we have also obtained the quasilocal stress tensor for 
this case and then computed the mass, but we do not present the 
details here.

2.3. Hairy AdS soliton in 5-dimensions

Let us now construct an exact hairy AdS soliton solution in five 
dimensions. We consider the solutions in [16], but we investigate 
the case ν = 5. In this case, at first sight the potential of [16] is not 
well defined. However, by taking the limit carefully, we obtain that 
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the theory (potential) and solution are regular. The ansatz metric 
is

ds2 = �(x)

[
− f (x)dt2 + η2dx2

f (x)
+ dx2

1

l2
+ dx2

2

l2
+ dx2

3

l2

]
(31)

and, for ν = 5, we obtain

�(x) = 25x4

η2
(
x5 − 1

)2
(32)

and

f (x) = 1

l2
+ α

32104

(
x10 − 6x5 + 30 ln x + 3 + 2

x5

)
(33)

The black hole temperature is

T = β−1
b = |α|

288πη4 |�|3/2

∣∣∣∣
x=xh

(34)

where f (xh) = 0. We shall consider the below the case when 
α < 0. The black hole entropy can be also easily computed and 
we obtain

S = Lb L2L3�
3/2

4l3G N
= A

4G N
, A = Lb L2L3

l3
�3/2 (35)

To regularize the Euclidean action we choose the following coun-
terterm for the scalar field:

Ict
φ =

∫
d4xE

√
hE

(
φ2

2l
− φ3

36l
+ 7φ4

864l

)
(36)

= 3Lb L2L3

l3T

[
6

η4l2(x − 1)2
− 8

η4l2(x − 1)
− 12

η4l2

]
+ O (x − 1)

The finite action is

I E
B H = βb

[
− AT

4G N
+ 3Lb L2L3

l3

(
− α

288η4

)]
(37)

= Lb L2L3βb

l3

(
α

288η4

)

and the mass of the hairy black hole is

Mbh = −3Lb L2L3μb

l3
, μb = α

288η4
(38)

We again construct the hairy AdS soliton by using a double analyt-
ical continuation x1 → iτ and t → iθ :

ds2 = �(x)

[
−dτ 2

l2
+ η2dx2

f (x)
+ f (x)dθ2 + dx2

2

l2
+ dx2

3

l2

]
(39)

The conformal factor for the hairy soliton is

�(x) = 25x4

λ2
(
x5 − 1

)2
(40)

and, to get rid of the conical singularity in the plane (x, θ), we have 
to impose the following periodicity of the angular coordinate:

Ls =
∣∣∣∣∣4πλ

f ′

∣∣∣∣
x=xs

∣∣∣∣∣ = 288πλ4�3/2

|α| (41)

We again consider α < 0, to be consistent with the black hole case. 
To complete the analysis, we compute the Euclidean action
I E
soliton = βs

[
Ls L2L3

l3

(
α

72λ4

)
+ 3Ls L2L3

l3

(
− α

288λ4

)]
(42)

= Ls L2L3βs

l3

(
α

288λ4

)

and the mass of the hairy AdS soliton

I E
solitonβ

−1
s = Msoliton = Ls L2L3

l3

(
α

288λ4

)
(43)

3. Implications for phase transitions

Within AdS/CFT duality, the black holes are interpreted as ther-
mal states in the dual field theory. We are going to show that there 
exist first order phase transitions between the planar hairy black 
hole and the hairy AdS soliton.

With the results from the previous sections, we are ready to in-
vestigate the existence of phase transitions.2 Let us focus on D = 4. 
Before comparing the actions, we would like to point out that from 
the definitions of xs and xh we obtain that they are equal, xs = xh . 
At first sight, this may be a bit strange because in general it is 
expected that they depend on the mass parameters λ and η for 
the soliton and black hole. However, in these unusual coordinates, 
xs and xh are defined by (19), but the true are of the horizon and 
‘center’ of the soliton are determined by the conformal factor in 
front of the metric. This conformal factor depends on the mass pa-
rameter and we define:

r2
b = �(xh, η)

l2
, r2

s = �(xs, λ)

l2
(44)

As before (13), we have to compare the free energies of so-
lutions in the same theory and so we have to impose the same 
periodicity conditions at the boundary βb = βs and Ls = Lb . The 
hairy AdS soliton has a negative energy (the AdS space in planar 
coordinates has zero mass) and it is the ground state of the the-
ory. Hence, the energy of the hairy black hole should be computed 
with respect to the ground state and we obtain

E = Mbh − Msoliton = LLb

l2
[2μb + μs] (45)

with μb and μs defined in (25) and (30).
The same periodicity of the Euclidean time implies the same 

temperature and we consider the hairy soliton solution as thermal 
background:

�F = β−1
b (I E

B H − I E
soliton) = T Lα

3l2

(
Lsβs

λ3
− Lbβb

η3

)
(46)

Using the expressions of the black hole temperature T and period-
icity Ls , we can rewrite the difference of the free energies as

�F = 4π LLs

3l2

[
�(λ, xs)

Ls
− T �(η, xh)

]
(47)

= 4π L

3l2
�(λ, xs)

[
1 − r3

b

r3
s

]

Written in terms of the temperature, there is a drastic change 
compared with the no-hair case because the conformal factor ap-
pears explicitly. Clearly, the sign of this expression is controlled by 
the ratio rb/rs . Interestingly enough, despite the appearance of the 
conformal factor, the critical point where �F = 0 it is again for 
the temperature Tc = 1/Ls (that is because when �F = 0, μb = μs

2 The case k = 1, when the horizon topology is spherical, was studied in [37].
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and so η = λ). This is what one expects for a conformal field the-
ory because the phase transition should depend on the ratio of the 
scales.

Writing the area of the black hole in terms of βb and βs , we 
find that

A
T l3

= αL

4π l5
β2

b Ls

η3
= LL

l

(
λ

η

)
(48)

where

L = 16π2

α2l4

[
9x2

h

(x3
h − 1)2

]3

(49)

However, since xh satisfies f (xh) = 0, it can be computed as a 
function of the parameter α of the moduli potential, which implies 
that the coefficient L (α, l) is a function only of α and l. From the 
definition (44), one can easily obtain rb/rs = λ/η and so (48) can 
be rewritten in this useful form:

A
T l3

= L L (α, l)

l

rb

rs
(50)

There is an important difference by comparing with the no hair 
case, namely the appearance of the function L (α, l). When α is 
very small so behave L and, in this case, one can still keep the ra-
dius of the horizon of the same size as rs . Therefore, for small α, 
not only the small hot black holes, but also the large hot black 
holes are unstable and decay to hairy AdS solitons. We are going to 
comment more on this new feature in ‘Conclusions’ section. When 
α parameter is large, the thermodynamical behaviour of hairy 
black holes is similar to the one of no-hairy planar black holes.

4. Conclusions

Hawking and Page have shown that there exists a phase transi-
tion between spherical AdS (Schwarzschild) black hole and global 
(k = 1) AdS spacetime. As is well known, the phase transition, both 
on the gravity side and on the gauge theory side, is sensitive to 
the topology of the AdS foliation. For AdS black holes with planar 
horizon geometry, there exists no Hawking–Page transition with 
respect to AdS spacetime. In other words, the planar black hole 
phase is always dominant for any non-zero temperature.

Interestingly, it was shown that when one (or more direc-
tions) are compact there exist also Hawking–Page phase transitions 
between the planar black holes and the AdS soliton, which is ob-
tained by a double analytic continuation from the black hole. We 
have obtained a similar behaviour for the hairy black holes, but 
now the ground state corresponds to a hairy soliton. One impor-
tant difference with the no hair case is that the phase transition is 
also controlled by the parameter α in the scalar potential. Once α
is fixed, the theory is fixed, but for very small α the theory con-
tains hot black holes (small or large) that are unstable and decay 
to hairy AdS solitons. This drastic change is related to the fact that 
when α vanishes, the hairy black hole solutions become naked sin-
gularities. The self interaction of the scalar field is very weak and 
so a large temperature can destabilize the system regardless of the 
size of the black hole.

As a future direction, it will be interesting to understand the 
physics of this instability in the dual field theory. It will also be 
interesting to investigate the general phase diagram for an arbi-
trarily parameter ν in the moduli potential and the embedding in 
supergravity [38]. When the effective cosmological constant van-
ishes, one can also obtain hairy black holes in flat space (stationary 
hairy black holes were also obtained, but only numerically). The 
thermodynamics and phase diagram of asymptotically flat hairy 
black holes [28,39–41] can be also studied with a similar coun-
terterm method [42–44].
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