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a b s t r a c t

In this work, the Hamiltonian approach is applied to obtain the natural frequency of the
Duffing oscillator, the nonlinear oscillator with discontinuity and the quintic nonlinear
oscillator. The Hamiltonian approach is then extended to the second and third orders
to find more precise results. The accuracy of the results obtained is examined through
time histories and error analyses for different values for the initial conditions. Excellent
agreement of the approximate frequencies and the exact solution is demonstrated. It
is shown that this method is powerful and accurate for solving nonlinear conservative
oscillatory systems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of nonlinear equations in mechanics and physics is of interest to many researchers. There are a large variety of
approximate approaches for solving nonlinear equations, such as the energy balancemethod [1–8], the frequency amplitude
formulation [9–12], the variational approach [13–15] and other methods [16–20]. Professor He introduced the Hamiltonian
approach [21–23] and applied it for solving nonlinear equations. Further, many other researchers have used this method for
solving nonlinear equations [24–31]. Khan et al. [26] employed it for analyzing the nonlinear vibration of a rigid rod on a
circular surface. Nonlinear oscillators with rational and irrational terms were studied by Yildirim et al. [27] by means of this
approach. Xu [28,29] has employed the Hamiltonian approach for solving plasma physics equations and vibration analysis
of a simple pendulum. Nonlinear oscillators with fractional power and nonlinear oscillations of a point charge in the electric
field of a charged ring were investigated by Cveticanin et al. [30] and Yildirim et al. [31] respectively. Table 1 shows recent
developments and applications of the Hamiltonian approach.

In this work, we apply and modify this method and also obtain the natural frequency of the Duffing equation, the
nonlinear oscillator with discontinuity and the nonlinear oscillator with a quintic term with high accuracy. The solution
procedure of this work demonstrates that this method is very simple and accurate for solving nonlinear equations.

∗ Corresponding author. Tel.: +90 232 388 4000.
E-mail addresses: ahmet.yildirim@ege.edu.tr, ahmetyildirim80@gmail.com (A. Yildirim), zia_saadat@Rail.iust.ac.ir (Z. Saadatnia),

Askari.iust@gmail.com (H. Askari), Kalami_YazdiM2@asme.org (M. KalamiYazdi).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.05.040

http://dx.doi.org/10.1016/j.aml.2011.05.040
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:ahmet.yildirim@ege.edu.tr
mailto:ahmetyildirim80@gmail.com
mailto:zia_saadat@Rail.iust.ac.ir
mailto:Askari.iust@gmail.com
mailto:Kalami_YazdiM2@asme.org
http://dx.doi.org/10.1016/j.aml.2011.05.040


A. Yildirim et al. / Applied Mathematics Letters 24 (2011) 2042–2051 2043

Table 1
Recent developments and applications of the Hamiltonian approach.

Nonlinear equations Frequency response from the Hamiltonian approach

ẍ +
c
x = 0 ω =

√
2c
A

ẍ +
x

x2+1
= 0 ω =
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2

0
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cos2 t

1+A2 cos2 t
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 π

2
0 sin2 tdt
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2. The solution procedure

2.1. Example 1

Consider the Duffing equation

ẍ + x3 = 0 x (0) = A, ẋ (0) = 0. (1)

Professor He applied the first-order Hamiltonian approach for solving Eq. (1) and obtained

ωFAH =


3
4
A2. (2)

We aim to obtain the natural frequency of Eq. (1) by using second-order and third-order Hamiltonian approaches.

2.1.1. The second-order Hamiltonian approach
Assume that the solution can be expressed as

x = a cos (ωt) + b cos (3ωt) . (3)

According to the initial condition,

A = a + b. (4)
Its Hamiltonian can be easily obtained for Eq. (1); it reads

H =
1
2
ẋ2 +

1
4
x4. (5)

Integrating Eq. (5) with respect to time from 0 to T/4, we have

H̃ (u) =

∫ T
4

0


1
2
ẋ2 +

1
4
x4

dt. (6)

Substituting Eqs. (3)–(6), we obtain

H̃ (x) =

∫ T
4

0

[
1
2

(aω sinωt + 3bω sin 3ωt)2 +
1
4

(a cosωt + b cos 3ωt)4
]
dt

=

∫ π
2

0

[
1
2
ω (a sin t + 3b sin 3t)2 +

1
4ω

(a cos t + b cos 3t)4
]
dt

=
π

8
ω

a2 + 9b2


+

π

64ω


3a4 + 4a3b + 12a2b2 + 3b4


. (7)
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Set

∂

∂a


∂H̃

∂ (1/ω)


= −

π

8
2aω2

+
π

64


12a3 + 12a2b + 24ab2


= 0 (8)

∂

∂b


∂H̃

∂ (1/ω)


= −

π

8
18bω2

+
π

64


4a3 + 24a2b + 12b3


= 0. (9)

After some mathematical simplification and using MATLAB software, we achieve

a = 0.9571460091530A (10)
b = 0.0428953990847A. (11)

We have obtained the following frequency–amplitude relationship for the Duffing equation:

ωSAH =

√

0.720588473580A2. (12)

The second approximate Hamiltonian approach provides accurate approximations to the exact frequency ωex for very
large values of the oscillation amplitude and the relative error for ωSOH is lower than 0.1961%.

2.1.2. The third-order Hamiltonian approach
Here we assume that the solution can be written as

x = a cos (ωt) + b cos (3ωt) + c cos (5ωt) . (13)

According to the initial condition,

A = a + b + c. (14)

Substituting Eq. (13) to Eq. (6), we obtain

H̃ (x) =

∫ T
4

0

[
1
2
ω (a sinωt + 3b sin 3ωt + 5c sin 5ωt)2 +

1
4ω

(a cosωt + b cos 3ωt + c cos 5ωt)4
]
dt

=

∫ π
2

0

[
1
2
ω (a sin t + 3b sin 3t + 5c sin 5t)2 +

1
4ω

(a cos t + b cos 3t + c cos 5t)4
]
dt

=
π

8
ω

a2 + 9b2 + 25c2


+

π

64ω


3(a4 + b4 + c4) + 12(b2c2 + ab2c + a2bc + a2c2 + a2b2) + 4a3b


. (15)

Set

∂

∂a


∂H̃

∂ (1/ω)


= −aω2

+
1
4


3a3 + 3b2c + 6abc + 3a2b + 6ac2 + 6ab2


= 0 (16)

∂

∂b


∂H̃

∂ (1/ω)


= −18bω2

+
1
2


3b3 + 6bc2 + 6abc + 3ca2 + a3 + 6ba2


= 0 (17)

∂

∂c


∂H̃

∂ (1/ω)


= −50cω2

+
1
2


6cb2 + 3ab2 + 3ba2 + 6ca2 + 3c3


= 0. (18)

After some mathematical simplification and using MATLAB software, we obtain

a = 0.955091126192990848A (19)
b = 0.043051911447186058A (20)
c = 0.00185696235982A. (21)

We have obtained the following frequency–amplitude relationship:

ωTAH =

√

0.71789616293340A2. (22)

The third approximate Hamiltonian approach provides more accurate approximations to the exact frequency ωex for
very large values of the oscillation amplitude, and the relative error for ωTOH is lower than 0.0088%. The accuracies of the
solutions for each of the approximations are shown in Figs. 1–3 for small and large values of the initial amplitude.



A. Yildirim et al. / Applied Mathematics Letters 24 (2011) 2042–2051 2045

Fig. 1. Comparison between the solutions obtained and the exact one for A = 0.1.

Fig. 2. Comparison between the solutions obtained and the exact one for A = 1.

Fig. 3. Comparison between the solutions obtained and the exact one for A = 100.
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2.2. Example 2

In this section the following nonlinear oscillator with discontinuity is analyzed [32]:

ẍ + x |x| = 0, x (0) = A and ẋ (0) = 0. (23)

2.2.1. The first-order Hamiltonian approach
The Hamiltonian of this equation is constructed as

H =
1
2
ẋ2 +

1
3
x2 |x| . (24)

Assume the first approximate solution of Eq. (23) as

x = A cosωt. (25)

Then

H̃(x) =

∫ T
4

0


1
2
ẋ2 +

1
3
x3


dt +

∫ T
2

T
4


1
2
ẋ2 −

1
3
x3


dt. (26)

Putting the solution assumed into Eq. (26), we have

H̃ (x) =

∫ T
4

0


1
2
A2ω2 sin2 ωt +

1
3
A3 cos3 ωt


dt +

∫ T
2
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
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=

∫ π
2

0
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1
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1
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A3 cos3 t

dt +

∫ π

π
2
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
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=
π

4
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4
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∂

∂A
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∂
 1

ω
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π

2
Aω2

+
4
3
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So, the first approximate frequency can be obtained as

ωFAH =


8
3π

A. (29)

Here, the relative error of the solution for large amplitudes is about 0.7255%.

2.2.2. The second-order Hamiltonian approach
For the second-order Hamiltonian approach we consider the following equation as the response of the system:

x = a cosωt + b cos 3ωt, a + b = A. (30)

Substituting the above equation into Eq. (26), we have

H̃ (u) =
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4

0


1
2
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Set

∂

∂a


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∂
 1

ω
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π

2
aω2

+
4
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8
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∂
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∂
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ω
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2

bω2
+

4
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75
35
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4
9
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After some mathematical simplification, the frequency amplitude relationship and the constant values of a and b can be
eventually obtained as

a = 0.97424661242708A (34)
b = 0.002575338757292A (35)

ωSAH = 0.91441568459242
√
A. (36)

For very large values of the oscillation amplitude the relative error for ωSAH is lower than 0.02905%.

2.2.3. The third-order Hamiltonian approach
For the third-order Hamiltonian approach we assume Eq. (13) as the trial function. Substituting Eq. (13) into Eq. (26)

leads to

H̃ (x) =

∫ T
4

0


1
2
ω2 (a sinωt + 3b sin 3ωt + 5c sin 5ωt)2 +

1
3
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2

T
4


1
2
ω2 (a sinωt + 3b sin 3ωt + 5c sin 5ωt)2 −

1
3
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
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=
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2

0


1
2
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1
3ω
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
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+
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π
2
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1
2
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1
3
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
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4
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
+

2
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2
3
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2
5
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2
9
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2
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a2c

+
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abc +
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33

ac2 +
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cb2 −
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2
15

c3

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Set

∂

∂a


∂H̃

∂
 1

ω

 = −
π

4
aω2

+
2
3
a2 +

4
15

ab +
18
35

b2 −
4

105
ac +

20
63

bc +
50
99

c2 = 0 (38)

∂

∂b


∂H̃

∂
 1

ω

 = −
9π
4

bω2
+

2
15

a2 +
36
35

ab −
2
9
b2 +

36
55

bc +
20
63

ac −
50
273

c2 = 0 (39)

∂

∂c


∂H̃

∂
 1

ω

 = −
25π
4

cω2
−

2
105

a2 +
20
63

ab +
18
55

b2 −
100
273

bc +
100
99

ac +
2
15

c2 = 0. (40)

Consequently we can obtain

a = 0.97491406508A (41)
b = 0.0257281322963A (42)
c = −0.0006421973766A. (43)

And the natural frequency obtained by the third approximation is

ωTAH = 0.9147335203935
√
A. (44)

For very large values of the oscillation amplitude the relative error for ωTAH is lower than 0.00571%. So it is obvious that
higher orders reach better results. The accuracies of the solutions for each of the approximations are shown in Figs. 4–6 for
small and large values of the initial amplitude.
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Fig. 4. Comparison between the solutions obtained and the exact one for A = 0.1.

Fig. 5. Comparison between the solutions obtained and the exact one for A = 1.

Fig. 6. Comparison between the solutions obtained and the exact one for A = 100.
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2.3. Example 3

Consider the nonlinear oscillator with a quintic term [33]

ẍ + x + x5 = 0 x (0) = A, ẋ (0) = 0. (45)

2.3.1. The first-order Hamiltonian approach
For the first approximate of the Hamiltonian approach, assume Eq. (25) as a trial function. Its Hamiltonian can be easily

obtained for Eq. (45); it reads

H =
1
2
ẋ2 +

1
2
x2 +

1
6
x6. (46)

Integrating Eq. (46) with respect to time from 0 to T/4, we have

H̃ (x) =

∫ T
4

0


1
2
ẋ2 +

1
2
x2 +

1
6
x6

dt. (47)

Substituting Eqs. (25)–(47), we obtain

H̃ (x) =

∫ T
4

0

[
1
2
A2ω2 sin2 ωt +

1
2
A2 cos2 ωt +

1
6
A6 cos6 ωt

]
dt (48)

=

∫ π
2

0

[
1
2
A2ω sin2 t +

1
2ω

A2 cos2 t +
1
6ω

A6 cos6 t
]

dt

=
π

8
A2ω +

π

8ω
A2

+
5π

192ω
A6.

(49)

Set

∂

∂A


∂H̃

∂ (1/ω)


= −

π

4
Aω2

+
π

4
A +

5π
32

A5
= 0. (50)

Finally

ωFAH =


1 +

5
8
A4. (51)

2.3.2. The second-order Hamiltonian approach
In this case, by substituting Eqs. (3)–(47), we obtain

H̃ (x) =

∫ T
4

0

[
1
2

(aω sinωt + 3bω sin 3ωt)2 +
1
2

(a cosωt + b cos 3ωt)2 +
1
6

(a cosωt + b cos 3ωt)6
]
dt

=

∫ π
2

0

[
1
2
ω (a sin t + 3b sin 3t)2 +

1
2ω

(a cos t + b cos 3t)2 +
1
6ω

(a cos t + b cos 3t)6
]
dt

=
π

8
ω

a2 + 9b2


+

π

8ω


a2 + b2


+

5π
192ω


a6 + 3a5b + 9a4b2 + 6a3b3 + 9a2b4 + b6


. (52)

Set

∂

∂a


∂H̃

∂ (1/ω)


= −

π

8
2aω2

+
π

8ω
2a +

5π
192ω


6a5 + 15a4b + 36a3b2 + 18a2b3 + 18ab4


= 0 (53)

∂

∂b


∂H̃

∂ (1/ω)


= −

π

8
18bω2

+
π

8ω
2b +

5π
192ω


3a5 + 18a4b + 18a3b2 + 36a2b3 + 6b5


= 0. (54)

Thus, the value of the natural frequency can be obtained by some mathematical simplifications. Numerical values of
frequencies obtained by the first-order and second-order Hamiltonian approaches and the relative errors are shown in
Table 2 for a range of initial amplitudes. It is seen that the second-order results are much closer to the exact ones than the
first-order results.
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Table 2
Comparison between the frequency obtained and the exact one for some values of A.

A ωFAH ωSAH ωex
(Relative error, %) (Relative error, %)

0.1 1.0000312495 1.0000288337 1.0000278851
(0.000336431791976) (0.000094856293736)

0.5 1.0193441519 1.0178618081 1.0172806286
(0.202847005609007) (0.057130698240214)

1 1.2747548784 1.2556602111 1.2481029699
(2.135393404306345) (0.605498213683614)

5 19.7895174272 19.0112231014 18.6976105351
(5.839820494782060) (1.677286868708726)

10 79.0632658066 75.9462023930 74.6900946281
(5.855088549884582) (1.681759503938878)

100 7905.6942136665 7593.9619158418 7468.3400669493
(5.856109159419318) (1.682058499832310)

500 197642.3537630536 189849.0463026337 186708.500002678
(5.856109261345213) (1.682058556472065)

3. Conclusion

The higher orders of the Hamiltonian approach for obtaining better approximate solutions for the Duffing equation, the
nonlinear oscillator with discontinuity and the nonlinear oscillator with a quintic term were introduced. The accuracy and
validity of the solutions obtained have been examined by comparing against the exact ones as regards time histories and in a
table. We demonstrated that this approach is very accurate and simple for solving nonlinear equations. Finally, we conclude
that the Hamiltonian approach is a method with good capabilities for solving nonlinear conservative oscillatory systems.
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