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We show that every multiplicative (α,β)-derivation of a ring R is

additive if there exists an idempotent e′ (e′ /= 0, 1) in R satisfying

the conditions (C1)–(C3): (C1) β(e′)Rx = 0 implies x = 0; (C2)

β(e′)xα(e′)R(1 − α(e′)) = 0 impliesβ(e′)xα(e′) = 0; (C3) xR =
0 implies x = 0. Inparticular, everymultiplicative (α,β)-derivation
of a prime ring with a nontrivial idempotent is additive. As appli-

cations, we could decompose a multiplicative (α,β)-derivation of

the algebra Mn(C) of all the n × n complex matrices into a sum of

an (α,β)-inner derivation and an (α,β)-derivation onMn(C) given
by an additive derivation f on C.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Theproblemwhenamultiplicativemapping is additive,whichwasfirst consideredbyMartindale in

[1], is very well-known and interesting in the ring theory. Martindale and Daif answered this problem

for a multiplicative isomorphism and a multiplicative derivation in [1] and [2], respectively. Recently,

the similar problems are considered for Jordan mappings on some associative algebras, such as the

triangular algebras, nest algebras and standard operator algebras, etc. [3–7]. Motivated by the Daif’s

ideas, in this note we consider the problem whether a multiplicative (α,β)-derivation of a ring is

additive. Fortunately, we can give a full answer for this question under the existence of a single

fixed idempotent satisfying some properties which are similar to Daif’s conditions. In particular, we
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could show that every multiplicative (α,β)-derivation of a prime ring with a nontrivial idempotent is

additive.

Let R be an associative ring, α and β be ring automorphisms of R. By a multiplicative (α,β)-
derivation from R into itself, we call a mapping d : R → R such that

d(xy) = d(x)α(y) + β(x)d(y), for all x, y in R. (1)

In addition, if d is additive, we call d an (α,β)-derivation of R. If there exists x0 ∈ R such that d(x) =
β(x)x0 − x0α(x) holds for each x inR, then d is called an (α,β)-inner derivation. Obviously, ifα andβ
are the identity mapping id on R, then amultiplicative (id, id)-derivation is an ordinarymultiplicative

derivation defined in [2].

Similarly, we can define the notion of a multiplicative (α,β)-derivation on an associative algebra

A over C, in which we only assume that α and β are algebraic automorphisms of A. It is natural to

consider the linearity problem of a multiplicative (α,β)-derivation of A. In this note, we will describe

the problem for the multiplicative (α,β)-derivations of the algebra Mn(C) of all the n × n complex

matrices. By [2] or Corollary 2 in this note, everymultiplicative (id, id)-derivation onMn(C) is additive;
and in [8], Šemrl obtained the existence of additive derivations without linearity onMn(C). In section

3, we show that each linear (α,β)-derivation on Mn(C) is inner, and prove that each multiplicative

(α,β)-derivation on Mn(C) can be expressed a sum of an (α,β)-inner derivation and an additive

(α,β)-derivation induced by an additive derivation of C.

2. Additivity of multiplicative (α,β)-derivations on rings

In this section, we have the following main result.

Theorem 1. Let R be a ring (not necessarily containing an identity), α and β be ring automorphisms of

R. Suppose that there exists an idempotent e (e /= 0, e /= 1) such that the following conditions hold:
(C1) ẽRx = 0 implies x = 0 (and hence Rx = 0 implies x = 0);
(C2) ẽxeR(1 − e) = 0 implies ẽxe = 0 (and hence ẽxeR = 0 implies ẽxe = 0);
(C3) xR = 0 implies x = 0;
where ẽ = βα−1(e). Then every multiplicative (α,β)-derivation of R is additive.

Remark. Let R be a ring. For convenience, we replace y − xy with (1 − x)y for x, y in R. Hence

for an automorphism α of R, the equality α((1 − x)y) = (1 − α(x))α(y) is well-defined. Let d be

a multiplicative (α,β)-derivation on R. If R has an identity I, then d(I) = 0. If R has no identity, we

let R1 = {(x, n) : x ∈ R, n ∈ Z}, where Z is the integer ring. Then, under the following addition and

multiplication:

(x, n) + (y, m) = (x + y, n + m), (x, n)(y, m) = (xy + ny + mx, nm),

R1 is a ring with unit 1 = (0, 1), and contains R as a ideal if we identify x in R with (x, 0) in R1.

For an automorphism α of R, we define the mapping α̃ of R1 by α̃(x, n) = (α(x), n). Then α̃ is an

automorphismofR1 such that α̃|R = α.Obviously, themapping d̃ofR1 into itself, definedby d̃(x, n) =
d(x) for all (x, n) ∈ R1, is a multiplicative (α̃, β̃)-derivation on R1 if and only if d(xy + mx + ny) =
d(xy) + md(x) + nd(y) for all x, y ∈ R andm, n ∈ Z. In particular, if d is additive, then d̃ is an (additive)

(α̃, β̃)-derivation.
Recall that an associative ring R is prime if, for each a, b in R, aRb = 0 implies a = 0 or b = 0. It

is well known that the matrix ring Mn(C), and generally each factor von Neumann algebra, is prime.

By Theorem 1, we have the following corollary.

Corollary 2. Everymultiplicative (α,β)-derivationof aprime ringwithanontrivial idempotent is additive.
In particular, each multiplicative (α,β)-derivation of a factor von Neumann algebra, and hence, of Mn(C),
is additive.
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Let d be a multiplicative (α,β)-derivation of R, e and ẽ be as in Theorem 1. If let e′ = α−1(e), then
α(e′) = e,β(e′) = ẽ. As in [2], the two-sided Peirce decomposition of R relative to the idempotent

e′ takes the formR = R′
11 ⊕ R′

12 ⊕ R′
21 ⊕ R′

22,whereR′
11 = e′Re′,R′

12 = e′R(1 − e′),R′
21 = (1 −

e′)Re′ andR′
22 = (1 − e′)R(1 − e′). Relative to the idempotents ẽ and e,wehave thegeneralized two-

sided Peirce decomposition of R, R = R11 ⊕ R12 ⊕ R21 ⊕ R22, where R11 = ẽRe,R12 = ẽR(1 −
e),R21 = (1 − ẽ)Re,R22 = (1 − ẽ)R(1 − e).

From the definition of d, we have d(0) = 0 and d(e′) = d(e′)e + ẽd(e′). Hence (1 − ẽ)d(e′)(1 −
e) = 0 and ẽd(e′)e = 2ẽd(e′)e, which implies ẽd(e′)e = 0. So we can decompose d(e′) into a12 + a21,

where a12 = ẽd(e′)(1 − e), a21 = (1 − ẽ)d(e′)e.
Let f be a mapping of R into itself, defined by f (x) = β(x)(a12 − a21) − (a12 − a21)α(x). Since

α and β are automorphisms, we have that f is additive and satisfies that f (x1x2) = f (x1)α(x2) +
β(x1)f (x2) for each x1, x2 in R, so f is an (α,β)-inner derivation of R. It follows from the definitions

of a12 and a21 that f (e′) = a12 + a21 = d(e′).
Define D = d − f . Then D is a multiplicative (α,β)-derivation of R, and D is additive if and only if

so is d. Hence in order to complete the proof of Theorem 1, we only show that D is additive. We remark

that D(e′) = 0 and D(0) = 0.

Lemma 1. D(R′
ij) ⊆ Rij.

Proof. For x′
11 inR′

11, sinceD(e′) = 0,wehaveD
(
x′
11

) = D
(
e′

(
x′
11e

′)) = β(e′)D
(
x′
11e

′) = ẽD
(
x′
11

)
α(e′)

= ẽD
(
x′
11

)
e ∈ R11. For x′

12 in R′
12, we have D

(
x′
12

)=D
(
e′x′

12

)= ẽD
(
x′
12

)
and 0=D

(
x′
12e

′)= D
(
x′
12

)
α(e′) = D

(
x′
12

)
e, so that (1 − ẽ)D

(
x′
12

) = D
(
x′
12

)
e = 0, which implies that D

(
x′
12

)
is in R12.

For x′
21 in R′

21, we have D
(
x′
21

)=D
(
x′
21e

′)=D
(
x′
21

)
e and 0=D

(
e′x′

21

)= ẽD
(
x′
21

)
. Hence D

(
x′
21

) ∈
R21. For x

′
22 in R′

22, we have 0 = D
(
e′x′

22

) = ẽD
(
x′
22

)
and 0 = D

(
x′
22e

′) = D
(
x′
22

)
e. Hence D

(
x′
22

) ∈
R22. �

Lemma 2. For each x′
ii inR′

ii and x
′
jk inR′

jk with 1� i, j, k � 2 and j /= k, we have D
(
x′
ii + x′

jk

)
= D

(
x′
ii

) +
D

(
x′
jk

)
.

Proof. Obviously, we only need to show D
(
x′
ii

) + D
(
x′
jk

)
− D

(
x′
ii + x′

jk

)
= 0. By the hypothesis, we

consider four cases.

Case 1: i = j = 1 and k = 2. Using the condition (C3), we only show that
(
D

(
x′
11

) + D
(
x′
12

)
−D

(
x′
11 + x′

12

))
R = 0.

For t1 ∈ eR, using Lemma 1, we have D
(
x′
12

)
t1 = 0. Let s1 = α−1(t1). Then s1 = α−1(et1) =

e′s1, and thus, x′
12s1 = 0. Since x′

12e
′ = 0, it follows that β

(
x′
12

)
D(s1) = β

(
x′
12

)
D

(
e′s1

) = β
(
x′
12

)
β(e′)D(s1) = β

(
x′
12e

′)D(s1) = 0. Hence(
D

(
x′
11

)
+ D

(
x′
12

))
t1 = D

(
x′
11

)
t1 + D

(
x′
12

)
t1 = D

(
x′
11

)
t1 = D

(
x′
11

)
α(s1)

= D
(
x′
11s1

)
− β

(
x′
11

)
D(s1) = D

((
x′
11 + x′

12

)
s1

)
− β

(
x′
11

)
D(s1)

= D
(
x′
11 + x′

12

)
α(s1) + β

(
x′
11 + x′

12

)
D(s1) − β

(
x′
11

)
D(s1)

= D
(
x′
11 + x′

12

)
α(s1) + β

(
x′
12

)
D(s1)

= D
(
x′
11 + x′

12

)
t1.

Consequently,
(
D

(
x′
11

) + D
(
x′
12

) − D
(
x′
11 + x′

12

))
t1 = 0 for each t1 ∈ eR.

On the other hand, for t2 ∈ (1 − e)R, it follows fromLemma1 thatD
(
x′
11

)
t2 = 0. Let s2 = α−1(t2).

Then s2 = α−1((1 − e)t2) = α−1(t2) − α−1(e)α−1(t2) = (1 − e′)s2, and hence x′
11s2 = 0. Since

0 = D(0) = D
(
e′s2

) = β(e′)D(s2), we have β
(
x′
11

)
D(s2) = β

(
x′
11e

′)D(s2) = β
(
x′
11

)
β(e′)D(s2) =

0. Hence
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(
D

(
x′
11

)
+ D

(
x′
12

))
t2 = D

(
x′
12

)
t2 = D

(
x′
12

)
α(s2) = D

(
x′
12s2

)
− β

(
x′
12

)
D(s2)

= D
((

x′
11 + x′

12

)
s2

)
− β

(
x′
12

)
D(s2)

= D
(
x′
11 + x′

12

)
α(s2) + β

(
x′
11 + x′

12

)
D(s2) − β

(
x′
12

)
D(s2)

= D
(
x′
11 + x′

12

)
α(s2) + β

(
x′
11

)
D(s2)

= D
(
x′
11 + x′

12

)
t2.

Consequently,
(
D

(
x′
11

) + D
(
x′
12

) − D
(
x′
11 + x′

12

))
t2 = 0. Since t1 and t2 are arbitrary, we obtain that(

D
(
x′
11

) + D
(
x′
12

) − D
(
x′
11 + x′

12

))
t = 0 for each t ∈ R.

Case 2: i = j = 2, k = 1. By a similar way to case 1, we show
(
D

(
x′
22

) + D
(
x′
21

) − D
(
x′
22+ x′

21

))
R = 0.

For t1 ∈ eR, it follows from Lemma 1 that D
(
x′
22

)
t1 = 0. Let s1 = α−1(t1). Then s1 = α−1(et1) =

e′s1, and thus, x′
22s1 = 0. Also since β

(
x′
22

)
D(s1) = β

(
x′
22

)
D

(
e′s1

) = β
(
x′
22e

′)D(s1) = 0, we have(
D

(
x′
22

)
+ D

(
x′
21

))
t1 = D

(
x′
21

)
t1 = D

(
x′
21

)
α(s1) = D

(
x′
21s1

)
− β

(
x′
21

)
D(s1)

= D
((

x′
22 + x′

21

)
s1

)
− β

(
x′
21

)
D(s1)

= D
(
x′
22 + x′

21

)
α(s1) + β

(
x′
22

)
D(s1)

= D
(
x′
22 + x′

21

)
t1.

For t2 ∈ (1 − e)R, using Lemma 1, we have D
(
x′
21

)
t2 = 0. Let s2 = α−1(t2). Then s2 = α−1((1 −

e)t2) = (1 − e′)s2, and thus e′s2 = 0, which implies that β
(
x′
21

)
D(s2) = β

(
x′
21e

′)D(s2) = β
(
x′
21

)
D

(
e′s2

) = 0. Hence
(
D

(
x′
22

) + D
(
x′
21

))
t2 = D

(
x′
22

)
t2 = D

(
x′
22

)
α(s2) = D

(
x′
22s2

) − β
(
x′
22

)
D(s2) =

D
(
x′
22 + x′

21

)
α(s2) + β

(
x′
21

)
D(s2) = D

(
x′
22 + x′

21

)
t2.

Since t1 and t2 are arbitrary, we have
(
D

(
x′
22

) + D
(
x′
21

) − D
(
x′
22 + x′

21

))
R = 0.

Case 3: i = k = 1, j = 2. For the case, we use the condition (C1).

For t1 ∈ Rẽ, it follows from Lemma 1 that t1D
(
x′
21

) = 0. Let s1 = β−1(t1). Then s1 = s1e
′. Hence

s1x
′
21 = 0 and D(s1)α

(
x′
21

) = D
(
s1e

′) α
(
x′
21

) = D(s1)α
(
e′x′

21

) = 0. So

t1

(
D

(
x′
11

)
+ D

(
x′
21

))
= t1D

(
x′
11

)
= β(s1)D

(
x′
11

)
= D

(
s1x

′
11

)
− D(s1)α

(
x′
11

)

= D
(
s1

(
x′
11 + x′

21

))
− D(s1)α

(
x′
11

)

= D(s1)α
(
x′
11 + x′

21

)
+ β(s1)D

(
x′
11 + x′

21

)
− D(s1)α

(
x′
11

)

= D(s1)α
(
x′
21

)
+ β(s1)D

(
x′
11 + x′

21

)
= β(s1)D

(
x′
11 + x′

21

)

= t1D
(
x′
11 + x′

21

)
.

Hence t1
(
D

(
x′
11

) + D
(
x′
21

) − D
(
x′
11 + x′

21

)) = 0.

For t2 ∈ R(1 − ẽ), using Lemma 1, we have t2D
(
x′
11

) = 0. Let s2 = β−1(t2). Then s2 = s2(1 − e′),
and thus, s2e

′ = 0 and s2x
′
11 = 0, which impliesD(s2)α(e′)D

(
s2e

′) = 0. It follows thatD(s2)α
(
x′
11

) =
D(s2)α

(
e′x′

11

) = 0. Hence

t2

(
D

(
x′
11

)
+ D

(
x′
21

))
= t2D

(
x′
21

)
= β(s2)D

(
x′
21

)
= D

(
s2x

′
21

)
− D(s2)α

(
x′
21

)

= D
(
s2

(
x′
11 + x′

21

))
− D(s2)α

(
x′
21

)

= D(s2)α
(
x′
11 + x′

21

)
+ β(s2)D

(
x′
11 + x′

21

)
− D(s2)α

(
x′
21

)

= t2D
(
x′
11 + x′

21

)
.
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Consequently, t2
(
D

(
x′
11

) + D
(
x′
21

) − D
(
x′
11 + x′

21

)) = 0. Since t1 and t2 are arbitrary, we have

R
(
D

(
x′
11

) + D
(
x′
21

) − D
(
x′
11 + x′

21

)) = 0. It follows from (C1) that D
(
x′
11 + x′

21

) = D
(
x′
11

) + D
(
x′
21

)
.

Case 4: i = k = 2, j = 1. The proof is similar to that of the Case 3, we omit it. �

Lemma 3. D is additive on R′
12.

Proof. Let x′
12 and y′

12 be in R′
12. Using Lemma 1, we have D

(
x′
12

)
, D

(
y′
12

)
, D

(
x′
12 + y′

12

) ∈ R12. Hence(
D

(
x′
12

) + D
(
y′
12

) − D
(
x′
12 + y′

12

))
t1 = 0 for each t1 ∈ eR.

For t2 ∈ (1 − e)R, let s2 = α−1(t2). Then s2 = (1 − e′)s2, which implies that e′
(
s2 + y′

12s2
) =

y′
12s2. It follows that D

(
y′
12s2

) = D
(
e′

(
s2 + y′

12s2
)) = β(e′)D

(
s2 + y′

12s2
)
. Since e′ ∈ R′

11 and x′
12 ∈

R′
12, it follows fromLemma2thatD

(
e′ + x′

12

) = D(e′) + D
(
x′
12

) = D
(
x′
12

)
. Also since

(
x′
12 + y′

12

)
s2 =(

e′ + x′
12

) (
s2 + y′

12s2
)
, we have

D
((

x′
12 + y′

12

)
s2

)
= D

((
e′ + x′

12

) (
s2 + y′

12s2

))

= D
(
x′
12

)
α

(
s2 + y′

12s2

)
+ β

(
e′ + x′

12

)
D

(
s2 + y′

12s2

)

= D
(
x′
12

)
α

(
s2 + y′

12s2

)
+ β

(
x′
12

)
D

(
s2 + y′

12s2

)
+ β(e′)D

(
s2 + y′

12s2

)

= D
(
x′
12

(
s2 + y′

12s2

))
+ D

(
y′
12s2

)

= D
(
x′
12s2

)
+ D

(
y′
12s2

)
.

Hence (
D

(
x′
12

)
+ D

(
y′
12

)
− D

(
x′
12 + y′

12

))
t2

= D
(
x′
12

)
α(s2) + D

(
y′
12

)
α(s2) − D

(
x′
12 + y′

12

)
α(s2)

= D
(
x′
12s2

)
+ D

(
y′
12s2

)
− D

((
x′
12 + y′

12

)
s2

)
= 0.

Since t1 and t2 are arbitrary, we have
(
D

(
x′
12

) + D
(
y′
12

) − D
(
x′
12 + y′

12

))
R = 0. It follows from the

condition (C3) that D
(
x′
12 + y′

12

) = D
(
x′
12

) + D
(
y′
12

)
. Hence D is additive on R′

12. �

Lemma 4. D is additive on R′
11.

Proof. Fix x′
11, y

′
11 ∈ R′

11. It follows from Lemma 1 that D
(
x′
11

)
, D

(
y′
11

)
and D

(
x′
11 + y′

11

)
are in R11.

Hence (D
(
x′
11

) + D
(
y′
11

) − D
(
x′
11 + y′

11

)
)t22 = 0 for each t22 ∈ R22.

For t12 ∈ R12, let s12 = α−1(t12). Then s12 = α−1(t12(1 − e)) = s12(1 − e′) ∈ R(1 − e′). Hence
x′
11s12 and y′

11s12 are in R′
12. It follows from Lemma 3 that D

(
x′
11s12 + y′

11s12
) = D

(
x′
11s12

)
+ D

(
y′
11s12

)
. So(

D
(
x′
11

)
+ D

(
y′
11

)
− D

(
x′
11 + y′

11

))
t12

= D
(
x′
11

)
α(s12) + D

(
y′
11

)
α(s12) − D

(
x′
11 + y′

11

)
α(s12)

= D
(
x′
11s12

)
+ D

(
y′
11s12

)
− D

((
x′
11 + y′

11

)
s12

)
= 0.

Since t12 and t22 are arbitrary, we have
(
D

(
x′
11

) + D
(
y′
11

) − D
(
x′
11 + y′

11

))
R(1 − e) = 0. By Lemma

1, we note that D
(
x′
11

) + D
(
y′
11

) − D
(
x′
11 + y′

11

) ∈ R11. Hence it follows from the condition (C2) that

D
(
x′
11 + y′

11

) = D
(
x′
11

) + D
(
y′
11

)
. Consequently, D is additive on R′

11. �

Lemma 5. D is additive on e′R = R′
11 ⊕ R′

12.
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Proof. By Lemmas 3 and 4, D is additive on R′
11 and R′

12, respectively. Using Lemma 2, for each x′
11 ∈

R′
11 and x′

12 ∈ R′
12, we have D

(
x′
11 + x′

12

) = D
(
x′
11

) + D
(
x′
12

)
. Hence D is additive on e′R = R′

11 ⊕
R′

12. �

The Proof of Theorem 1. Let x and y be in R. For each t ∈ ẽR, let s = β−1(t). Then s = β−1(ẽt) =
e′s, and hence sx, sy ∈ e′R. By Lemma 5, we have that D(sx + sy) = D(sx) + D(sy). Consequently,
t(D(x) + D(y))=β(s)D(x)+β(s)D(y)=D(sx) + D(sy)−D(s)α(x)−D(s)α(y) = D(s(x + y))−D(s)
α(x + y) = β(s)D(x + y) = tD(x + y).

Since t is arbitrary, we have ẽR(D(x + y) − D(x) − D(y)) = 0. It follows from the condition (C1)

that D(x + y) = D(x) + D(y). Hence D is additive.

3. Linearity of multiplicative (α,β)-derivations on Mn(C)

Let A be an associative algebra over C, α and β be algebraic automorphisms of A. Recall that a

mappingD fromA into itself is called amultiplicative (α,β)-derivation ofA, if the derivation condition

(1) holds, i.e., D(xy) = D(x)α(y) + β(x)D(y) for all x, y in A. Moreover, D is called inner if there exists

x0 in A such that D(x) = β(x)x0 − x0α(x) for each x in A. Obviously, if A has an identity I, then

D(I) = 0. In this section, we consider the linearity problems of multiplicative (α,β)-derivations on

Mn(C). It follows from Corollary 2 that every multiplicative (α,β)-derivation on Mn(C) is additive.
It is well known that each algebraic automorphism α on Mn(C) is inner, i.e., there is an invertible

matrix T0 inMn(C) such thatα(A) = T0AT
−1
0 for each A inMn(C). Like the ordinary derivation, we can

show that every linear multiplicative (α,β)-derivation is inner, which may be a known fact.

Theorem 3. Let D be a multiplicative (α,β)-derivation on Mn(C). If D is linear, then D is inner.

Proof. Let Eij, i, j = 1, 2 . . . , n, be the standard matrix unit ofMn(C). Let

T0 =
n∑

j=1

β(Ej1)D(E1j).

Then, for each Ekl , using that D(I) = 0, we have

β(Ekl)T0 − T0α(Ekl) =
n∑

j=1

β(Ekl)β(Ej1)D(E1j) −
n∑

j=1

β(Ej1)D(E1j)α(Ekl)

= β(Ek1)D(E1l) −
n∑

j=1

(D(Ej1E1j) − D(Ej1)α(E1j))α(Ekl)

= β(Ek1)D(E1l) − D(I)α(Ekl) + D(Ek1)α(E1l)

= D(Ek1E1l)

= D(Ekl),

where I is the identity matrix. Since α,β and D are linear, we have D(A) = β(A)T0 − T0α(A) for each
A inMn(C). Hence D is inner. �

The following lemma is similar to Lemma 1 in [8].

Lemma 6. Let D be a multiplicative (α,β)-derivation on Mn(C). Then there exist an additive derivation

f : C → C and an invertible matrix V0 in Mn(C) such that D(tI) = f (t)V0 holds for all t in C.

Proof. For arbitrary A ∈ Mn(C) and t ∈ C, we have

D(tA) = D((tI)A) = D(tI)α(A) + tD(A).
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On the other hand,

D(tA) = D(A(tI)) = tD(A) + β(A)D(tI).

Hence D(tI)α(A) = β(A)D(tI). Since α and β are inner, there exist invertible matrices T0 and S0 such

that α(A) = T0AT0
−1 and β(A) = S0AS0

−1 for all A in Mn(C). Thus, D(tI)T0AT0
−1 = S0AS0

−1D(tI),

and hence,
(
S
−1
0 D(tI)T0

)
A = A

(
S
−1
0 D(tI)T0

)
holds for all A in Mn(C). Consequently, S−1

0 D(tI)T0 is in

the center ofMn(C), so there exists f (t) ∈ C such that S
−1
0 D(tI)T0 = f (t)I, hence

D(tI) = f (t)V0, (2)

where V0 = S0T
−1
0 . Since D is additive, one can see easily that themapping f : C → C defined by the

Eq. (2) is an additive derivation. �

Remark. The proof of Lemma 6 implies that themultiplicative (α,β)-derivation D is linear if and only

if so is f , i.e, f is a trivial derivation.

Theorem 4. A mapping D on Mn(C) is a multiplicative (α,β)-derivation if and only if there exist an

additive derivation f : C → C, a matrix A0 and invertible matrices S0 and T0 such that

D((aij)) = S0(f (aij))T
−1
0 + S0(aij)S

−1
0 A0 − A0T0(aij)T

−1
0 ,

where α(A) = T0AT
−1
0 and β(A) = S0AS

−1
0 .

Proof. Let D be a multiplicative (α,β)-derivation onMn(C), f be the additive derivation on C defined

byD(tI) = f (t)S0T
−1
0 , as in theproofof Lemma6. Let F(A) = S0(f (aij))T

−1
0 for eachA = (aij) ∈ Mn(C).

Then F is additive on Mn(C). For all A = (aij) and B = (bij) inMn(C), we have

F(A)α(B) + β(A)F(B) = S0(f (aij))T
−1
0 T0BT

−1
0 + S0AS

−1
0 S0(f (bij))T

−1
0

= S0(f (aij))(bij)T
−1
0 + S0(aij)(f (bij))T

−1
0

= S0

⎛
⎝ n∑

k=1

(f (aik)bkj + aikf (bkj))

⎞
⎠ T

−1
0

= S0

⎛
⎝ n∑

k=1

f (aikbkj)

⎞
⎠ T

−1
0

= S0

⎛
⎝f

⎛
⎝ n∑

k=1

aikbkj

⎞
⎠

⎞
⎠ T

−1
0

= F(AB).

Consequently, F is a multiplicative (α,β)-derivation on Mn(C).
Define D̃ = D − F . Then D̃ is amultiplicative (α,β)-derivationonMn(C). Obviously, D̃(tI)=D(tI) −

F(tI) = f (t)S0T
−1
0 − f (t)S0T

−1
0 = 0. By the Remark of Lemma 6, D̃ is linear. It follows from Theorem

3 that there exists A0 inMn(C) such that D̃(A) = β(A)A0 − A0α(A) for each A inMn(C). Hence

D((aij)) = S0(f (aij))T
−1
0 + S0(aij)S

−1
0 A0 − A0T0(aij)T

−1
0 . � (3)

Remark. Forfixedα andβ , putting (aij) = tI in (3),we can see that the additivederivation f is uniquely

determined. Hence all such matrices A0 are different from λI.
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