A note on (α, β)-derivations ${ }^{\text {Th }}$

Chengjun Hou*, Wenmin Zhang, Qing Meng
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China

A R T I C L E I N F O

Article history:

Received 22 November 2009
Accepted 1 December 2009
Available online 12 January 2010
Submitted by C.K. Li

AMS classification:

16W20
16W25

Keywords:

Ring
Derivation
(α, β)-derivation
Peirce decomposition

Abstract

We show that every multiplicative (α, β)-derivation of a ring \mathcal{R} is additive if there exists an idempotent $e^{\prime}\left(e^{\prime} \neq 0,1\right)$ in \mathcal{R} satisfying the conditions (C1)-(C3): (C1) $\beta\left(e^{\prime}\right) \mathcal{R} x=0$ implies $x=0$; (C2) $\beta\left(e^{\prime}\right) x \alpha\left(e^{\prime}\right) \mathcal{R}\left(1-\alpha\left(e^{\prime}\right)\right)=0$ implies $\beta\left(e^{\prime}\right) x \alpha\left(e^{\prime}\right)=0$; (C3) $x \mathcal{R}=$ 0 implies $x=0$. In particular, every multiplicative (α, β)-derivation of a prime ring with a nontrivial idempotent is additive. As applications, we could decompose a multiplicative (α, β)-derivation of the algebra $M_{n}(\mathbb{C})$ of all the $n \times n$ complex matrices into a sum of an (α, β)-inner derivation and an (α, β)-derivation on $M_{n}(\mathbb{C})$ given by an additive derivation f on \mathbb{C}.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The problem when a multiplicative mapping is additive, which was first considered by Martindale in [1], is very well-known and interesting in the ring theory. Martindale and Daif answered this problem for a multiplicative isomorphism and a multiplicative derivation in [1] and [2], respectively. Recently, the similar problems are considered for Jordan mappings on some associative algebras, such as the triangular algebras, nest algebras and standard operator algebras, etc. [3-7]. Motivated by the Daif's ideas, in this note we consider the problem whether a multiplicative (α, β)-derivation of a ring is additive. Fortunately, we can give a full answer for this question under the existence of a single fixed idempotent satisfying some properties which are similar to Daif's conditions. In particular, we

[^0]could show that every multiplicative (α, β)-derivation of a prime ring with a nontrivial idempotent is additive.

Let \mathcal{R} be an associative ring, α and β be ring automorphisms of \mathcal{R}. By a multiplicative (α, β)derivation from \mathcal{R} into itself, we call a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ such that

$$
\begin{equation*}
d(x y)=d(x) \alpha(y)+\beta(x) d(y), \quad \text { for all } x, y \text { in } \mathcal{R} . \tag{1}
\end{equation*}
$$

In addition, if d is additive, we call d an (α, β)-derivation of \mathcal{R}. If there exists $x_{0} \in \mathcal{R}$ such that $d(x)=$ $\beta(x) x_{0}-x_{0} \alpha(x)$ holds for each x in \mathcal{R}, then d is called an (α, β)-inner derivation. Obviously, if α and β are the identity mapping id on \mathcal{R}, then a multiplicative (id, id)-derivation is an ordinary multiplicative derivation defined in [2].

Similarly, we can define the notion of a multiplicative (α, β)-derivation on an associative algebra \mathcal{A} over \mathbb{C}, in which we only assume that α and β are algebraic automorphisms of \mathcal{A}. It is natural to consider the linearity problem of a multiplicative (α, β)-derivation of \mathcal{A}. In this note, we will describe the problem for the multiplicative (α, β)-derivations of the algebra $M_{n}(\mathbb{C})$ of all the $n \times n$ complex matrices. By [2] or Corollary 2 in this note, every multiplicative (id, id)-derivation on $M_{n}(\mathbb{C})$ is additive; and in [8], Šemrl obtained the existence of additive derivations without linearity on $M_{n}(\mathbb{C})$. In section 3, we show that each linear (α, β)-derivation on $M_{n}(\mathbb{C})$ is inner, and prove that each multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$ can be expressed a sum of an (α, β)-inner derivation and an additive (α, β)-derivation induced by an additive derivation of \mathbb{C}.

2. Additivity of multiplicative (α, β)-derivations on rings

In this section, we have the following main result.
Theorem 1. Let \mathcal{R} be a ring (not necessarily containing an identity), α and β be ring automorphisms of \mathcal{R}. Suppose that there exists an idempotent $e(e \neq 0, e \neq 1)$ such that the following conditions hold:
(C1) $\tilde{e} \mathcal{R} x=0$ implies $x=0$ (and hence $\mathcal{R} x=0$ implies $x=0$);
(C2) ẽxe $\mathcal{R}(1-e)=0$ implies ẽxe $=0$ (and hence ẽxe $\mathcal{R}=0$ implies ẽxe $=0$);
(C3) $x \mathcal{R}=0$ implies $x=0$;
where $\tilde{e}=\beta \alpha^{-1}(e)$. Then every multiplicative (α, β)-derivation of \mathcal{R} is additive.
Remark. Let \mathcal{R} be a ring. For convenience, we replace $y-x y$ with $(1-x) y$ for x, y in \mathcal{R}. Hence for an automorphism α of \mathcal{R}, the equality $\alpha((1-x) y)=(1-\alpha(x)) \alpha(y)$ is well-defined. Let d be a multiplicative (α, β)-derivation on \mathcal{R}. If \mathcal{R} has an identity I, then $d(I)=0$. If \mathcal{R} has no identity, we let $\mathcal{R}_{1}=\{(x, n): x \in \mathcal{R}, n \in \mathbb{Z}\}$, where \mathbb{Z} is the integer ring. Then, under the following addition and multiplication:

$$
(x, n)+(y, m)=(x+y, n+m), \quad(x, n)(y, m)=(x y+n y+m x, n m),
$$

\mathcal{R}_{1} is a ring with unit $\mathbf{1}=(0,1)$, and contains \mathcal{R} as a ideal if we identify x in \mathcal{R} with $(x, 0)$ in \mathcal{R}_{1}. For an automorphism α of \mathcal{R}, we define the mapping $\tilde{\alpha}$ of \mathcal{R}_{1} by $\tilde{\alpha}(x, n)=(\alpha(x), n)$. Then $\tilde{\alpha}$ is an automorphism of \mathcal{R}_{1} such that $\left.\tilde{\alpha}\right|_{\mathcal{R}}=\alpha$. Obviously, the mapping \tilde{d} of \mathcal{R}_{1} into itself, defined by $\tilde{d}(x, n)=$ $d(x)$ for all $(x, n) \in \mathcal{R}_{1}$, is a multiplicative $(\tilde{\alpha}, \tilde{\beta})$-derivation on \mathcal{R}_{1} if and only if $d(x y+m x+n y)=$ $d(x y)+m d(x)+n d(y)$ for all $x, y \in \mathcal{R}$ and $m, n \in \mathbb{Z}$. In particular, if d is additive, then \tilde{d} is an (additive) $(\tilde{\alpha}, \tilde{\beta})$-derivation.

Recall that an associative ring \mathcal{R} is prime if, for each a, b in $\mathcal{R}, a \mathcal{R} b=0$ implies $a=0$ or $b=0$. It is well known that the matrix $\operatorname{ring} M_{n}(\mathbb{C})$, and generally each factor von Neumann algebra, is prime. By Theorem 1, we have the following corollary.

Corollary 2. Every multiplicative (α, β)-derivation of a prime ring with a nontrivial idempotent is additive. In particular, each multiplicative (α, β)-derivation of a factor von Neumann algebra, and hence, of $M_{n}(\mathbb{C})$, is additive.

Let d be a multiplicative (α, β)-derivation of \mathcal{R}, e and \tilde{e} be as in Theorem 1. If let $e^{\prime}=\alpha^{-1}(e)$, then $\alpha\left(e^{\prime}\right)=e, \beta\left(e^{\prime}\right)=\tilde{e}$. As in [2], the two-sided Peirce decomposition of \mathcal{R} relative to the idempotent e^{\prime} takes the form $\mathcal{R}=\mathcal{R}_{11}^{\prime} \oplus \mathcal{R}_{12}^{\prime} \oplus \mathcal{R}_{21}^{\prime} \oplus \mathcal{R}_{22}^{\prime}$, where $\mathcal{R}_{11}^{\prime}=e^{\prime} \mathcal{R}^{\prime} e^{\prime}, \mathcal{R}_{12}^{\prime}=e^{\prime} \mathcal{R}\left(1-e^{\prime}\right), \mathcal{R}_{21}^{\prime}=(1-$ $\left.e^{\prime}\right) \mathcal{R} e^{\prime}$ and $\mathcal{R}_{22}^{\prime}=\left(1-e^{\prime}\right) \mathcal{R}\left(1-e^{\prime}\right)$. Relative to the idempotents \tilde{e} and e, we have the generalized twosided Peirce decomposition of $\mathcal{R}, \mathcal{R}=\mathcal{R}_{11} \oplus \mathcal{R}_{12} \oplus \mathcal{R}_{21} \oplus \mathcal{R}_{22}$, where $\mathcal{R}_{11}=\tilde{e} \mathcal{R} e, \mathcal{R}_{12}=\tilde{e} \mathcal{R}(1-$ $e), \mathcal{R}_{21}=(1-\tilde{e}) \mathcal{R e}, \mathcal{R}_{22}=(1-\tilde{e}) \mathcal{R}(1-e)$.

From the definition of d, we have $d(0)=0$ and $d\left(e^{\prime}\right)=d\left(e^{\prime}\right) e+\tilde{e} d\left(e^{\prime}\right)$. Hence $(1-\tilde{e}) d\left(e^{\prime}\right)(1-$ $e)=0$ and $\tilde{e} d\left(e^{\prime}\right) e=2 \tilde{e} d\left(e^{\prime}\right) e$, which implies $\tilde{e} d\left(e^{\prime}\right) e=0$. So we can decompose $d\left(e^{\prime}\right)$ into $a_{12}+a_{21}$, where $a_{12}=\tilde{e} d\left(e^{\prime}\right)(1-e), a_{21}=(1-\tilde{e}) d\left(e^{\prime}\right) e$.

Let f be a mapping of \mathcal{R} into itself, defined by $f(x)=\beta(x)\left(a_{12}-a_{21}\right)-\left(a_{12}-a_{21}\right) \alpha(x)$. Since α and β are automorphisms, we have that f is additive and satisfies that $f\left(x_{1} x_{2}\right)=f\left(x_{1}\right) \alpha\left(x_{2}\right)+$ $\beta\left(x_{1}\right) f\left(x_{2}\right)$ for each x_{1}, x_{2} in \mathcal{R}, so f is an (α, β)-inner derivation of \mathcal{R}. It follows from the definitions of a_{12} and a_{21} that $f\left(e^{\prime}\right)=a_{12}+a_{21}=d\left(e^{\prime}\right)$.

Define $D=d-f$. Then D is a multiplicative (α, β)-derivation of \mathcal{R}, and D is additive if and only if so is d. Hence in order to complete the proof of Theorem 1, we only show that D is additive. We remark that $D\left(e^{\prime}\right)=0$ and $D(0)=0$.

Lemma 1. $D\left(\mathcal{R}_{i j}^{\prime}\right) \subseteq \mathcal{R}_{i j}$.
Proof. For x_{11}^{\prime} in $\mathcal{R}_{11}^{\prime}$, since $D\left(e^{\prime}\right)=0$, we have $D\left(x_{11}^{\prime}\right)=D\left(e^{\prime}\left(x_{11}^{\prime} e^{\prime}\right)\right)=\beta\left(e^{\prime}\right) D\left(x_{11}^{\prime} e^{\prime}\right)=\tilde{e} D\left(x_{11}^{\prime}\right) \alpha\left(e^{\prime}\right)$ $=\tilde{e} D\left(x_{11}^{\prime}\right) e \in \mathcal{R}_{11}$. For x_{12}^{\prime} in $\mathcal{R}_{12}^{\prime}$, we have $D\left(x_{12}^{\prime}\right)=D\left(e^{\prime} x_{12}^{\prime}\right)=\tilde{e} D\left(x_{12}^{\prime}\right)$ and $0=D\left(x_{12}^{\prime} e^{\prime}\right)=D\left(x_{12}^{\prime}\right)$ $\alpha\left(e^{\prime}\right)=D\left(x_{12}^{\prime}\right) e$, so that $(1-\tilde{e}) D\left(x_{12}^{\prime}\right)=D\left(x_{12}^{\prime}\right) e=0$, which implies that $D\left(x_{12}^{\prime}\right)$ is in \mathcal{R}_{12}.

For x_{21}^{\prime} in $\mathcal{R}_{21}^{\prime}$, we have $D\left(x_{21}^{\prime}\right)=D\left(x_{21}^{\prime} e^{\prime}\right)=D\left(x_{21}^{\prime}\right) e$ and $0=D\left(e^{\prime} x_{21}^{\prime}\right)=\tilde{e} D\left(x_{21}^{\prime}\right)$. Hence $D\left(x_{21}^{\prime}\right) \in$ \mathcal{R}_{21}. For x_{22}^{\prime} in $\mathcal{R}_{22}^{\prime}$, we have $0=D\left(e^{\prime} x_{22}^{\prime}\right)=\tilde{e} D\left(x_{22}^{\prime}\right)$ and $0=D\left(x_{22}^{\prime} e^{\prime}\right)=D\left(x_{22}^{\prime}\right)$ e. Hence $D\left(x_{22}^{\prime}\right) \in$ \mathcal{R}_{22}.

Lemma 2. For each $x_{i i}^{\prime}$ in $\mathcal{R}_{i i}^{\prime}$ and $x_{j k}^{\prime}$ in $\mathcal{R}_{j k}^{\prime}$ with $1 \leqslant i, j, k \leqslant 2$ and $j \neq k$, we have $D\left(x_{i i}^{\prime}+x_{j k}^{\prime}\right)=D\left(x_{i i}^{\prime}\right)+$ $D\left(x_{j k}^{\prime}\right)$.

Proof. Obviously, we only need to show $D\left(x_{i i}^{\prime}\right)+D\left(x_{j k}^{\prime}\right)-D\left(x_{i i}^{\prime}+x_{j k}^{\prime}\right)=0$. By the hypothesis, we consider four cases.

Case 1: $i=j=1$ and $k=2$. Using the condition (C3), we only show that $\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)\right.$ $\left.-D\left(x_{11}^{\prime}+x_{12}^{\prime}\right)\right) \mathcal{R}=0$.

For $t_{1} \in e \mathcal{R}$, using Lemma 1 , we have $D\left(x_{12}^{\prime}\right) t_{1}=0$. Let $s_{1}=\alpha^{-1}\left(t_{1}\right)$. Then $s_{1}=\alpha^{-1}\left(e t_{1}\right)=$ $e^{\prime} s_{1}$, and thus, $x_{12}^{\prime} s_{1}=0$. Since $x_{12}^{\prime} e^{\prime}=0$, it follows that $\beta\left(x_{12}^{\prime}\right) D\left(s_{1}\right)=\beta\left(x_{12}^{\prime}\right) D\left(e^{\prime} s_{1}\right)=\beta\left(x_{12}^{\prime}\right)$ $\beta\left(e^{\prime}\right) D\left(s_{1}\right)=\beta\left(x_{12}^{\prime} e^{\prime}\right) D\left(s_{1}\right)=0$. Hence

$$
\begin{aligned}
\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)\right) t_{1} & =D\left(x_{11}^{\prime}\right) t_{1}+D\left(x_{12}^{\prime}\right) t_{1}=D\left(x_{11}^{\prime}\right) t_{1}=D\left(x_{11}^{\prime}\right) \alpha\left(s_{1}\right) \\
& =D\left(x_{11}^{\prime} s_{1}\right)-\beta\left(x_{11}^{\prime}\right) D\left(s_{1}\right)=D\left(\left(x_{11}^{\prime}+x_{12}^{\prime}\right) s_{1}\right)-\beta\left(x_{11}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) \alpha\left(s_{1}\right)+\beta\left(x_{11}^{\prime}+x_{12}^{\prime}\right) D\left(s_{1}\right)-\beta\left(x_{11}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) \alpha\left(s_{1}\right)+\beta\left(x_{12}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) t_{1} .
\end{aligned}
$$

Consequently, $\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{12}^{\prime}\right)\right) t_{1}=0$ for each $t_{1} \in e \mathcal{R}$.
On the other hand, for $t_{2} \in(1-e) \mathcal{R}$, it follows from Lemma 1 that $D\left(x_{11}^{\prime}\right) t_{2}=0$. Let $s_{2}=\alpha^{-1}\left(t_{2}\right)$. Then $s_{2}=\alpha^{-1}\left((1-e) t_{2}\right)=\alpha^{-1}\left(t_{2}\right)-\alpha^{-1}(e) \alpha^{-1}\left(t_{2}\right)=\left(1-e^{\prime}\right) s_{2}$, and hence $x_{11}^{\prime} s_{2}=0$. Since $0=D(0)=D\left(e^{\prime} s_{2}\right)=\beta\left(e^{\prime}\right) D\left(s_{2}\right)$, we have $\beta\left(x_{11}^{\prime}\right) D\left(s_{2}\right)=\beta\left(x_{11}^{\prime} e^{\prime}\right) D\left(s_{2}\right)=\beta\left(x_{11}^{\prime}\right) \beta\left(e^{\prime}\right) D\left(s_{2}\right)=$ 0 . Hence

$$
\begin{aligned}
\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)\right) t_{2} & =D\left(x_{12}^{\prime}\right) t_{2}=D\left(x_{12}^{\prime}\right) \alpha\left(s_{2}\right)=D\left(x_{12}^{\prime} s_{2}\right)-\beta\left(x_{12}^{\prime}\right) D\left(s_{2}\right) \\
& =D\left(\left(x_{11}^{\prime}+x_{12}^{\prime}\right) s_{2}\right)-\beta\left(x_{12}^{\prime}\right) D\left(s_{2}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) \alpha\left(s_{2}\right)+\beta\left(x_{11}^{\prime}+x_{12}^{\prime}\right) D\left(s_{2}\right)-\beta\left(x_{12}^{\prime}\right) D\left(s_{2}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) \alpha\left(s_{2}\right)+\beta\left(x_{11}^{\prime}\right) D\left(s_{2}\right) \\
& =D\left(x_{11}^{\prime}+x_{12}^{\prime}\right) t_{2} .
\end{aligned}
$$

Consequently, $\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{12}^{\prime}\right)\right) t_{2}=0$. Since t_{1} and t_{2} are arbitrary, we obtain that $\left(D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{12}^{\prime}\right)\right) t=0$ for each $t \in \mathcal{R}$.

Case 2: $i=j=2, k=1$. By a similar way to case 1 , we show $\left(D\left(x_{22}^{\prime}\right)+D\left(x_{21}^{\prime}\right)-D\left(x_{22}^{\prime}\right.\right.$ $\left.\left.+x_{21}^{\prime}\right)\right) \mathcal{R}=0$.

For $t_{1} \in e \mathcal{R}$, it follows from Lemma 1 that $D\left(x_{22}^{\prime}\right) t_{1}=0$. Let $s_{1}=\alpha^{-1}\left(t_{1}\right)$. Then $s_{1}=\alpha^{-1}\left(e t_{1}\right)=$ $e^{\prime} s_{1}$, and thus, $x_{22}^{\prime} s_{1}=0$. Also since $\beta\left(x_{22}^{\prime}\right) D\left(s_{1}\right)=\beta\left(x_{22}^{\prime}\right) D\left(e^{\prime} s_{1}\right)=\beta\left(x_{22}^{\prime} e^{\prime}\right) D\left(s_{1}\right)=0$, we have

$$
\begin{aligned}
\left(D\left(x_{22}^{\prime}\right)+D\left(x_{21}^{\prime}\right)\right) t_{1} & =D\left(x_{21}^{\prime}\right) t_{1}=D\left(x_{21}^{\prime}\right) \alpha\left(s_{1}\right)=D\left(x_{21}^{\prime} s_{1}\right)-\beta\left(x_{21}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(\left(x_{22}^{\prime}+x_{21}^{\prime}\right) s_{1}\right)-\beta\left(x_{21}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(x_{22}^{\prime}+x_{21}^{\prime}\right) \alpha\left(s_{1}\right)+\beta\left(x_{22}^{\prime}\right) D\left(s_{1}\right) \\
& =D\left(x_{22}^{\prime}+x_{21}^{\prime}\right) t_{1} .
\end{aligned}
$$

For $t_{2} \in(1-e) \mathcal{R}$, using Lemma 1 , we have $D\left(x_{21}^{\prime}\right) t_{2}=0$. Let $s_{2}=\alpha^{-1}\left(t_{2}\right)$. Then $s_{2}=\alpha^{-1}((1-$ e) $\left.t_{2}\right)=\left(1-e^{\prime}\right) s_{2}$, and thus $e^{\prime} s_{2}=0$, which implies that $\beta\left(x_{21}^{\prime}\right) D\left(s_{2}\right)=\beta\left(x_{21}^{\prime} e^{\prime}\right) D\left(s_{2}\right)=\beta\left(x_{21}^{\prime}\right)$ $D\left(e^{\prime} s_{2}\right)=0$. Hence $\left(D\left(x_{22}^{\prime}\right)+D\left(x_{21}^{\prime}\right)\right) t_{2}=D\left(x_{22}^{\prime}\right) t_{2}=D\left(x_{22}^{\prime}\right) \alpha\left(s_{2}\right)=D\left(x_{22}^{\prime} s_{2}\right)-\beta\left(x_{22}^{\prime}\right) D\left(s_{2}\right)=$ $D\left(x_{22}^{\prime}+x_{21}^{\prime}\right) \alpha\left(s_{2}\right)+\beta\left(x_{21}^{\prime}\right) D\left(s_{2}\right)=D\left(x_{22}^{\prime}+x_{21}^{\prime}\right) t_{2}$.

Since t_{1} and t_{2} are arbitrary, we have $\left(D\left(x_{22}^{\prime}\right)+D\left(x_{21}^{\prime}\right)-D\left(x_{22}^{\prime}+x_{21}^{\prime}\right)\right) \mathcal{R}=0$.
Case 3: $i=k=1, j=2$. For the case, we use the condition (C1).
For $t_{1} \in \mathcal{R} \tilde{e}$, it follows from Lemma 1 that $t_{1} D\left(x_{21}^{\prime}\right)=0$. Let $s_{1}=\beta^{-1}\left(t_{1}\right)$. Then $s_{1}=s_{1} e^{\prime}$. Hence $s_{1} x_{21}^{\prime}=0$ and $D\left(s_{1}\right) \alpha\left(x_{21}^{\prime}\right)=D\left(s_{1} e^{\prime}\right) \alpha\left(x_{21}^{\prime}\right)=D\left(s_{1}\right) \alpha\left(e^{\prime} x_{21}^{\prime}\right)=0$. So

$$
\begin{aligned}
t_{1}\left(D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)\right) & =t_{1} D\left(x_{11}^{\prime}\right)=\beta\left(s_{1}\right) D\left(x_{11}^{\prime}\right)=D\left(s_{1} x_{11}^{\prime}\right)-D\left(s_{1}\right) \alpha\left(x_{11}^{\prime}\right) \\
& =D\left(s_{1}\left(x_{11}^{\prime}+x_{21}^{\prime}\right)\right)-D\left(s_{1}\right) \alpha\left(x_{11}^{\prime}\right) \\
& =D\left(s_{1}\right) \alpha\left(x_{11}^{\prime}+x_{21}^{\prime}\right)+\beta\left(s_{1}\right) D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)-D\left(s_{1}\right) \alpha\left(x_{11}^{\prime}\right) \\
& =D\left(s_{1}\right) \alpha\left(x_{21}^{\prime}\right)+\beta\left(s_{1}\right) D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)=\beta\left(s_{1}\right) D\left(x_{11}^{\prime}+x_{21}^{\prime}\right) \\
& =t_{1} D\left(x_{11}^{\prime}+x_{21}^{\prime}\right) .
\end{aligned}
$$

Hence $t_{1}\left(D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)\right)=0$.
For $t_{2} \in \mathcal{R}(1-\tilde{e})$, using Lemma 1 , we have $t_{2} D\left(x_{11}^{\prime}\right)=0$. Let $s_{2}=\beta^{-1}\left(t_{2}\right)$. Then $s_{2}=s_{2}\left(1-e^{\prime}\right)$, and thus, $s_{2} e^{\prime}=0$ and $s_{2} x_{11}^{\prime}=0$, which implies $D\left(s_{2}\right) \alpha\left(e^{\prime}\right) D\left(s_{2} e^{\prime}\right)=0$. It follows that $D\left(s_{2}\right) \alpha\left(x_{11}^{\prime}\right)=$ $D\left(s_{2}\right) \alpha\left(e^{\prime} x_{11}^{\prime}\right)=0$. Hence

$$
\begin{aligned}
t_{2}\left(D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)\right) & =t_{2} D\left(x_{21}^{\prime}\right)=\beta\left(s_{2}\right) D\left(x_{21}^{\prime}\right)=D\left(s_{2} x_{21}^{\prime}\right)-D\left(s_{2}\right) \alpha\left(x_{21}^{\prime}\right) \\
& =D\left(s_{2}\left(x_{11}^{\prime}+x_{21}^{\prime}\right)\right)-D\left(s_{2}\right) \alpha\left(x_{21}^{\prime}\right) \\
& =D\left(s_{2}\right) \alpha\left(x_{11}^{\prime}+x_{21}^{\prime}\right)+\beta\left(s_{2}\right) D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)-D\left(s_{2}\right) \alpha\left(x_{21}^{\prime}\right) \\
& =t_{2} D\left(x_{11}^{\prime}+x_{21}^{\prime}\right) .
\end{aligned}
$$

Consequently, $t_{2}\left(D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)\right)=0$. Since t_{1} and t_{2} are arbitrary, we have $\mathcal{R}\left(D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)-D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)\right)=0$. It follows from (C1) that $D\left(x_{11}^{\prime}+x_{21}^{\prime}\right)=D\left(x_{11}^{\prime}\right)+D\left(x_{21}^{\prime}\right)$.

Case 4: $i=k=2, j=1$. The proof is similar to that of the Case 3, we omit it.
Lemma 3. D is additive on $\mathcal{R}_{12}^{\prime}$.
Proof. Let x_{12}^{\prime} and y_{12}^{\prime} be in $\mathcal{R}_{12}^{\prime}$. Using Lemma 1 , we have $D\left(x_{12}^{\prime}\right), D\left(y_{12}^{\prime}\right), D\left(x_{12}^{\prime}+y_{12}^{\prime}\right) \in \mathcal{R}_{12}$. Hence $\left(D\left(x_{12}^{\prime}\right)+D\left(y_{12}^{\prime}\right)-D\left(x_{12}^{\prime}+y_{12}^{\prime}\right)\right) t_{1}=0$ for each $t_{1} \in e \mathcal{R}$.

For $t_{2} \in(1-e) \mathcal{R}$, let $s_{2}=\alpha^{-1}\left(t_{2}\right)$. Then $s_{2}=\left(1-e^{\prime}\right) s_{2}$, which implies that $e^{\prime}\left(s_{2}+y_{12}^{\prime} s_{2}\right)=$ $y_{12}^{\prime} s_{2}$. It follows that $D\left(y_{12}^{\prime} s_{2}\right)=D\left(e^{\prime}\left(s_{2}+y_{12}^{\prime} s_{2}\right)\right)=\beta\left(e^{\prime}\right) D\left(s_{2}+y_{12}^{\prime} s_{2}\right)$. Since $e^{\prime} \in \mathcal{R}_{11}^{\prime}$ and $x_{12}^{\prime} \in$ $\mathcal{R}_{12}^{\prime}$, it follows from Lemma 2 that $D\left(e^{\prime}+x_{12}^{\prime}\right)=D\left(e^{\prime}\right)+D\left(x_{12}^{\prime}\right)=D\left(x_{12}^{\prime}\right)$. Also since $\left(x_{12}^{\prime}+y_{12}^{\prime}\right) s_{2}=$ $\left(e^{\prime}+x_{12}^{\prime}\right)\left(s_{2}+y_{12}^{\prime} s_{2}\right)$, we have

$$
\begin{aligned}
D\left(\left(x_{12}^{\prime}+y_{12}^{\prime}\right) s_{2}\right) & =D\left(\left(e^{\prime}+x_{12}^{\prime}\right)\left(s_{2}+y_{12}^{\prime} s_{2}\right)\right) \\
& =D\left(x_{12}^{\prime}\right) \alpha\left(s_{2}+y_{12}^{\prime} s_{2}\right)+\beta\left(e^{\prime}+x_{12}^{\prime}\right) D\left(s_{2}+y_{12}^{\prime} s_{2}\right) \\
& =D\left(x_{12}^{\prime}\right) \alpha\left(s_{2}+y_{12}^{\prime} s_{2}\right)+\beta\left(x_{12}^{\prime}\right) D\left(s_{2}+y_{12}^{\prime} s_{2}\right)+\beta\left(e^{\prime}\right) D\left(s_{2}+y_{12}^{\prime} s_{2}\right) \\
& =D\left(x_{12}^{\prime}\left(s_{2}+y_{12}^{\prime} s_{2}\right)\right)+D\left(y_{12}^{\prime} s_{2}\right) \\
& =D\left(x_{12}^{\prime} s_{2}\right)+D\left(y_{12}^{\prime} s_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(D\left(x_{12}^{\prime}\right)+D\left(y_{12}^{\prime}\right)-D\left(x_{12}^{\prime}+y_{12}^{\prime}\right)\right) t_{2} \\
& \quad=D\left(x_{12}^{\prime}\right) \alpha\left(s_{2}\right)+D\left(y_{12}^{\prime}\right) \alpha\left(s_{2}\right)-D\left(x_{12}^{\prime}+y_{12}^{\prime}\right) \alpha\left(s_{2}\right) \\
& \quad=D\left(x_{12}^{\prime} s_{2}\right)+D\left(y_{12}^{\prime} s_{2}\right)-D\left(\left(x_{12}^{\prime}+y_{12}^{\prime}\right) s_{2}\right) \\
& \quad=0
\end{aligned}
$$

Since t_{1} and t_{2} are arbitrary, we have $\left(D\left(x_{12}^{\prime}\right)+D\left(y_{12}^{\prime}\right)-D\left(x_{12}^{\prime}+y_{12}^{\prime}\right)\right) \mathcal{R}=0$. It follows from the condition (C3) that $D\left(x_{12}^{\prime}+y_{12}^{\prime}\right)=D\left(x_{12}^{\prime}\right)+D\left(y_{12}^{\prime}\right)$. Hence D is additive on $\mathcal{R}_{12}^{\prime}$.

Lemma 4. D is additive on $\mathcal{R}_{11}^{\prime}$.
Proof. Fix $x_{11}^{\prime}, y_{11}^{\prime} \in \mathcal{R}_{11}^{\prime}$. It follows from Lemma 1 that $D\left(x_{11}^{\prime}\right), D\left(y_{11}^{\prime}\right)$ and $D\left(x_{11}^{\prime}+y_{11}^{\prime}\right)$ are in \mathcal{R}_{11}. Hence $\left(D\left(x_{11}^{\prime}\right)+D\left(y_{11}^{\prime}\right)-D\left(x_{11}^{\prime}+y_{11}^{\prime}\right)\right) t_{22}=0$ for each $t_{22} \in \mathcal{R}_{22}$.

For $t_{12} \in \mathcal{R}_{12}$, let $s_{12}=\alpha^{-1}\left(t_{12}\right)$. Then $s_{12}=\alpha^{-1}\left(t_{12}(1-e)\right)=s_{12}\left(1-e^{\prime}\right) \in \mathcal{R}\left(1-e^{\prime}\right)$. Hence $x_{11}^{\prime} s_{12}$ and $y_{11}^{\prime} s_{12}$ are in $\mathcal{R}_{12}^{\prime}$. It follows from Lemma 3 that $D\left(x_{11}^{\prime} s_{12}+y_{11}^{\prime} s_{12}\right)=D\left(x_{11}^{\prime} s_{12}\right)$ $+D\left(y_{11}^{\prime} s_{12}\right)$. So

$$
\begin{aligned}
& \left(D\left(x_{11}^{\prime}\right)+D\left(y_{11}^{\prime}\right)-D\left(x_{11}^{\prime}+y_{11}^{\prime}\right)\right) t_{12} \\
& =D\left(x_{11}^{\prime}\right) \alpha\left(s_{12}\right)+D\left(y_{11}^{\prime}\right) \alpha\left(s_{12}\right)-D\left(x_{11}^{\prime}+y_{11}^{\prime}\right) \alpha\left(s_{12}\right) \\
& =D\left(x_{11}^{\prime} s_{12}\right)+D\left(y_{11}^{\prime} s_{12}\right)-D\left(\left(x_{11}^{\prime}+y_{11}^{\prime}\right) s_{12}\right) \\
& =0 .
\end{aligned}
$$

Since t_{12} and t_{22} are arbitrary, we have $\left(D\left(x_{11}^{\prime}\right)+D\left(y_{11}^{\prime}\right)-D\left(x_{11}^{\prime}+y_{11}^{\prime}\right)\right) \mathcal{R}(1-e)=0$. By Lemma 1 , we note that $D\left(x_{11}^{\prime}\right)+D\left(y_{11}^{\prime}\right)-D\left(x_{11}^{\prime}+y_{11}^{\prime}\right) \in \mathcal{R}_{11}$. Hence it follows from the condition (C2) that $D\left(x_{11}^{\prime}+y_{11}^{\prime}\right)=D\left(x_{11}^{\prime}\right)+D\left(y_{11}^{\prime}\right)$. Consequently, D is additive on $\mathcal{R}_{11}^{\prime}$.

Lemma 5. D is additive on $e^{\prime} \mathcal{R}=\mathcal{R}_{11}^{\prime} \oplus \mathcal{R}_{12}^{\prime}$.

Proof. By Lemmas 3 and $4, D$ is additive on $\mathcal{R}_{11}^{\prime}$ and $\mathcal{R}_{12}^{\prime}$, respectively. Using Lemma 2, for each $x_{11}^{\prime} \in$ $\mathcal{R}_{11}^{\prime}$ and $x_{12}^{\prime} \in \mathcal{R}_{12}^{\prime}$, we have $D\left(x_{11}^{\prime}+x_{12}^{\prime}\right)=D\left(x_{11}^{\prime}\right)+D\left(x_{12}^{\prime}\right)$. Hence D is additive on $e^{\prime} \mathcal{R}=\mathcal{R}_{11}^{\prime} \oplus$ $\mathcal{R}_{12}^{\prime}$. \square

The Proof of Theorem 1. Let x and y be in \mathcal{R}. For each $t \in \tilde{e} \mathcal{R}$, let $s=\beta^{-1}(t)$. Then $s=\beta^{-1}(\tilde{e} t)=$ $e^{\prime} s$, and hence $s x, s y \in e^{\prime} \mathcal{R}$. By Lemma 5, we have that $D(s x+s y)=D(s x)+D(s y)$. Consequently, $t(D(x)+D(y))=\beta(s) D(x)+\beta(s) D(y)=D(s x)+D(s y)-D(s) \alpha(x)-D(s) \alpha(y)=D(s(x+y))-D(s)$ $\alpha(x+y)=\beta(s) D(x+y)=t D(x+y)$.

Since t is arbitrary, we have $\tilde{e} \mathcal{R}(D(x+y)-D(x)-D(y))=0$. It follows from the condition (C1) that $D(x+y)=D(x)+D(y)$. Hence D is additive.

3. Linearity of multiplicative (α, β)-derivations on $M_{n}(\mathbb{C})$

Let \mathcal{A} be an associative algebra over \mathbb{C}, α and β be algebraic automorphisms of \mathcal{A}. Recall that a mapping D from \mathcal{A} into itself is called a multiplicative (α, β)-derivation of \mathcal{A}, if the derivation condition (1) holds, i.e., $D(x y)=D(x) \alpha(y)+\beta(x) D(y)$ for all x, y in \mathcal{A}. Moreover, D is called inner if there exists x_{0} in \mathcal{A} such that $D(x)=\beta(x) x_{0}-x_{0} \alpha(x)$ for each x in \mathcal{A}. Obviously, if \mathcal{A} has an identity I, then $D(I)=0$. In this section, we consider the linearity problems of multiplicative (α, β)-derivations on $M_{n}(\mathbb{C})$. It follows from Corollary 2 that every multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$ is additive.

It is well known that each algebraic automorphism α on $M_{n}(\mathbb{C})$ is inner, i.e., there is an invertible matrix T_{0} in $M_{n}(\mathbb{C})$ such that $\alpha(A)=T_{0} A T_{0}^{-1}$ for each A in $M_{n}(\mathbb{C})$. Like the ordinary derivation, we can show that every linear multiplicative (α, β)-derivation is inner, which may be a known fact.

Theorem 3. Let D be a multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$. If D is linear, then D is inner.
Proof. Let $E_{i j}, i, j=1,2 \ldots, n$, be the standard matrix unit of $M_{n}(\mathbb{C})$. Let

$$
T_{0}=\sum_{j=1}^{n} \beta\left(E_{j 1}\right) D\left(E_{1 j}\right)
$$

Then, for each $E_{k l}$, using that $D(I)=0$, we have

$$
\begin{aligned}
\beta\left(E_{k l}\right) T_{0}-T_{0} \alpha\left(E_{k l}\right) & =\sum_{j=1}^{n} \beta\left(E_{k l}\right) \beta\left(E_{j 1}\right) D\left(E_{1 j}\right)-\sum_{j=1}^{n} \beta\left(E_{j 1}\right) D\left(E_{1 j}\right) \alpha\left(E_{k l}\right) \\
& =\beta\left(E_{k 1}\right) D\left(E_{1 l}\right)-\sum_{j=1}^{n}\left(D\left(E_{j 1} E_{1 j}\right)-D\left(E_{j 1}\right) \alpha\left(E_{1 j}\right)\right) \alpha\left(E_{k l}\right) \\
& =\beta\left(E_{k 1}\right) D\left(E_{1 l}\right)-D(I) \alpha\left(E_{k l}\right)+D\left(E_{k 1}\right) \alpha\left(E_{1 l}\right) \\
& =D\left(E_{k 1} E_{1 l}\right) \\
& =D\left(E_{k l}\right),
\end{aligned}
$$

where I is the identity matrix. Since α, β and D are linear, we have $D(A)=\beta(A) T_{0}-T_{0} \alpha(A)$ for each A in $M_{n}(\mathbb{C})$. Hence D is inner.

The following lemma is similar to Lemma 1 in [8].
Lemma 6. Let D be a multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$. Then there exist an additive derivation $f: \mathbb{C} \rightarrow \mathbb{C}$ and an invertible matrix V_{0} in $M_{n}(\mathbb{C})$ such that $D(t I)=f(t) V_{0}$ holds for all t in \mathbb{C}.

Proof. For arbitrary $A \in M_{n}(\mathbb{C})$ and $t \in \mathbb{C}$, we have

$$
D(t A)=D((t I) A)=D(t I) \alpha(A)+t D(A) .
$$

On the other hand,

$$
D(t A)=D(A(t I))=t D(A)+\beta(A) D(t I)
$$

Hence $D(t I) \alpha(A)=\beta(A) D(t I)$. Since α and β are inner, there exist invertible matrices T_{0} and S_{0} such that $\alpha(A)=T_{0} A T_{0}{ }^{-1}$ and $\beta(A)=S_{0} A S_{0}{ }^{-1}$ for all A in $M_{n}(\mathbb{C})$. Thus, $D(t I) T_{0} A T_{0}{ }^{-1}=S_{0} A S_{0}{ }^{-1} D(t I)$, and hence, $\left(S_{0}^{-1} D(t I) T_{0}\right) A=A\left(S_{0}^{-1} D(t I) T_{0}\right)$ holds for all A in $M_{n}(\mathbb{C})$. Consequently, $S_{0}^{-1} D(t I) T_{0}$ is in the center of $M_{n}(\mathbb{C})$, so there exists $f(t) \in \mathbb{C}$ such that $S_{0}^{-1} D(t I) T_{0}=f(t) I$, hence

$$
\begin{equation*}
D(t I)=f(t) V_{0} \tag{2}
\end{equation*}
$$

where $V_{0}=S_{0} T_{0}^{-1}$. Since D is additive, one can see easily that the mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by the Eq. (2) is an additive derivation.

Remark. The proof of Lemma 6 implies that the multiplicative (α, β)-derivation D is linear if and only if so is f, i.e, f is a trivial derivation.

Theorem 4. A mapping D on $M_{n}(\mathbb{C})$ is a multiplicative (α, β)-derivation if and only if there exist an additive derivation $f: \mathbb{C} \rightarrow \mathbb{C}$, a matrix A_{0} and invertible matrices S_{0} and T_{0} such that

$$
D\left(\left(a_{i j}\right)\right)=S_{0}\left(f\left(a_{i j}\right)\right) T_{0}^{-1}+S_{0}\left(a_{i j}\right) S_{0}^{-1} A_{0}-A_{0} T_{0}\left(a_{i j}\right) T_{0}^{-1}
$$

where $\alpha(A)=T_{0} A T_{0}^{-1}$ and $\beta(A)=S_{0} A S_{0}^{-1}$.
Proof. Let D be a multiplicative (α, β)-derivation on $M_{n}(\mathbb{C}), f$ be the additive derivation on \mathbb{C} defined by $D(t I)=f(t) S_{0} T_{0}^{-1}$, as in the proof of Lemma 6. Let $F(A)=S_{0}\left(f\left(a_{i j}\right)\right) T_{0}^{-1}$ foreach $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$. Then F is additive on $M_{n}(\mathbb{C})$. For all $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ in $M_{n}(\mathbb{C})$, we have

$$
\begin{aligned}
F(A) \alpha(B)+\beta(A) F(B) & =S_{0}\left(f\left(a_{i j}\right)\right) T_{0}^{-1} T_{0} B T_{0}^{-1}+S_{0} A S_{0}^{-1} S_{0}\left(f\left(b_{i j}\right)\right) T_{0}^{-1} \\
& =S_{0}\left(f\left(a_{i j}\right)\right)\left(b_{i j}\right) T_{0}^{-1}+S_{0}\left(a_{i j}\right)\left(f\left(b_{i j}\right)\right) T_{0}^{-1} \\
& =S_{0}\left(\sum_{k=1}^{n}\left(f\left(a_{i k}\right) b_{k j}+a_{i k} f\left(b_{k j}\right)\right)\right) T_{0}^{-1} \\
& =S_{0}\left(\sum_{k=1}^{n} f\left(a_{i k} b_{k j}\right)\right) T_{0}^{-1} \\
& =S_{0}\left(f\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)\right) T_{0}^{-1} \\
& =F(A B) .
\end{aligned}
$$

Consequently, F is a multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$.
Define $\widetilde{D}=D-F$.Then \widetilde{D} is a multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$. Obviously, $\widetilde{D}(t I)=D(t I)-$ $F(t I)=f(t) S_{0} T_{0}^{-1}-f(t) S_{0} T_{0}^{-1}=0$. By the Remark of Lemma $6, \widetilde{D}$ is linear. It follows from Theorem 3 that there exists A_{0} in $M_{n}(\mathbb{C})$ such that $\widetilde{D}(A)=\beta(A) A_{0}-A_{0} \alpha(A)$ for each A in $M_{n}(\mathbb{C})$. Hence

$$
\begin{equation*}
D\left(\left(a_{i j}\right)\right)=S_{0}\left(f\left(a_{i j}\right)\right) T_{0}^{-1}+S_{0}\left(a_{i j}\right) S_{0}^{-1} A_{0}-A_{0} T_{0}\left(a_{i j}\right) T_{0}^{-1} \tag{3}
\end{equation*}
$$

Remark. For fixed α and β, putting $\left(a_{i j}\right)=t I$ in (3), we can see that the additive derivation f is uniquely determined. Hence all such matrices A_{0} are different from λI.

Acknowledgement

The authors thank the referees for pointing out some typos of the manuscript and giving some suggestions.

References

[1] W.S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969) 695-698.
[2] M.N. Daif, When is a multiplicative derivation additive? Int. J. Math. Math. Sci. 14 (1991) 615-618.
[3] Z. Ling, F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004) 361-368.
[4] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002) 123-131.
[5] F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002) 283-291.
[6] J. Zhang, W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006) 251-255.
[7] P. Ji, Jordan maps on triangular algebras, Linear Algebra Appl. 426 (2007) 190-198.
[8] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991) 234-240.

[^0]: 4. Supported by National Natural Science Foundation of China (Nos. 10971117, A0324614) and Natural Science Foundation of Shandong Province (No. Y2006A03).

 * Corresponding author.

 E-mail address: cjhou@mail.qfnu.edu.cn (C. Hou).

