Linear Algebra and its Applications 432 (2010) 2600-2607

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

A note on (α, β) -derivations^{\ddagger}

Chengjun Hou*, Wenmin Zhang, Qing Meng

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China

ARTICLE INFO

Article history: Received 22 November 2009 Accepted 1 December 2009 Available online 12 January 2010

Submitted by C.K. Li

AMS classification: 16W20 16W25

Keywords: Ring Derivation (α, β) -derivation Peirce decomposition

ABSTRACT

We show that every multiplicative (α, β) -derivation of a ring \mathcal{R} is additive if there exists an idempotent e' ($e' \neq 0, 1$) in \mathcal{R} satisfying the conditions (C1)–(C3): (C1) $\beta(e')\mathcal{R}x = 0$ implies x = 0; (C2) $\beta(e')x\alpha(e')\mathcal{R}(1 - \alpha(e')) = 0$ implies $\beta(e')x\alpha(e') = 0$; (C3) $x\mathcal{R} =$ 0 implies x = 0. In particular, every multiplicative (α, β) -derivation of a prime ring with a nontrivial idempotent is additive. As applications, we could decompose a multiplicative (α, β) -derivation of the algebra $M_n(\mathbb{C})$ of all the $n \times n$ complex matrices into a sum of an (α, β) -inner derivation and an (α, β) -derivation on $M_n(\mathbb{C})$ given by an additive derivation f on \mathbb{C} .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The problem when a multiplicative mapping is additive, which was first considered by Martindale in [1], is very well-known and interesting in the ring theory. Martindale and Daif answered this problem for a multiplicative isomorphism and a multiplicative derivation in [1] and [2], respectively. Recently, the similar problems are considered for Jordan mappings on some associative algebras, such as the triangular algebras, nest algebras and standard operator algebras, etc. [3–7]. Motivated by the Daif's ideas, in this note we consider the problem whether a multiplicative (α , β)-derivation of a ring is additive. Fortunately, we can give a full answer for this question under the existence of a single fixed idempotent satisfying some properties which are similar to Daif's conditions. In particular, we

* Corresponding author.

0024-3795/\$ - see front matter 0 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.12.008

^{*} Supported by National Natural Science Foundation of China (Nos. 10971117, A0324614) and Natural Science Foundation of Shandong Province (No. Y2006A03).

E-mail address: cjhou@mail.qfnu.edu.cn (C. Hou).

could show that every multiplicative (α , β)-derivation of a prime ring with a nontrivial idempotent is additive.

Let \mathcal{R} be an associative ring, α and β be ring automorphisms of \mathcal{R} . By a multiplicative (α, β) -derivation from \mathcal{R} into itself, we call a mapping $d : \mathcal{R} \to \mathcal{R}$ such that

$$d(xy) = d(x)\alpha(y) + \beta(x)d(y), \text{ for all } x, y \text{ in } \mathcal{R}.$$
(1)

In addition, if *d* is additive, we call *d* an (α, β) -derivation of \mathcal{R} . If there exists $x_0 \in \mathcal{R}$ such that $d(x) = \beta(x)x_0 - x_0\alpha(x)$ holds for each *x* in \mathcal{R} , then *d* is called an (α, β) -inner derivation. Obviously, if α and β are the identity mapping *id* on \mathcal{R} , then a multiplicative (*id*, *id*)-derivation is an ordinary multiplicative derivation defined in [2].

Similarly, we can define the notion of a multiplicative (α, β) -derivation on an associative algebra \mathcal{A} over \mathbb{C} , in which we only assume that α and β are algebraic automorphisms of \mathcal{A} . It is natural to consider the linearity problem of a multiplicative (α, β) -derivation of \mathcal{A} . In this note, we will describe the problem for the multiplicative (α, β) -derivations of the algebra $M_n(\mathbb{C})$ of all the $n \times n$ complex matrices. By [2] or Corollary 2 in this note, every multiplicative (id, id)-derivation on $M_n(\mathbb{C})$ is additive; and in [8], Šemrl obtained the existence of additive derivations without linearity on $M_n(\mathbb{C})$. In section 3, we show that each linear (α, β) -derivation on $M_n(\mathbb{C})$ is inner, and prove that each multiplicative (α, β) -derivation on $M_n(\mathbb{C})$ can be expressed a sum of an (α, β) -inner derivation and an additive (α, β) -derivation induced by an additive derivation of \mathbb{C} .

2. Additivity of multiplicative (α, β) -derivations on rings

In this section, we have the following main result.

Theorem 1. Let \mathcal{R} be a ring (not necessarily containing an identity), α and β be ring automorphisms of \mathcal{R} . Suppose that there exists an idempotent $e \ (e \neq 0, e \neq 1)$ such that the following conditions hold:

(C1) $\tilde{e}\mathcal{R}x = 0$ implies x = 0 (and hence $\mathcal{R}x = 0$ implies x = 0); (C2) $\tilde{e}xe\mathcal{R}(1 - e) = 0$ implies $\tilde{e}xe = 0$ (and hence $\tilde{e}xe\mathcal{R} = 0$ implies $\tilde{e}xe = 0$); (C3) $x\mathcal{R} = 0$ implies x = 0;

where $\tilde{e} = \beta \alpha^{-1}(e)$. Then every multiplicative (α, β) -derivation of \mathcal{R} is additive.

Remark. Let \mathcal{R} be a ring. For convenience, we replace y - xy with (1 - x)y for x, y in \mathcal{R} . Hence for an automorphism α of \mathcal{R} , the equality $\alpha((1 - x)y) = (1 - \alpha(x))\alpha(y)$ is well-defined. Let d be a multiplicative (α, β) -derivation on \mathcal{R} . If \mathcal{R} has an identity I, then d(I) = 0. If \mathcal{R} has no identity, we let $\mathcal{R}_1 = \{(x, n) : x \in \mathcal{R}, n \in \mathbb{Z}\}$, where \mathbb{Z} is the integer ring. Then, under the following addition and multiplication:

(x, n) + (y, m) = (x + y, n + m), (x, n)(y, m) = (xy + ny + mx, nm),

 \mathcal{R}_1 is a ring with unit $\mathbf{1} = (0, 1)$, and contains \mathcal{R} as a ideal if we identify x in \mathcal{R} with (x, 0) in \mathcal{R}_1 . For an automorphism α of \mathcal{R} , we define the mapping $\tilde{\alpha}$ of \mathcal{R}_1 by $\tilde{\alpha}(x, n) = (\alpha(x), n)$. Then $\tilde{\alpha}$ is an automorphism of \mathcal{R}_1 such that $\tilde{\alpha}|_{\mathcal{R}} = \alpha$. Obviously, the mapping \tilde{d} of \mathcal{R}_1 into itself, defined by $\tilde{d}(x, n) = d(x)$ for all $(x, n) \in \mathcal{R}_1$, is a multiplicative $(\tilde{\alpha}, \tilde{\beta})$ -derivation on \mathcal{R}_1 if and only if d(xy + mx + ny) = d(xy) + md(x) + nd(y) for all $x, y \in \mathcal{R}$ and $m, n \in \mathbb{Z}$. In particular, if d is additive, then \tilde{d} is an (additive) $(\tilde{\alpha}, \tilde{\beta})$ -derivation.

Recall that an associative ring \mathcal{R} is prime if, for each a, b in $\mathcal{R}, a\mathcal{R}b = 0$ implies a = 0 or b = 0. It is well known that the matrix ring $M_n(\mathbb{C})$, and generally each factor von Neumann algebra, is prime. By Theorem 1, we have the following corollary.

Corollary 2. Every multiplicative (α, β) -derivation of a prime ring with a nontrivial idempotent is additive. In particular, each multiplicative (α, β) -derivation of a factor von Neumann algebra, and hence, of $M_n(\mathbb{C})$, is additive.

Let *d* be a multiplicative (α, β) -derivation of \mathcal{R} , *e* and \tilde{e} be as in Theorem 1. If let $e' = \alpha^{-1}(e)$, then $\alpha(e') = e, \beta(e') = \tilde{e}$. As in [2], the two-sided Peirce decomposition of \mathcal{R} relative to the idempotent e' takes the form $\mathcal{R} = \mathcal{R}'_{11} \oplus \mathcal{R}'_{12} \oplus \mathcal{R}'_{21} \oplus \mathcal{R}'_{22}$, where $\mathcal{R}'_{11} = e'\mathcal{R}e', \mathcal{R}'_{12} = e'\mathcal{R}(1 - e'), \mathcal{R}'_{21} = (1 - e')\mathcal{R}e'$ and $\mathcal{R}'_{22} = (1 - e')\mathcal{R}(1 - e')$. Relative to the idempotents \tilde{e} and e, we have the generalized twosided Peirce decomposition of \mathcal{R} , $\mathcal{R} = \mathcal{R}_{11} \oplus \mathcal{R}_{12} \oplus \mathcal{R}_{21} \oplus \mathcal{R}_{22}$, where $\mathcal{R}_{11} = \tilde{e}\mathcal{R}e$, $\mathcal{R}_{12} = \tilde{e}\mathcal{R}(1 - e)\mathcal{R}e$ e), $\mathcal{R}_{21} = (1 - \tilde{e})\mathcal{R}e$, $\mathcal{R}_{22} = (1 - \tilde{e})\mathcal{R}(1 - e)$.

From the definition of *d*, we have d(0) = 0 and $d(e') = d(e')e + \tilde{e}d(e')$. Hence $(1 - \tilde{e})d(e')(1 - \tilde{e})d(e')$ e = 0 and $\tilde{e}d(e')e = 2\tilde{e}d(e')e$, which implies $\tilde{e}d(e')e = 0$. So we can decompose d(e') into $a_{12} + a_{21}$, where $a_{12} = \tilde{e}d(e')(1-e)$, $a_{21} = (1-\tilde{e})d(e')e$.

Let f be a mapping of \mathcal{R} into itself, defined by $f(x) = \beta(x)(a_{12} - a_{21}) - (a_{12} - a_{21})\alpha(x)$. Since α and β are automorphisms, we have that f is additive and satisfies that $f(x_1x_2) = f(x_1)\alpha(x_2) + \beta(x_1)\alpha(x_2)$ $\beta(x_1)f(x_2)$ for each x_1, x_2 in \mathcal{R} , so f is an (α, β) -inner derivation of \mathcal{R} . It follows from the definitions of a_{12} and a_{21} that $f(e') = a_{12} + a_{21} = d(e')$.

Define D = d - f. Then D is a multiplicative (α, β)-derivation of \mathcal{R} , and D is additive if and only if so is d. Hence in order to complete the proof of Theorem 1, we only show that D is additive. We remark that D(e') = 0 and D(0) = 0.

Lemma 1. $D(\mathcal{R}'_{ij}) \subseteq \mathcal{R}_{ij}$.

Proof. For x'_{11} in \mathcal{R}'_{11} , since D(e') = 0, we have $D(x'_{11}) = D(e'(x'_{11}e')) = \beta(e')D(x'_{11}e') = \tilde{e}D(x'_{11})\alpha(e')$ = $\tilde{e}D(x'_{11})e \in \mathcal{R}_{11}$. For x'_{12} in \mathcal{R}'_{12} , we have $D(x'_{12}) = D(e'x'_{12}) = \tilde{e}D(x'_{12})$ and $0 = D(x'_{12}e') = D(x'_{12})$ $\alpha(e') = D(x'_{12})e$, so that $(1 - \tilde{e})D(x'_{12}) = D(x'_{12})e = 0$, which implies that $D(x'_{12})$ is in \mathcal{R}_{12} . For x'_{21} in \mathcal{R}'_{21} , we have $D(x'_{21}) = D(x'_{21}e') = D(x'_{21})e$ and $0 = D(e'x'_{21}) = \tilde{e}D(x'_{21})$. Hence $D(x'_{21}) \in \mathcal{R}_{21}$. For x'_{22} in \mathcal{R}'_{22} , we have $0 = D(e'x'_{22}) = \tilde{e}D(x'_{22})$ and $0 = D(x'_{22}e') = D(x'_{22})e$. Hence $D(x'_{22}) \in \mathcal{R}_{22}$.

 \mathcal{R}_{22} .

Lemma 2. For each x'_{ii} in \mathcal{R}'_{ik} and x'_{ik} in \mathcal{R}'_{ik} with $1 \leq i, j, k \leq 2$ and $j \neq k$, we have $D\left(x'_{ii} + x'_{ik}\right) = D\left(x'_{ii}\right) + D\left(x'_{ii$ $D\left(x_{ik}'\right)$.

Proof. Obviously, we only need to show $D(x'_{ii}) + D(x'_{ik}) - D(x'_{ii} + x'_{ik}) = 0$. By the hypothesis, we consider four cases.

Case 1: i = j = 1 and k = 2. Using the condition (C3), we only show that $(D(x'_{11}) + D(x'_{12}))$ $-D\left(x_{11}'+x_{12}'\right)\mathcal{R}=0.$

For $t_1 \in e\mathcal{R}$, using Lemma 1, we have $D(x'_{12})t_1 = 0$. Let $s_1 = \alpha^{-1}(t_1)$. Then $s_1 = \alpha^{-1}(et_1) = e's_1$, and thus, $x'_{12}s_1 = 0$. Since $x'_{12}e' = 0$, it follows that $\beta(x'_{12})D(s_1) = \beta(x'_{12})D(e's_1) = \beta(x'_{12})$ $\beta(e')D(s_1) = \beta(\tilde{x}'_{12}e')D(s_1) = 0.$ Hence

$$\begin{pmatrix} D(x'_{11}) + D(x'_{12}) \end{pmatrix} t_1 = D(x'_{11}) t_1 + D(x'_{12}) t_1 = D(x'_{11}) t_1 = D(x'_{11}) \alpha(s_1) = D(x'_{11}s_1) - \beta(x'_{11}) D(s_1) = D((x'_{11} + x'_{12}) s_1) - \beta(x'_{11}) D(s_1) = D(x'_{11} + x'_{12}) \alpha(s_1) + \beta(x'_{11} + x'_{12}) D(s_1) - \beta(x'_{11}) D(s_1) = D(x'_{11} + x'_{12}) \alpha(s_1) + \beta(x'_{12}) D(s_1) = D(x'_{11} + x'_{12}) \alpha(s_1) + \beta(x'_{12}) D(s_1) = D(x'_{11} + x'_{12}) t_1.$$

Consequently, $(D(x'_{11}) + D(x'_{12}) - D(x'_{11} + x'_{12}))t_1 = 0$ for each $t_1 \in e\mathcal{R}$.

On the other hand, for $t_2 \in (1 - e)\mathcal{R}$, it follows from Lemma 1 that $D(x'_{11}) t_2 = 0$. Let $s_2 = \alpha^{-1}(t_2)$. Then $s_2 = \alpha^{-1}((1-e)t_2) = \alpha^{-1}(t_2) - \alpha^{-1}(e)\alpha^{-1}(t_2) = (1-e')s_2$, and hence $x'_{11}s_2 = 0$. Since $0 = D(0) = D(e's_2) = \beta(e')D(s_2)$, we have $\beta(x'_{11})D(s_2) = \beta(x'_{11}e')D(s_2) = \beta(x'_{11})\beta(e')D(s_2) = \beta(x'_{11})\beta(e')D(s_2)$ 0. Hence

$$\begin{pmatrix} D(x'_{11}) + D(x'_{12}) \end{pmatrix} t_2 = D(x'_{12}) t_2 = D(x'_{12}) \alpha(s_2) = D(x'_{12}s_2) - \beta(x'_{12}) D(s_2) = D((x'_{11} + x'_{12})s_2) - \beta(x'_{12}) D(s_2) = D(x'_{11} + x'_{12}) \alpha(s_2) + \beta(x'_{11} + x'_{12}) D(s_2) - \beta(x'_{12}) D(s_2) = D(x'_{11} + x'_{12}) \alpha(s_2) + \beta(x'_{11}) D(s_2) = D(x'_{11} + x'_{12}) t_2.$$

Consequently, $(D(x'_{11}) + D(x'_{12}) - D(x'_{11} + x'_{12})) t_2 = 0$. Since t_1 and t_2 are arbitrary, we obtain that $(D(x'_{11}) + D(x'_{12}) - D(x'_{11} + x'_{12})) t = 0$ for each $t \in \mathcal{R}$.

Case 2: i = j = 2, k = 1. By a similar way to case 1, we show $(D(x'_{22}) + D(x'_{21}) - D(x'_{22} + x'_{21})) \mathcal{R} = 0$.

For $t_1 \in e\mathcal{R}$, it follows from Lemma 1 that $D(x'_{22}) t_1 = 0$. Let $s_1 = \alpha^{-1}(t_1)$. Then $s_1 = \alpha^{-1}(et_1) = e's_1$, and thus, $x'_{22}s_1 = 0$. Also since $\beta(x'_{22}) D(s_1) = \beta(x'_{22}) D(e's_1) = \beta(x'_{22}e') D(s_1) = 0$, we have

$$\begin{pmatrix} D(x'_{22}) + D(x'_{21}) \end{pmatrix} t_1 = D(x'_{21}) t_1 = D(x'_{21}) \alpha(s_1) = D(x'_{21}s_1) - \beta(x'_{21}) D(s_1) = D((x'_{22} + x'_{21})s_1) - \beta(x'_{21}) D(s_1) = D(x'_{22} + x'_{21}) \alpha(s_1) + \beta(x'_{22}) D(s_1) = D(x'_{22} + x'_{21}) t_1.$$

For $t_2 \in (1 - e)\mathcal{R}$, using Lemma 1, we have $D(x'_{21})t_2 = 0$. Let $s_2 = \alpha^{-1}(t_2)$. Then $s_2 = \alpha^{-1}((1 - e)t_2) = (1 - e')s_2$, and thus $e's_2 = 0$, which implies that $\beta(x'_{21})D(s_2) = \beta(x'_{21}e')D(s_2) = \beta(x'_{21})$ $D(e's_2) = 0$. Hence $(D(x'_{22}) + D(x'_{21}))t_2 = D(x'_{22})t_2 = D(x'_{22})\alpha(s_2) = D(x'_{22}s_2) - \beta(x'_{22})D(s_2) = D(x'_{22} + x'_{21})\alpha(s_2) + \beta(x'_{21})D(s_2) = D(x'_{22} + x'_{21})t_2$.

Since t_1 and t_2 are arbitrary, we have $(D(x'_{22}) + D(x'_{21}) - D(x'_{22} + x'_{21})) \mathcal{R} = 0$. **Case 3:** i = k = 1, j = 2. For the case, we use the condition (C1).

For $t_1 \in \mathcal{R}\tilde{e}$, it follows from Lemma 1 that $t_1 D(x'_{21}) = 0$. Let $s_1 = \beta^{-1}(t_1)$. Then $s_1 = s_1 e'$. Hence $s_1 x'_{21} = 0$ and $D(s_1)\alpha(x'_{21}) = D(s_1 e')\alpha(x'_{21}) = D(s_1)\alpha(e' x'_{21}) = 0$. So

$$\begin{aligned} t_1 \left(D\left(x'_{11} \right) + D\left(x'_{21} \right) \right) &= t_1 D\left(x'_{11} \right) = \beta(s_1) D\left(x'_{11} \right) = D\left(s_1 x'_{11} \right) - D(s_1) \alpha\left(x'_{11} \right) \\ &= D\left(s_1 \left(x'_{11} + x'_{21} \right) \right) - D(s_1) \alpha\left(x'_{11} \right) \\ &= D(s_1) \alpha\left(x'_{11} + x'_{21} \right) + \beta(s_1) D\left(x'_{11} + x'_{21} \right) - D(s_1) \alpha\left(x'_{11} \right) \\ &= D(s_1) \alpha\left(x'_{21} \right) + \beta(s_1) D\left(x'_{11} + x'_{21} \right) = \beta(s_1) D\left(x'_{11} + x'_{21} \right) \\ &= t_1 D\left(x'_{11} + x'_{21} \right). \end{aligned}$$

Hence $t_1 (D(x'_{11}) + D(x'_{21}) - D(x'_{11} + x'_{21})) = 0.$

For $t_2 \in \mathcal{R}(1 - \tilde{e})$, using Lemma 1, we have $t_2 D(x'_{11}) = 0$. Let $s_2 = \beta^{-1}(t_2)$. Then $s_2 = s_2(1 - e')$, and thus, $s_2 e' = 0$ and $s_2 x'_{11} = 0$, which implies $D(s_2)\alpha(e')D(s_2e') = 0$. It follows that $D(s_2)\alpha(x'_{11}) = D(s_2)\alpha(e'x'_{11}) = 0$. Hence

$$t_{2} \left(D \left(x_{11}' \right) + D \left(x_{21}' \right) \right) = t_{2} D \left(x_{21}' \right) = \beta(s_{2}) D \left(x_{21}' \right) = D \left(s_{2} x_{21}' \right) - D(s_{2}) \alpha \left(x_{21}' \right)$$

= $D \left(s_{2} \left(x_{11}' + x_{21}' \right) \right) - D(s_{2}) \alpha \left(x_{21}' \right)$
= $D(s_{2}) \alpha \left(x_{11}' + x_{21}' \right) + \beta(s_{2}) D \left(x_{11}' + x_{21}' \right) - D(s_{2}) \alpha \left(x_{21}' \right)$
= $t_{2} D \left(x_{11}' + x_{21}' \right).$

Consequently, $t_2(D(x'_{11}) + D(x'_{21}) - D(x'_{11} + x'_{21})) = 0$. Since t_1 and t_2 are arbitrary, we have $\mathcal{R}(D(x'_{11}) + D(x'_{21}) - D(x'_{11} + x'_{21})) = 0$. It follows from (C1) that $D(x'_{11} + x'_{21}) = D(x'_{11}) + D(x'_{21})$. **Case 4:** i = k = 2, j = 1. The proof is similar to that of the Case 3, we omit it. \Box

Lemma 3. *D* is additive on \mathcal{R}'_{12} .

Proof. Let x'_{12} and y'_{12} be in \mathcal{R}'_{12} . Using Lemma 1, we have $D(x'_{12})$, $D(y'_{12})$, $D(x'_{12} + y'_{12}) \in \mathcal{R}_{12}$. Hence $(D(x'_{12}) + D(y'_{12}) - D(x'_{12} + y'_{12})) t_1 = 0$ for each $t_1 \in e\mathcal{R}$.

For $t_2 \in (1 - e)\mathcal{R}$, let $s_2 = \alpha^{-1}(t_2)$. Then $s_2 = (1 - e')s_2$, which implies that $e'(s_2 + y'_{12}s_2) = y'_{12}s_2$. It follows that $D(y'_{12}s_2) = D(e'(s_2 + y'_{12}s_2)) = \beta(e')D(s_2 + y'_{12}s_2)$. Since $e' \in \mathcal{R}'_{11}$ and $x'_{12} \in \mathcal{R}'_{12}$, it follows from Lemma 2 that $D(e' + x'_{12}) = D(e') + D(x'_{12}) = D(x'_{12})$. Also since $(x'_{12} + y'_{12})s_2 = (e' + x'_{12})(s_2 + y'_{12}s_2)$, we have

$$D((x'_{12} + y'_{12})s_2) = D((e' + x'_{12})(s_2 + y'_{12}s_2))$$

= $D(x'_{12})\alpha(s_2 + y'_{12}s_2) + \beta(e' + x'_{12})D(s_2 + y'_{12}s_2)$
= $D(x'_{12})\alpha(s_2 + y'_{12}s_2) + \beta(x'_{12})D(s_2 + y'_{12}s_2) + \beta(e')D(s_2 + y'_{12}s_2)$
= $D(x'_{12}(s_2 + y'_{12}s_2)) + D(y'_{12}s_2)$
= $D(x'_{12}s_2) + D(y'_{12}s_2)$.

Hence

$$\begin{pmatrix} D(x'_{12}) + D(y'_{12}) - D(x'_{12} + y'_{12}) \end{pmatrix} t_2 = D(x'_{12}) \alpha(s_2) + D(y'_{12}) \alpha(s_2) - D(x'_{12} + y'_{12}) \alpha(s_2) = D(x'_{12}s_2) + D(y'_{12}s_2) - D((x'_{12} + y'_{12})s_2) = 0.$$

Since t_1 and t_2 are arbitrary, we have $(D(x'_{12}) + D(y'_{12}) - D(x'_{12} + y'_{12})) \mathcal{R} = 0$. It follows from the condition (C3) that $D(x'_{12} + y'_{12}) = D(x'_{12}) + D(y'_{12})$. Hence D is additive on \mathcal{R}'_{12} .

Lemma 4. *D* is additive on \mathcal{R}'_{11} .

Proof. Fix x'_{11} , $y'_{11} \in \mathcal{R}'_{11}$. It follows from Lemma 1 that $D(x'_{11})$, $D(y'_{11})$ and $D(x'_{11} + y'_{11})$ are in \mathcal{R}_{11} . Hence $(D(x'_{11}) + D(y'_{11}) - D(x'_{11} + y'_{11}))t_{22} = 0$ for each $t_{22} \in \mathcal{R}_{22}$.

For $t_{12} \in \mathcal{R}_{12}$, let $s_{12} = \alpha^{-1}(t_{12})$. Then $s_{12} = \alpha^{-1}(t_{12}(1-e)) = s_{12}(1-e') \in \mathcal{R}(1-e')$. Hence $x'_{11}s_{12}$ and $y'_{11}s_{12}$ are in \mathcal{R}'_{12} . It follows from Lemma 3 that $D(x'_{11}s_{12} + y'_{11}s_{12}) = D(x'_{11}s_{12}) + D(y'_{11}s_{12})$. So

$$\begin{pmatrix} D(x'_{11}) + D(y'_{11}) - D(x'_{11} + y'_{11}) \end{pmatrix} t_{12} = D(x'_{11}) \alpha(s_{12}) + D(y'_{11}) \alpha(s_{12}) - D(x'_{11} + y'_{11}) \alpha(s_{12}) = D(x'_{11}s_{12}) + D(y'_{11}s_{12}) - D((x'_{11} + y'_{11})s_{12}) = 0.$$

Since t_{12} and t_{22} are arbitrary, we have $(D(x'_{11}) + D(y'_{11}) - D(x'_{11} + y'_{11})) \mathcal{R}(1 - e) = 0$. By Lemma 1, we note that $D(x'_{11}) + D(y'_{11}) - D(x'_{11} + y'_{11}) \in \mathcal{R}_{11}$. Hence it follows from the condition (C2) that $D(x'_{11} + y'_{11}) = D(x'_{11}) + D(y'_{11})$. Consequently, D is additive on \mathcal{R}'_{11} .

Lemma 5. *D* is additive on $e'\mathcal{R} = \mathcal{R}'_{11} \oplus \mathcal{R}'_{12}$.

Proof. By Lemmas 3 and 4, *D* is additive on \mathcal{R}'_{11} and \mathcal{R}'_{12} , respectively. Using Lemma 2, for each $x'_{11} \in \mathcal{R}'_{11}$ and $x'_{12} \in \mathcal{R}'_{12}$, we have $D(x'_{11} + x'_{12}) = D(x'_{11}) + D(x'_{12})$. Hence *D* is additive on $e'\mathcal{R} = \mathcal{R}'_{11} \oplus \mathcal{R}'_{12}$. \Box

The Proof of Theorem 1. Let *x* and *y* be in \mathcal{R} . For each $t \in \tilde{e}\mathcal{R}$, let $s = \beta^{-1}(t)$. Then $s = \beta^{-1}(\tilde{e}t) = e's$, and hence *sx*, $sy \in e'\mathcal{R}$. By Lemma 5, we have that D(sx + sy) = D(sx) + D(sy). Consequently, $t(D(x) + D(y)) = \beta(s)D(x) + \beta(s)D(y) = D(sx) + D(sy) - D(s)\alpha(x) - D(s)\alpha(y) = D(s(x + y)) - D(s)\alpha(x + y) = \beta(s)D(x + y) = tD(x + y)$.

Since *t* is arbitrary, we have $\tilde{e}\mathcal{R}(D(x + y) - D(x) - D(y)) = 0$. It follows from the condition (C1) that D(x + y) = D(x) + D(y). Hence *D* is additive.

3. Linearity of multiplicative (α, β) -derivations on $M_n(\mathbb{C})$

Let \mathcal{A} be an associative algebra over \mathbb{C} , α and β be algebraic automorphisms of \mathcal{A} . Recall that a mapping D from \mathcal{A} into itself is called a multiplicative (α, β) -derivation of \mathcal{A} , if the derivation condition (1) holds, i.e., $D(xy) = D(x)\alpha(y) + \beta(x)D(y)$ for all x, y in \mathcal{A} . Moreover, D is called inner if there exists x_0 in \mathcal{A} such that $D(x) = \beta(x)x_0 - x_0\alpha(x)$ for each x in \mathcal{A} . Obviously, if \mathcal{A} has an identity I, then D(I) = 0. In this section, we consider the linearity problems of multiplicative (α, β) -derivations on $M_n(\mathbb{C})$. It follows from Corollary 2 that every multiplicative (α, β) -derivation on $M_n(\mathbb{C})$ is additive.

It is well known that each algebraic automorphism α on $M_n(\mathbb{C})$ is inner, i.e., there is an invertible matrix T_0 in $M_n(\mathbb{C})$ such that $\alpha(A) = T_0AT_0^{-1}$ for each A in $M_n(\mathbb{C})$. Like the ordinary derivation, we can show that every linear multiplicative (α, β) -derivation is inner, which may be a known fact.

Theorem 3. Let D be a multiplicative (α, β) -derivation on $M_n(\mathbb{C})$. If D is linear, then D is inner.

Proof. Let E_{ij} , i, j = 1, 2, ..., n, be the standard matrix unit of $M_n(\mathbb{C})$. Let

$$T_0 = \sum_{j=1}^n \beta(E_{j1}) D(E_{1j}).$$

Then, for each E_{kl} , using that D(l) = 0, we have

$$\begin{split} \beta(E_{kl})T_0 - T_0\alpha(E_{kl}) &= \sum_{j=1}^n \beta(E_{kl})\beta(E_{j1})D(E_{1j}) - \sum_{j=1}^n \beta(E_{j1})D(E_{1j})\alpha(E_{kl}) \\ &= \beta(E_{k1})D(E_{1l}) - \sum_{j=1}^n (D(E_{j1}E_{1j}) - D(E_{j1})\alpha(E_{1j}))\alpha(E_{kl}) \\ &= \beta(E_{k1})D(E_{1l}) - D(I)\alpha(E_{kl}) + D(E_{k1})\alpha(E_{1l}) \\ &= D(E_{k1}E_{1l}) \\ &= D(E_{kl}), \end{split}$$

where *I* is the identity matrix. Since α , β and *D* are linear, we have $D(A) = \beta(A)T_0 - T_0\alpha(A)$ for each *A* in $M_n(\mathbb{C})$. Hence *D* is inner.

The following lemma is similar to Lemma 1 in [8].

Lemma 6. Let *D* be a multiplicative (α, β) -derivation on $M_n(\mathbb{C})$. Then there exist an additive derivation $f : \mathbb{C} \to \mathbb{C}$ and an invertible matrix V_0 in $M_n(\mathbb{C})$ such that $D(tI) = f(t)V_0$ holds for all t in \mathbb{C} .

Proof. For arbitrary $A \in M_n(\mathbb{C})$ and $t \in \mathbb{C}$, we have

$$D(tA) = D((tI)A) = D(tI)\alpha(A) + tD(A).$$

On the other hand,

$$D(tA) = D(A(tI)) = tD(A) + \beta(A)D(tI).$$

Hence $D(tI)\alpha(A) = \beta(A)D(tI)$. Since α and β are inner, there exist invertible matrices T_0 and S_0 such that $\alpha(A) = T_0AT_0^{-1}$ and $\beta(A) = S_0AS_0^{-1}$ for all A in $M_n(\mathbb{C})$. Thus, $D(tI)T_0AT_0^{-1} = S_0AS_0^{-1}D(tI)$, and hence, $\left(S_0^{-1}D(tI)T_0\right)A = A\left(S_0^{-1}D(tI)T_0\right)$ holds for all A in $M_n(\mathbb{C})$. Consequently, $S_0^{-1}D(tI)T_0$ is in the center of $M_n(\mathbb{C})$, so there exists $f(t) \in \mathbb{C}$ such that $S_0^{-1}D(tI)T_0 = f(t)I$, hence

$$D(tI) = f(t)V_0,$$
(2)

where $V_0 = S_0 T_0^{-1}$. Since *D* is additive, one can see easily that the mapping $f : \mathbb{C} \to \mathbb{C}$ defined by the Eq. (2) is an additive derivation. \Box

Remark. The proof of Lemma 6 implies that the multiplicative (α, β) -derivation *D* is linear if and only if so is *f*, i.e, *f* is a trivial derivation.

Theorem 4. A mapping D on $M_n(\mathbb{C})$ is a multiplicative (α, β) -derivation if and only if there exist an additive derivation $f : \mathbb{C} \to \mathbb{C}$, a matrix A_0 and invertible matrices S_0 and T_0 such that

$$D((a_{ij})) = S_0(f(a_{ij}))T_0^{-1} + S_0(a_{ij})S_0^{-1}A_0 - A_0T_0(a_{ij})T_0^{-1},$$

where $\alpha(A) = T_0AT_0^{-1}$ and $\beta(A) = S_0AS_0^{-1}.$

Proof. Let *D* be a multiplicative (α, β) -derivation on $M_n(\mathbb{C})$, *f* be the additive derivation on \mathbb{C} defined by $D(tI) = f(t)S_0T_0^{-1}$, as in the proof of Lemma 6. Let $F(A) = S_0(f(a_{ij}))T_0^{-1}$ for each $A = (a_{ij}) \in M_n(\mathbb{C})$. Then *F* is additive on $M_n(\mathbb{C})$. For all $A = (a_{ij})$ and $B = (b_{ij})$ in $M_n(\mathbb{C})$, we have

$$F(A)\alpha(B) + \beta(A)F(B) = S_0(f(a_{ij}))T_0^{-1}T_0BT_0^{-1} + S_0AS_0^{-1}S_0(f(b_{ij}))T_0^{-1}$$

= $S_0(f(a_{ij}))(b_{ij})T_0^{-1} + S_0(a_{ij})(f(b_{ij}))T_0^{-1}$
= $S_0\left(\sum_{k=1}^n (f(a_{ik})b_{kj} + a_{ik}f(b_{kj}))\right)T_0^{-1}$
= $S_0\left(\sum_{k=1}^n f(a_{ik}b_{kj})\right)T_0^{-1}$
= $S_0\left(f\left(\sum_{k=1}^n a_{ik}b_{kj}\right)\right)T_0^{-1}$
= $F(AB).$

Consequently, *F* is a multiplicative (α, β) -derivation on $M_n(\mathbb{C})$.

Define $\widetilde{D} = D - F$. Then \widetilde{D} is a multiplicative (α, β) -derivation on $M_n(\mathbb{C})$. Obviously, $\widetilde{D}(tI) = D(tI) - F(tI) = f(t)S_0T_0^{-1} - f(t)S_0T_0^{-1} = 0$. By the Remark of Lemma 6, \widetilde{D} is linear. It follows from Theorem 3 that there exists A_0 in $M_n(\mathbb{C})$ such that $\widetilde{D}(A) = \beta(A)A_0 - A_0\alpha(A)$ for each A in $M_n(\mathbb{C})$. Hence

$$D((a_{ij})) = S_0(f(a_{ij}))T_0^{-1} + S_0(a_{ij})S_0^{-1}A_0 - A_0T_0(a_{ij})T_0^{-1}.$$
 (3)

Remark. For fixed α and β , putting $(a_{ij}) = tl$ in (3), we can see that the additive derivation f is uniquely determined. Hence all such matrices A_0 are different from λI .

2606

Acknowledgement

The authors thank the referees for pointing out some typos of the manuscript and giving some suggestions.

References

- [1] W.S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969) 695-698.
- [2] M.N. Daif, When is a multiplicative derivation additive? Int. J. Math. Math. Sci. 14 (1991) 615-618.
- [3] Z. Ling, F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004) 361-368.
- [4] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002) 123–131.
 [5] F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002) 283–291.
- [6] J. Zhang, W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006) 251–255.
- [7] P. Ji, Jordan maps on triangular algebras, Linear Algebra Appl. 426 (2007) 190–198.
- [8] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991) 234–240.