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1. Introduction

The problem when a multiplicative mapping is additive, which was first considered by Martindale in
[1], is very well-known and interesting in the ring theory. Martindale and Daif answered this problem
for a multiplicative isomorphism and a multiplicative derivation in [1] and [2], respectively. Recently,
the similar problems are considered for Jordan mappings on some associative algebras, such as the
triangular algebras, nest algebras and standard operator algebras, etc. [3-7]. Motivated by the Daif’s
ideas, in this note we consider the problem whether a multiplicative («, 8)-derivation of a ring is
additive. Fortunately, we can give a full answer for this question under the existence of a single
fixed idempotent satisfying some properties which are similar to Daif's conditions. In particular, we
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could show that every multiplicative (o, 8)-derivation of a prime ring with a nontrivial idempotent is
additive.

Let R be an associative ring, o and S be ring automorphisms of R. By a multiplicative (&, B)-
derivation from R into itself, we call a mapping d : R — R such that

dxy) =dx)a(y) + B(x)d(y), forallx,yinR. (1)

In addition, if d is additive, we call d an («, 8)-derivation of R. If there exists xo € R such thatd(x) =
B(x)xg — xpa(x) holds for each x in R, then d is called an («, 8)-inner derivation. Obviously, if « and 8
are the identity mapping id on R, then a multiplicative (id, id)-derivation is an ordinary multiplicative
derivation defined in [2].

Similarly, we can define the notion of a multiplicative (¢, 8)-derivation on an associative algebra
A over C, in which we only assume that « and g are algebraic automorphisms of A. It is natural to
consider the linearity problem of a multiplicative (¢, 8)-derivation of A. In this note, we will describe
the problem for the multiplicative (c, 8)-derivations of the algebra M,,(C) of all the n x n complex
matrices. By [2] or Corollary 2 in this note, every multiplicative (id, id)-derivation on M, (C) is additive;
and in [8], Semrl obtained the existence of additive derivations without linearity on M, (C). In section
3, we show that each linear (¢, 8)-derivation on M, (C) is inner, and prove that each multiplicative
(at, B)-derivation on M, (C) can be expressed a sum of an (, 8)-inner derivation and an additive
(o, B)-derivation induced by an additive derivation of C.

2. Additivity of multiplicative (e, 8)-derivations on rings
In this section, we have the following main result.

Theorem 1. Let R be a ring (not necessarily containing an identity), o and 8 be ring automorphisms of
R. Suppose that there exists an idempotent e (e * 0, e # 1) such that the following conditions hold:

(C1) erx = 0 implies x = 0 (and hence Rx = 0 implies x = 0);
(C2) exeR(1 — e) = 0 implies exe = 0 (and hence exeR = 0 implies exe = 0);
(C3) xR = 0 implies x = 0;

where @ = Ba ' (e). Then every multiplicative (c, B)-derivation of R is additive.

Remark. Let R be a ring. For convenience, we replace y — xy with (1 — x)y for x,y in R. Hence
for an automorphism « of R, the equality «((1 — x)y) = (1 — a(x))x(y) is well-defined. Let d be
a multiplicative (ct, B)-derivation on R. If R has an identity I, then d(I) = 0. If R has no identity, we
let Ry = {(x,n) : x € R,n € Z}, where Z is the integer ring. Then, under the following addition and
multiplication:

xn)+ @.m) =x+yn+m), (xn)y,m) = (xy-+ny+mxnm),

R1 is a ring with unit 1 = (0, 1), and contains R as a ideal if we identify x in R with (x,0) in Rq.
For an automorphism « of R, we define the mapping & of Rq by &(x,n) = («a(x), n). Then & is an
automorphism of R suchthat& |z = «.Obviously, the mappinga of R1 intoitself, defined by a(x, n) =
d(x) for all (x,n) € R4, is a multiplicative (&, ﬁ)—derivation on R4 if and only if d(xy + mx + ny) =
d(xy) + md(x) + nd(y) forallx,y € Randm, n € Z.In particular, if d is additive, thendis an (additive)
(o, ﬁ)—derivation.

Recall that an associative ring R is prime if, for each a,b in R, aRb = 0 impliesa = 0orb = 0.1t

is well known that the matrix ring M, (C), and generally each factor von Neumann algebra, is prime.
By Theorem 1, we have the following corollary.

Corollary 2. Every multiplicative («, 8)-derivation of a prime ring with a nontrivial idempotent is additive.
In particular, each multiplicative (e, 8)-derivation of a factor von Neumann algebra, and hence, of M, (C),
is additive.
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Let d be a multiplicative («, 8)-derivation of R, e and & be as in Theorem 1.If let e’ = &z~ (e), then
a(e’) = e B(e) = &. As in [2], the two-sided Peirce decomposition of R relative to the idempotent
¢’ takesthe formR = R); @ R, ® RY; @ Ry, where R}y = €'Re/, R}, = e'R(1 —¢'), Ry = (1 —
eYRe' and Ry, = (1 — e )R(1 — ¢).Relative to the idempotents & and e, we have the generalized two-
sided Peirce decomposition of R, R = R11 ® R12 ® Ry1 D Ry, Where R1; = eRe, R12 = eR(1 —
e),Ry1 = (1 —8)Re, Ry = (1 —e)R(1 —e).

From the definition of d, we have d(0) = 0 and d(e’) = d(e’)e + éd(e’). Hence (1 — &)d(e’)(1 —
e) = 0 and éd(e’)e = 2&d(e’)e, which implies éd(e’)e = 0. So we can decompose d(e’) into aj + day1,
where a;p = ed(e’)(1 — e), ay; = (1 — &)d(e)e.

Let f be a mapping of R into itself, defined by f(x) = B(x)(a12 — az1) — (a2 — az1)x(x). Since
o« and B are automorphisms, we have that f is additive and satisfies that f(x1x2) = f(x1)a(x2) +
B(x1)f (x2) for each x1,x; in R, so f is an (¢, B)-inner derivation of R. It follows from the definitions
of ajp and ay; that f(e') = ayp + ax = d(e).

Define D = d — f. Then D is a multiplicative (o, 8)-derivation of R, and D is additive if and only if
so is d. Hence in order to complete the proof of Theorem 1, we only show that D is additive. We remark
that D(e’) = 0 and D(0) = 0.

Lemma 1. D(R ) € Rjj.

Proof. Forx}; inR};,sinceD(¢) = 0,wehaveD (x};) = D (¢’ (x};€')) = B(¢/)D (x},€’) = eD(x};)a(e’)
= ED(xﬁ])e € Ri1. For &}, in RY,, we have D (x},) =D (e'x,) =€D (x},) and 0=D (x},€’) = D (x;,)
a@)=D (Xu) e, so that (1 — )D (x},) = D (x},) e = 0, which implies that D (x,) is in R12.

For le in sz we have D (x21) D(x21e )=D(x5;)e and 0=D (e'x},) =€D (x3;). Hence D (x},) €
Ra1. For x5, in R),, we have 0 = D (¢'x,) = €D (x},) and 0 = D (x},€’) = D (x},)e. Hence D (x},) €
Ry U

Lemma 2. Foreachx mR andx,, in R

jk jk
D (xjk) .

Proof. Obviously, we only need to show D (x};) + D (x]/.k) -D (xl{i + x]/.k) = 0. By the hypothesis, we
consider four cases.

Case 1: i =j =1 and k = 2. Using the condition (C3), we only show that (D (x};) + D (x},)
—D (x}; +x75)) R = 0.

For t; € eR, using Lemma 1, we have D (x},) t; = 0. Let s; = @~ !(t;). Then s; = ™ '(et;) =
e’sy, and thus, xj,51 = 0. Since x,¢’ = 0, it follows that 8 (x},) D(s1) = B (x35) D (¢'s1) = B (x},)
B(e"D(s1) = B (x},€") D(s1) = 0. Hence

( (x“) +D (Xu)) ti=D (qu) t1+D (xaz) t1=D (X;1) t1=D (X;1) a(sy)
(x s ) (xu) D(s1) = ((x/u +x§2) sl) - B (x/u)D(sl)
D (x11 + X12) a(s) + B (XH + X]Z) D(sy) — B (xh) D(s1)
= D (¥ +¥p,) (1) + B (X)) D(s1)
D (X +¥p5) tr.

with1<i,j, k <2andj # k, we have D (x{i + xjfk) =D (x};) +

Consequently, (D (x};) + D (x},) — D (x}; +},)) t1 = 0foreach t; € eR.
Onthe other hand, fort; € (1 — e)R, it follows from Lemma 1 that D (x};) t; = O. Letsz =a ().
Then s, = a1 ((1 —e)ty) = ¢~ (tz) — e ()~ (t) = (1 — €')sy, and hence X/ 1152 = 0. Since

0 = D(0) = D (e's) = B(e')D(sz), we have B (x};) D(s2) = B (x};¢') D(s2) = B (Xn) B(e)D(sz) =
0. Hence
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(D (xh) +D (x§2>) tp= D|(x 2) t = <x§2> a(sy) =D (xﬁzsz) - B (x&z) D(s2)
D ((xu + x12> 52) B (xﬁz) D(s2)
=D (x11 + xu) a(sy) + B (x“ + xu) D(s;) — B (xﬁz) D(sz)
D (x“ + Xu) a(sy) + B (x“) D(s2)
D

(Xu + X]Z) f.

Consequently, (D (x;) + D (x},) — D (x}; + x),)) t2 = 0. Since t; and t, are arbitrary, we obtain that
(D (x};) + D (x},) — D (x}; +x},)) t = Oforeacht € R.

Case 2: i=j=2k=1. By a similar way to case 1, we show (D (x},)+ D (x5;) — D (x},
+x5)) R =0.

For t; € eR, it follows from Lemma 1 that D (x},) t; = O.Lets; = o~ '(t;). Thens; = a~!(ety) =
€’sy, and thus, x),s1 = 0. Also since 8 (x3,) D(s1) = B (x,) D (€’s1) = B (x5,€’) D(s1) = 0, we have

(D (xgz) +D (x/m)) t1=D (x;1) t1=D (x’ﬂ) a(s;) =D (x’2151) - B (X’N) D(s1)
D ({2 + 1) 51) = B (1) Ds)

=D ("/22 + ’é]) asy) + B (X/zz) D(s1)

=D (xgz + x’21> ty.

Forty € (1 — e)R, using Lemma 1, we have D (x5;) t; = 0.Lets, = o~ (). Thens; = a~1((1 —
e)tz) = (1 — €')sy, and thus €'s, = 0, which implies that S (x5;) D(s2) = B (x51€") D(s2) = B (%)
D (e'sy) = 0.Hence (D (x,) + D (x5;)) t2 = D (x},) t2 = D (x}) ct(s2) = D (x,52) — B (x,) D(s2) =
D (xy; + X3) a(s2) + B (X31) D(s2) = D (x5, + X3) 2.

Since t; and t, are arbitrary, we have (D (x},) + D (x3;) — D (x, + x5;)) R = 0.

Case 3:i = k = 1,j = 2. For the case, we use the condition (C1).

For t; € Re, it follows from Lemma 1 that t,D (x},) = 0.Let s; = B~ !(t7). Thens; = s1e’. Hence
s1x5; = 0 and D(s1)e (x5¢) = D (s1€') o (x5;) = D(s1)x (e'x5;) = 0. S0

t (D (xal) +D (X’Z])) = tD (xh) = B(s1)D (xﬁl) =D (51";1) — D(sp)a (x%)
D (51 (xa1 + X’zl)) — D(s1)a (xh)
D(s1)at (g + xb1) + B(s1)D (%1 + x5 ) — D(s1)et ()
= D(s1)a (}/21) + B(s1)D (x/u + x;1> = B(s1)D (xﬁl + x;1>
t1D (xﬁl + x;1>.
Hence ty (D (x}) + D (x1) — D (xjy + X)) = 0.
Fort; € R(1 — &), using Lemma 1, we have t,D (x};) = 0.Lets, = B~ (). Thensy = s,(1 — ¢),

and thus, s,¢’ = 0and s;x}; = 0, which implies D(sy)a(e")D (s2€”) = 0.1t follows that D(sy)« (x;) =
D(sz)a (¢'x};) = 0.Hence

t2 (D (¥1) +D (%))

t,D (X/21) = B(s2)D ()/21) =D (szxél) — D(s)x (x’21>

D (sz (xﬁ1 + xél)) — D(s) (X’ﬂ)

D(s) (xﬁ1 + x§1) + B(s2)D (x;1 + x’21) — D(sy)x (x’ﬂ)
t,D (x’n + x'21>.
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Consequently, t; (D (x};) + D (x3;) — D (xj; +x3;)) = 0. Since t; and t, are arbitrary, we have
R (D (x};) + D (x5;) — D (x}; + x5;)) = 0.1t follows from (C1) that D (x}; + x5;) = D (x};) + D (x5;).
Case4:i = k = 2,j = 1. The proof is similar to that of the Case 3, we omit it. []

Lemma 3. D is additive on R',.

Proo/f. Let X, and y;, be in R/u,- Using Lemma 1, we have D (x,), D (), D (x, + ¥},) € R12. Hence
(D (x33) + D (¥}) — D (x}, +¥3,)) t1 = Oforeach t; € eR.

For t; € (1 —e)R, let s; = " '(t). Then s; = (1 — €’)sy, which implies that € (s + ¥},52)
y’l/zsz_. It follows that D (y3,52) = D (€' (s2 + ¥1552)) = B(€)D (52 + y1552). Since €’ € R}y and X1y
Ry, itfollows fromLemma2 thatD (¢’ + x},) = D(¢') + D (x},) = D (x},).Alsosince (x}, + ¥3,) 52
(¢ 4+ x1,) (52 + ¥1,52), we have

D((-+ o)) = (¢ + ) (s +31)
=D <x§2> a (sz —i—y’lzsz) +B (e/ + x/12> D (sz —i—y;zsz)
(¥12) & (52 + ¥i252) + B (¥12) D (52 + Vias2) + B€D (52 + ¥is2)
!
/
1

m

(42 (52 +¥1252)) + 0 (vra52)
<x 252) +D (ygzsz) .

D
D
D

Hence
(D ("32) +D (3/12) —-D ("32 + yﬁz)) t2
= D (%) a(s2) + D (1) @(52) = D (X4 + ¥1,) (52)
=D (x;252> +D (y’1252) -D ((xaz + yaz) 52)
=0.
Since t1 and t, are arbitrary, we have (D (x},) + D (v}5) — D (x}5, +¥75)) R = 0. It follows from the
condition (C3) that D (x}, + ¥;,) = D (x},) + D (¥},). Hence D is additive on R},. [

Lemma 4. D is additive on RY;.

Proof. Fix x};, y}; € R};. It follows from Lemma 1 that D (x},), D (v};) and D (x}; + ¥};) are in Rqs.
Hence (D (x};) + D (v};) — D (xj; + ¥31))tz2 = O for each ty; € Ryy.

For t12 € Ri2, let s;2 = @~ 1(t12). Then s;z = a1 (t12(1 — €)) = s12(1 — ') € R(1 — €’). Hence
X;S12 and yj;s;2 are in Rp,. It follows from Lemma 3 that D (xj;$12 + ¥j1512) = D (X};512)
+ D (yyy512)- S0

(D) +2(v11) =D (1 + 1))
=D (Xh) a(si2) +D <y/11) a(si2) —D (X/u +yl11) o (s12)

D (’41512) +D (y/11512) -D ((Xﬁ + J’/n) 512)
= 0.

Since t1, and t; are arbitrary, we have (D (xj;) + D (y};) — D (x}; +¥3;)) R(1 — e) = 0. By Lemma
1, we note that D (x};) + D (v};) — D (x}; + ¥};) € R11.Hence it follows from the condition (C2) that
D (xy; + ;) = D (x};) + D (¥};)- Consequently, D is additive on R};. [

Lemma 5. D is additive on &€ R = R}, ® R},.
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Proof. By Lemmas 3 and 4, D is additive on R}; and R/,, respectively. Using Lemma 2, for each x; €
R;“ anéj X}, € R}y, we have D (xj; + x}5) = D (x};) + D (|,). Hence D is additive on e'R = R}; ©
Ry

The Proof of Theorem 1. Let x and y be in R. For each t € éR, lets = B~1(t). Thens = B~ (ét) =
¢’s, and hence sx, sy € ¢ R. By Lemma 5, we have that D(sx + sy) = D(sx) + D(sy). Consequently,
t(D(x) + D(y)) = B(s)D(x) + B(s)D(y) =D(sx) + D(sy) —D(s)a(x) —D(s)a(y) = D(s(x +y)) —D(s)
a(x+y) = B(s)D(x +y) = tD(x +y).

Since t is arbitrary, we have eR(D(x + y) — D(x) — D(y)) = 0. It follows from the condition (C1)
that D(x +y) = D(x) + D(y). Hence D is additive.

3. Linearity of multiplicative (&, 8)-derivations on M,,(C)

Let A be an associative algebra over C, « and 8 be algebraic automorphisms of .A. Recall that a
mapping D from A into itself is called a multiplicative (¢, 8)-derivation of .4, if the derivation condition
(1) holds, i.e.,, D(xy) = D(x)x(y) + B(x)D(y) for all x, y in A. Moreover, D is called inner if there exists
Xp in A such that D(x) = B(x)xo — xo(x) for each x in A. Obviously, if A has an identity I, then
D(I) = 0. In this section, we consider the linearity problems of multiplicative (c, 8)-derivations on
M, (C). It follows from Corollary 2 that every multiplicative («, 8)-derivation on M, (C) is additive.

It is well known that each algebraic automorphism « on M, (C) is inner, i.e., there is an invertible
matrix Tp in M, (C) such that o (A) = ToAT, foreachAin M, (C). Like the ordinary derivation, we can
show that every linear multiplicative («, 8)-derivation is inner, which may be a known fact.

Theorem 3. Let D be a multiplicative («, B)-derivation on M, (C). If D is linear, then D is inner.

Proof. Let Ej,i,j = 1,2 ..., n, be the standard matrix unit of M, (C). Let

n
To = ) B(Ej1)D(Ey).
j=1
Then, for each Ej, using that D(I) = 0, we have

B(E)To — Toat(Ex) = Y B(Ex) B(Ej1)D(Erj) — > B(Ej1)D(Erj)er (Exr)

=1 j=1

= B(Ex1)D(Ey) — Y _(D(Ej1Evj) — D(Ejp)er(Eqj))ex (Ex)

=
= B(Ex1)D(E1)) — Do (Exr) + D(Eg1)a(Eqp)
= D(EkiE1)

= D(E),

where [ is the identity matrix. Since ¢, 8 and D are linear, we have D(A) = B(A)To — Tox (A) for each
Ain M, (C). Hence D is inner. [J

The following lemma is similar to Lemma 1 in [8].

Lemma 6. Let D be a multiplicative (¢, 8)-derivation on My (C). Then there exist an additive derivation
f: C — Cand an invertible matrix Vy in My (C) such that D(tI) = f(t)Vy holds for all t in C.

Proof. For arbitrary A € M,,(C) and t € C, we have
D(tA) = D((t)A) = D(tl)a(A) + tD(A).
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On the other hand,
D(tA) = D(A(t)) = tD(A) + B(A)D(t).

Hence D(tl)a(A) = B(A)D(tI). Since « and B are inner, there exist invertible matrices Ty and Sp such
that o (A) = ToATp ! and B(A) = SpASo ! for all A in M,(C). Thus, D(t)ToATo ™! = SpASo~'D(tl),
and hence, <SO_]D(tI)T0) A=A (SO_]D(tI)TO) holds for all A in M;,(C). Consequently, So_lD(tI)To isin
the center of M,,(C), so there exists f(t) € C such that S(;]D(tI)TO = f(t)I, hence

D) = f(t)Vo, (2)

where Vy = SOT(;l. Since D is additive, one can see easily that the mapping f : C — C defined by the
Eq. (2) is an additive derivation. [J

Remark. The proof of Lemma 6 implies that the multiplicative (¢, 8)-derivation D is linear if and only
ifsoisf,i.e,f is a trivial derivation.

Theorem 4. A mapping D on M, (C) is a multiplicative (o, B)-derivation if and only if there exist an
additive derivation f : C — C, a matrix Ag and invertible matrices Sy and Ty such that

D((a)) = So(f(@j))Ty ' + So(ay)Sy 'Ao — AoTo(ay)Ty ',
where at(A) = ToAT, ' and B(A) = SeAS; .

Proof. Let D be a multiplicative («, 8)-derivation on M, (C), f be the additive derivation on C defined
by D(tl) = f(t)SoTo_l,as inthe proof of Lemma 6. Let F(A) = S (f(a,-j))TO_1 foreachA = (a;) € My(C).
Then F is additive on M, (C). For all A = (a;;) and B = (b;j) in M;(C), we have

F(A)a(B) + B(AYF(B) = So(f(ay)Ty 'ToBTy ' + SoASy 'So(f (b)) Ty !
So(f(ay)) (b Ty + So(az) (F (b)) Ty !

= So [ Y. (F(au)byj + a,-kf(bkj») Ty

k=1

= So Zf(aikbkj)) T

k=1

= So|f (Z aikbkj)) T,
k=1

— F(AB).

Consequently, F is a multiplicative (e, 8)-derivation on My (C).

DefineD = D — F. ThenDlsamultlphcanve (o, B)-derivation on M, (C). Obviously, D(t) =D(tl) —
F(tl) = f(t)SoTO —f(t)SOTO = 0. By the Remark of Lemma 6, D is linear. It follows from Theorem
3 that there exists Ag in M, (C) such that D(A) = B(A)Ay — Aoc (A) for each A in M, (C). Hence

D((ay)) = So(f(ag)Ty " + So(a)Sy Ao — AoTo(a)Ty . O 3)

Remark. Forfixed o and 8, putting (a;;) = tIin(3), we can see that the additive derivation f is uniquely
determined. Hence all such matrices Ag are different from Al
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