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Abstract

We describe APPSSAT, an anytime probabilistic contingent planner based on ZANDER, a probabilis-
tic contingent planner that operates by converting the planning problem to a stochastic satisfiability
(SSAT) problem and solving that problem instead [S.M. Majercik, M.L. Littman, Contingent plan-
ning under uncertainty via stochastic satisfiability, Artificial Intelligence 147 (2003) 119–162]. The
values of some of the variables in an SSAT instance are probabilistically determined; APPSSAT considers
the most likely instantiations of these variables (the most probable situations facing the agent) and
attempts to construct an approximation of the optimal plan that succeeds under those circumstances,
improving that plan as time permits. Given more time, less likely instantiations/situations are con-
sidered and the plan is revised as necessary. In some cases, a plan constructed to address a relatively
low percentage of possible situations will succeed for situations not explicitly considered as well, and
may return an optimal or near-optimal plan. We describe experimental results showing that APPSSAT

can find suboptimal plans in cases in which ZANDER is unable to find the optimal (or any) plan.
Although the test problems are small, the anytime quality of APPSSAT means that it has the potential
to efficiently derive suboptimal plans in larger, time-critical domains in which ZANDER might not have
sufficient time to calculate any plan. We also suggest further work needed to bring APPSSAT closer to
attacking real-world problems.
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1. Introduction

Previous research has extended the planning-as-satisfiability paradigm to support prob-
abilistic contingent planning; in [1], it was shown that a probabilistic, partially observable,
finite-horizon, contingent planning problem can be encoded as a stochastic satisfiability
(SSAT) [2] instance such that the solution to the SSAT instance yields a contingent plan with
the highest probability of reaching a goal state. This has been used to construct ZANDER, a
probabilistic contingent planner [1] that is competitive with three other leading
approaches: techniques based on partially observable Markov decision processes, GRAPH-

PLAN-based approaches, and partial-order planning approaches [1]. Notably, ZANDER

achieves this competitive level using a relatively naı̈ve SSSAT solver that does not attempt
to adapt many of the advanced features that make today’s state-of-the-art satisfiability
(SAT) solvers so efficient. APPSSAT is a probabilistic contingent planner based on ZANDER

that produces an approximate contingent plan and improves that plan as time permits.
APPSSAT does this by considering the most probable situations facing the agent and con-
structing a plan, if possible, that succeeds under those circumstances. Given more time,
less likely situations are considered and the plan is revised as necessary.

Other researchers have explored the possibility of using approximation to speed the
planning process. In ‘‘anytime synthetic projection’’ a set of control rules establishes a base
plan which has a certain probability of achieving the goal [3]. Time permitting, the prob-
ability of achieving the goal is incrementally increased by identifying failure situations that
are likely to be encountered by the current plan and synthesizing additional control rules
to handle these situations. Similarly, MAHINUR is a probabilistic partial-order planner that
also creates a base plan with some probability of success and then improves that plan [4].
MAHINUR identifies those contingencies whose failure would have the greatest negative
impact on the plan’s success and focuses its planning efforts on generating plan branches
to deal with those contingencies. Several domain assumptions (including a type of subgoal
decomposability) that underlie the design of MAHINUR are identified in [4], and there are no
guarantees on the correctness of MAHINUR for domains in which these assumptions are
violated.

Exploring approximation techniques in Markov decision processes (MDPs) and partially
observable Markov decision processes (POMDPs) has been a very active area of research in
recent years, making an exhaustive survey impossible. Evidence that the value function of
a factored MDP can often be well approximated using a factored value function, i.e. a linear
combination of restricted basis functions, each of which refers to only a small subset of
variables in the MDP, has been presented in [5], and it is shown that this approximation
technique can be used as a subroutine in a policy iteration process to solve factored MDPs
[6]. Ref. [7] builds on this work by using factored value functions to create the first approx-
imate MDP solution techniques that use max-norm projection. And [8] explores how to
choose a good basis set or improve an existing basis set.

In [9] value functions are represented using decision trees and these decision trees are
pruned so that the leaves represent ranges of values, thereby approximating the value func-
tion. In [10] that work was extended by applying it to algebraic decision diagrams (ADDs),
which can represent functions more compactly than decision trees. ADDs have been used
by others as well [11] as a basis for approximation techniques. Ref. [12] shows how to
combine value directed compression with bounded policy iteration that can deal with
artificially generated network problems with millions of states. Ref. [13] explored the
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possibility of generating a value function for a first-order MDP (an MDP with existential
and universal quantification) by representing it as a combination of first-order basis func-
tions and using linear programming to find the weights these basis functions.

A method for choosing, with high probability, approximately optimal actions in an infi-
nite-horizon discounted Markov decision process using truncated action sequences and
random sampling is described in [14,15]. They show that it is sufficient to consider the first
H actions in the sequence, for an appropriate choice of H, and then evaluate the space of
all H-step action sequences using random sampling. Ref. [16] builds on this work to create
an approximate planning algorithm using belief state simplification.

In [17] the authors transform a POMDP into a simpler region observable POMDP in which it
is assumed an oracle tells the agent what region its current state is in. This POMDP is easier
to solve and they use its solution to construct an approximate solution for the original
POMDP. Ref. [18] uses temporally extended actions and Monte Carlo updates on a set of
grid points in belief space to create a new reinforcement learning algorithm that allows
a robot to navigate to a goal in an extremely large state space starting with no knowledge
of where it is. In [19], learning steps are used in the policy space of a very large relational
MDP along with policy-language biases to produce high-quality planners. And [20]
describes A-learning, a variant of Q-learning that is used to construct an approximate
planning algorithm.

In Section 2, we describe stochastic satisfiability, the basis for both ZANDER and APPSSAT.
In Section 3, we describe how ZANDER uses stochastic satisfiability to solve probabilistic
planning problems. In Section 4, we describe the APPSSAT algorithm for approximate plan-
ning and in Section 5 we describe some experimental results. We conclude with a discus-
sion of further work.

2. Stochastic satisfiability

SSAT, suggested by Papadimitriou in [21] and explored further by Littman et al. in [2], is
a generalization of satisfiability (SAT) that is similar to quantified Boolean formulae (QBF).
The ordered variables of the Boolean formula in an SSAT problem, instead of being exis-
tentially or universally quantified, are existentially or randomly quantified. Randomly
quantified variables are true with a certain probability, and an SSAT instance is satisfiable
with some probability that depends on the ordering of and interplay between the existen-
tial and randomized variables. The goal is to choose values for the existentially quantified
variables that maximize the probability of satisfying the formula.

More formally, an SSAT problem U = Q1v1 . . . Qnvn/ is specified by (1) a prefix

Q1v1 . . . Qnvn that orders a set of n Boolean variables V = {v1, . . . ,vn} and specifies the
quantifier Qi associated with each variable vi and (2) a matrix / that is a Boolean formula
constructed from these variables. More specifically, the prefix Q1v1 . . . Qnvn associates a
quantifier Qi, either existential ($i) or randomized ( ipi), with the variable vi. The value
of an existentially quantified variable can be set arbitrarily by a solver, but the value of
a randomly quantified variable is determined stochastically by pi, an arbitrary rational
probability that specifies the probability that vi will be true. (In the basic SSAT problem
described in [2], every randomized variable is true with probability 0.5, but it is noted
that the probabilities associated with randomized variables can be arbitrary rational num-
bers.) In this paper, we will use x1,x2, . . . for existentially quantified variables and y1,y2, . . .
for randomly quantified variables.
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The matrix / is assumed to be in conjunctive normal form (CNF), i.e. a set of m con-
juncted clauses, where each clause is a set of distinct disjuncted literals. A literal l is either a
variable v (a positive literal) or its negation �v (a negative literal). For a literal l, jlj is the
variable v underlying that literal and �l is the ‘‘opposite’’ of l, i.e. if l is v, �l is �v; if l is �v,
�l is v; A literal l is true if it is positive and jlj has the value true, or if it is negative
and jlj has the value false. A literal is existential (randomized) if jlj is existentially (ran-
domly) quantified. The probability that a randomly quantified variable v has the value
true (false) is denoted Pr[v] ðPr½�v�Þ. The probability that a randomized literal l is true
is denoted Pr[l]. As in a SAT problem, a clause is satisfied if at least one literal is true, and
unsatisfied, or empty, if all its literals are false. The formula is satisfied if all its clauses
are satisfied.

The solution of an SSAT instance is an assignment of truth values to the existentially
quantified variables that yields the maximum probability of satisfaction, denoted Pr[U].
(The decision version of the problem asks if there is an assignment such that Pr[U] meets
or exceeds a specified threshold h.) Since the values of existentially quantified variables can
be made contingent on the values of randomly quantified variables that appear earlier in
the prefix, the solution is, in general, a tree that specifies the optimal assignment to each
existentially quantified variable xi for each possible instantiation of the randomly quanti-
fied variables that precede xi in the prefix. A simple example will help clarify this idea
before we define Pr[U] formally. Suppose we have the following SSAT problem:

9x1;
0:7y1; 9x2ffx1; y1g; fx1; y1g; fy1; x2g; fy1; x2gg: ð1Þ

The form of the solution is a noncontingent assignment for x1 plus two contingent assign-
ments for x2, one for the case when y1 is true and one for the case when y1 is false. In
this problem, x1 should be set to true (if x1 is false, the first two clauses become
ffy1g; fy1gg, which specify that y1 must be both true and false), and x2 should be
set to true (false) if y1 is false (true). Since it is possible to satisfy the formula
for both values of y1, Pr[U] = 1.0. If we add the clause fy1; x2g to this instance, however,
the maximum probability of satisfaction drops to 0.3: x1 should still be set to true, and
when y1 is false, x2 should still be set to true. When y1 is true, however, we have the
clauses ffx2g; fx2gg, which insist on contradictory values for x2. Hence, it is possible to
satisfy the formula only when y1 is false, and, since Pr½y1� ¼ 0:3, the probability of sat-
isfaction, Pr[U], is 0.3.

We will need the following additional notation to define Pr[U] formally. A partial
assignment a of the variables V is a sequence of k 6 n literals l1; l2; . . . ; lk such that no
two literals in a have the same underlying variable. Given li and lj in an assignment a,
i < j implies that the assignment to jlij was made before the assignment to jljj. A positive
(negative) literal v (v) in an assignment a indicates that the variable v has the value true
(false). The notation U(a) denotes the SSAT problem U 0 remaining when the partial
assignment a has been applied to U (i.e. clauses with true literals have been removed
from the matrix, false literals have been removed from the remaining clauses in the
matrix, and all variables and associated quantifiers not in the remaining clauses have been
removed from the prefix) and /(a) denotes / 0, the matrix remaining when a has been
applied. Similarly, given a set of literals L, such that no two literals in L have the same
underlying variable, the notation U(L) denotes the SSAT problem U 0 remaining when the
assignments indicated by the literals in L have been applied to U (i.e. clauses with true
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literals have been removed from the matrix, false literals have been removed from the
remaining clauses in the matrix, and all variables and associated quantifiers not in the
remaining clauses have been removed from the prefix). /(L) denotes / 0, the matrix remain-
ing when the assignments indicated by the literals in L have been applied. A literal l 62 a is
active if some clause in /(a) contains l; otherwise it is inactive.

Given an SSAT problem U, the maximum probability of satisfaction of U, denoted
Pr[U], is defined according to the following recursive rules:

1. If / contains an empty clause, Pr[U] = 0.0.
2. If / is the empty set of clauses, Pr[U] = 1.0.
3. If the leftmost quantifier in the prefix of U is existential and the variable thus quantified

is v, then Pr½U� ¼ maxðPr½UðvÞ�; Pr½Uð�vÞ�Þ.
4. If the leftmost quantifier in / is randomized and the variable thus quantified is v, then

Pr½U� ¼ ðPr½UðvÞ� � Pr½v�Þ þ ðPr½Uð�vÞ� � Pr½�v�Þ.

These rules express the intuition that a solver can select the value for an existentially quan-
tified variable that yields the subproblem with the higher probability of satisfaction,
whereas a randomly quantified variable forces the solver to take the weighted average
of the two possible results. These rules imply that a solver should build a tree of all pos-
sible assignments to the variables, assigning values to variables in the order specified by the
prefix. At each leaf, the probability of satisfaction of the complete assignment represented
by the path to that leaf is either 1.0, if the assignment satisfies all the clauses, leaving the
empty set of clauses, or 0.0, if the assignment produces an empty clause. The probability of
satisfaction of an internal node is calculated from the probabilities of its children. If the
node represents an assignment to an existential variable xi, the solver can choose the value
for xi that leads to the higher probability of satisfaction. If the node represents an assign-
ment to a randomized variable yi, however, the solver cannot choose the value for yi.
Instead, the probability of satisfaction at that node is the average of the two probabilities
of satisfaction that the different values of yi lead to, weighted by the probabilities of the
values of yi. (As an aside, we note that any QBF instance can be solved by transforming
it into an SSAT instance—replace the universal quantifiers with randomized quantifiers—
and checking whether Pr[U] = 1.0.)

There are simplifications that allow an algorithm implementing this recursive definition
to avoid the generally infeasible task of enumerating all possible assignments. Of course, if
the empty set of clauses, or an empty clause, is reached before a complete assignment is
made, the solver can immediately return 1.0, or 0.0, respectively. Further efficiencies are
gained by interrupting the normal left-to-right evaluation of quantifiers to take advantage
of unit and pure literals. A literal l is unit if it is the only literal in some clause (and we will
refer to such a clause as a unit clause); in this case, jlj must be assigned the value that
makes l true. A literal l is pure if l is active and �l is inactive; if l is an existential pure
literal, jlj can be set to make l true without changing Pr[U]. These simplifications modify
the rules given above for determining Pr[U], but we omit a restatement of the modified
rules, instead describing an algorithm to solve SSAT instances based on the modified rules
(Fig. 1). Note that both ZANDER and APPSSAT construct and return the optimal solution
tree (plan), but we omit the details of solution tree construction in the algorithm
description.
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3. ZANDER

ZANDER works on partially observable probabilistic propositional planning domains
consisting of a finite set of distinct propositions, any of which may be true or false
at any discrete time t. A state is an assignment of truth values to these propositions. A pos-
sibly probabilistic initial state is specified by a set of decision trees, one for each proposi-
tion. Goal states are specified by a partial assignment to the set of propositions; any state
that extends this partial assignment is a goal state. Each of a finite set of actions probabi-
listically transforms a state at time step t into a state at time step t + 1 and so induces a
probability distribution over the set of all states at time step t + 1. A subset of the set
of propositions is the set of observable propositions. The task is to find an action for each
time step t as a function of the value of observable propositions at time steps before step t

and that maximizes the probability of reaching a goal state.
ZANDER translates the planning problem into an SSAT problem. Fig. 2 shows an example

of such an SSAT plan encoding. In this problem, a part must be painted, but the paint action
succeeds only with probability 0.7 and it is an error to try to paint the part if it is already
painted. The agent has two time steps, so the best plan is to paint the part at time step 1 and
observe whether the action was successful, painting again at time step 2 if it was not, and
doing nothing (noop) at time step 2 otherwise. There are five types of clauses: initial con-
ditions, goal conditions, action exclusivity, action effects, and frame axioms.

Initial and goal condition clauses are unit clauses that force the initial and goal condi-
tions to be satisfied. In this problem, the initial condition clauses are fpa0g and ferr0g,
i.e. the part is not painted and there is no error at time step 0. The goal condition clauses
are {pa2} and ferr2g, i.e. the part must be painted and there must still be no error at time
step 2.

Action exclusivity clauses ensure that exactly one action is taken at each time step. In
this problem, {pa1 _ no1} forces one of the actions (paint or noop) to be selected at time
step 1 and fpa1 _ no1g forces one of the actions to not be selected. There are similar clauses



Fig. 2. An example of an SSAT plan encoding, where pat = paint at time step t, not = noop at time step t,
optd1 = observe that the part is painted after the action at time step 1, cvpa0:7

t ¼ chance variable encoding the
success probability of action pat; ptdt ¼ painted at time step t, and errt = error at time step t.
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for time step 2. Note that in the general case, for A actions, at each time step (t > 0) there
will be a single clause containing A positive literals for all the actions (one action must be

taken) and there will be
A
2

� �
clauses containing all possible pairs of negated action liter-

als (for each possible pair of actions, at least one of them must not have been taken).

Action effects clauses model the (sometimes probabilistic) effects of actions. The effect of
the paint action on whether or not the part is observed to be painted is a deterministic action
effect. For example, if the paint action is taken at time step 1 and the part is successfully
painted, then it will definitely be observed that the part is painted, i.e. pa1 ^ ptd1! optd1.
(Note that the effects of actions, including ensuing observations, have the same time index
as the action that produced them.) Negating the antecedent and converting the implication
to a disjunction yields the equivalent fpa1 _ ptd1 _ optd1g, which becomes a clause in the plan
encoding. Note that, if the first two literals are false, i.e. the paint action is taken at time
step 1 and the part is painted at time step 1, then the third literal, optd1, must be true to sat-
isfy the clause, i.e. the part is observed to be painted at time step 1.

The effect of the paint action on the part, if the part is unpainted, is a probabilistic
action effect. For example, if the paint action is taken at time step 1 and the part is not
painted at time step 0, the part will be painted at time step 1 with probability 0.7. This
can be expressed by two implications involving a chance variable:

pa1 ^ ptd0 ^ cvpa0:7
1 ! ptd1

and

pa1 ^ ptd0 ^ cvpa0:7
1 ! ptd1
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The first implication says that if the paint action is taken at time step 1 and the part is not
painted at time step 0 and the chance variable cvpa0:7

1 is true (which will be the case with
probability 0.7), then the part will become painted. The second implication says that if the
paint action is taken at time step 1 and the part is not painted at time step 0 and the chance
variable cvpa0:7

1 is false (which will be the case with probability 0.3), then the part will
not become painted. Again, negating the antecedents and converting the implications to
disjunctions yields the equivalent

fpa1 _ ptd0 _ cvpa0:7
1 _ ptd1g

and

fpa1 _ ptd0 _ cvpa0:7
1 _ ptd1g

which become clauses in the plan encoding. Note that if the first two literals are false,
i.e. the paint action is taken at time step 1 and the part was not painted at time step 0, we
have

fcvpa0:7
1 _ ptd1g

and

fcvpa0:7
1 _ ptd1g:

Then, in the first case, if the part is not painted at time step 1 (ptd1 is false), the chance
variable cvpa0:7

1 must be false to satisfy the clause, and this will be the case with prob-
ability 0.3. In the second case, if the part is painted at time step 1 (ptd1 is true), the chance
variable cvpa0:7

1 must be true to satisfy the clause, and this will be the case with proba-
bility 0.7.

Frame axiom clauses model the fact that if the value of a state proposition changes, one
of some subset of actions (usually a small subset) must have been taken that is capable of
effecting that change. For example, if the part becomes newly painted it must be the case
that the paint action was taken, i.e. ptd0 ^ ptd1 ! pa1. Note that if more than one action
can produce the change, the consequent will be the disjunction of all the actions that can
produce that change. In this case, negating the antecedent and converting the implication
to a disjunction yields the equivalent fptd0 _ ptd1 _ pa1g, which becomes a clause in the
plan encoding. If the first two literals are false, i.e. the part was not painted at time step
0 and then became painted at time step 1, the third literal must be true to satisfy the
clause, i.e. the paint action must have been taken at time step 1. If no actions can produce
a particular change, then the consequent is false and the resulting clause enforces the
fact that no action can cause that change to occur. For example, the clauses
fptd0 _ ptd1g and fptd1 _ ptd2g model the fact that there is no action that can cause the
part to become ‘‘unpainted,’’ i.e. if the painted state proposition is true at time step 0
(1), it must be true at time step 1 (2) to satisfy these clauses.

The unit clauses in Fig. 2 force certain variables to have certain values. The initial con-
ditions fpa0g and ferr0g force pa0 and err0 to be false and the goal conditions {pa2} and
ferr2g force pa2 and err2 to be true and false, respectively. These variables are assigned
the values necessary to satisfy the unit clauses they appear in and the results are propa-
gated throughout the formula (unit clauses indirectly created by the elimination of existing
unit clauses are also eliminated and their effects propagated) before APPSSAT operates on



Fig. 3. The SSAT plan encoding shown in Fig. 2 after the unit clauses have been eliminated and propagated, where
pat = paint at time step t, not = noop at time step t, optd1 = observe that the part is painted after the action at
time step 1, cvpa0:7

t ¼ chance variable encoding the success probability of action pat, and ptdt = painted at time
step t.
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the formula (just as these clauses would force ZANDER to set the values of the variables in
these clauses first regardless of their position in the quantifier ordering). Fig. 3 shows the
SSAT plan encoding after all the unit clauses have been eliminated and their effects prop-
agated (although it attempts to maintain the relative position the clauses occupy in
Fig. 2). Note that although the goal conditions have disappeared completely from the for-
mula, satisfying this reduced formula implies that the goal conditions are satisfied as well.

The variables in an SSAT plan encoding fall into three segments [1]: the action-observa-
tion segment (variables pa1, no1, optd1, pa2, no2 in Fig. 3), the domain uncertainty segment
(variables cvpa0:7

1 , cvpa0:7
2 in Fig. 3), and a segment representing the result of the actions

taken given the domain uncertainty (variable ptd1 in Fig. 3). The action-observation seg-
ment is an alternating sequence of existentially quantified variable blocks (one block for
each action choice) and randomly quantified variable blocks (one block for each set of
possible observations at a time step). In APPSSAT, the randomly quantified observation vari-
ables will become branch variables with no associated probability (see Section 4 for a
detailed explanation of branch variables). We will refer to an instantiation of the action
and observation variables as an action-observation path. The domain uncertainty segment
is a single block containing all the randomly quantified variables that modulate the impact
of the actions on the observation and state variables. The result segment is a single block
containing all the existentially quantified state variables. Essentially, ZANDER uses the sol-
ver described in Section 2 to find an assignment tree that specifies the assignments to exis-
tentially quantified action variables for all possible settings of the observation variables,
such that the probability of satisfaction (which is also the probability that the plan will
reach the goal) is maximized [1]. In what follows, we will refer to such a tree as an
action-observation tree. We will also sometimes refer to existentially and randomly quan-
tified variables as choice and chance variables, respectively.

4. APPSSAT

Before we describe APPSSAT it is worth looking at a previous approach to approxima-
tion in this framework. This approach illuminates some of the problems associated with
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formulating an approximation algorithm in this framework and explains some of the
choices we made in developing APPSSAT. An algorithm called randevalssat that uses stochas-
tic local search in a reduced plan space is described in [2]. The randevalssat algorithm uses
random sampling to select a subset of possible chance variable instantiations (thus limiting
the size of the contingent plans considered) and stochastic local search to find the best size-
bounded plan. There are two problems with this approach. First, since chance variables
are used to describe observations, a random sample of the chance variables describes an
observation sequence as well as an instantiation of the uncertainty in the domain, and
the observation sequence thus produced may not be observationally consistent, and these
inconsistencies can make it impossible to find a plan, even if one exists. Second, this algo-
rithm returns a partial policy, that specifies actions only for those situations represented by
paths in the random sampling of chance variables. APPSSAT addresses these two problems
by:

1. designating each observation variable as a new type of variable, termed a branch vari-
able that does not have a probability associated with it, and

2. evaluating the approximate plan’s performance under all circumstances, not just those
used to generate the plan.

The introduction of branch variables violates the pure SSAT form of the plan encoding,
but is justified, we think, for the sake of conceptual clarity. We could achieve the same end
in the pure SSAT form by making observation variables chance variables with a probability
of 0.5 (as in [1]), and not including them when the possible chance-variable assignments
are enumerated. But, rather than taking this circuitous route, we have chosen to acknowl-
edge the special role played by observation variables; these variables indicate a potential
branch in a contingent plan (hence, the name). Like choice variables, a branch variable
does not have an associated probability, but, unlike choice variables, the value of a branch
(observation) variable node in the assignment tree described above is a combination of,
rather than a choice between, the values of its children. More specifically, the value of such
a node is the sum of the values of its children, since the probability of satisfaction (reaching
the goal) for each course of action contingent on the observation branch contributes addi-
tively to the overall probability of satisfaction (reaching the goal). This introduces a minor
modification into the ZANDER approach and has the benefit of clarifying the role of the
observation variables. In the example shown in Figs. 2 and 3, the variable optd1 (observe
that the part is painted at time step 1) is an observation, or branch, variable. The solution
tree will split at this point to reflect the fact that the optimal plan may require different
actions depending on the status of this observation. In what follows, we will use the terms
observation variable and branch variable interchangeably.

APPSSAT incrementally constructs the optimal action-observation tree by updating the
probabilities of the possible action-observation paths in that tree as it processes the instan-
tiations of the chance variables. We provide a brief summary of APPSSAT’s operation, after
which we describe the details of its operation. In a single iteration, APPSSAT:

1. Selects the chance variable instantiation with the next highest probability p. In the
painting example (Fig. 3 in which the unit clauses have been propagated), the instanti-
ation with the highest probability would be cvpa0:7

1 ¼ true and cvpa0:7
2 ¼ true, with a

probability p1 = 0.7 · 0.7 = 0.49.
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2. Uses a SAT solver to find all the satisfying assignments that extend this chance variable
assignment. Continuing the example, there are two satisfying assignments that are
consistent with this setting of the chance variables: (pa1 = false, noop1 = true,
optd1 = false, pa2 = true, noop2 = false) and (pa1 = true, noop1 = false,
optd1 = true, pa2 = false, noop2 = true). The first assignment indicates that the
agent did nothing (noop) at time step 1, observed that the part was not painted, and
then executed the paint action at time step 2. The second assignment indicates that
the agent executed the paint action at time step 1, observed that the part was painted,
and then did nothing at time step 2. Note that painting at both time steps is not con-
sistent with this chance variable instantiation because cvpa0:7

1 ¼ true indicates that the
first paint action would be successful, and painting again would cause an error.

3. Installs the action-observation portion of each satisfying assignment found in (2) above
into the action-observation tree and updates, as necessary, the probabilities of success
of the actions and the optimal action at each point in the tree. Thus, the action-obser-
vation paths (with the false actions deleted) would be noop1 = true!
optd1 = false! pa2 = true and pa1 = true! optd1 = true! noop2 = true.
These paths would be created in the solution tree and the value of each action would
be set at p1 = 0.49.

4. Computes the probability of success of the optimal plan so far and compares it to the
target threshold probability. The two action-observation paths installed so far disagree
on the first action to be taken, so only one can be chosen as the optimal plan so far:
paint at time step 1 and then do nothing at time step 2, or do nothing at time step 1
and then paint at time step 2. Since they have the same probability of success, one of
them would be chosen arbitrarily and the probability of success would be computed
as 0.49. Assuming that APPSSAT was looking for the optimal plan (i.e. the threshold is
set at 1.0), APPSSAT would continue processing chance variable instantiations in an
attempt to find a better plan.

The chance variable instantiations are efficiently generated in descending order using a
priority queue. The satisfying assignments that extend a given chance variable instantia-
tion are found using zChaff [22], currently one of the fastest SAT solvers available. zChaff,
however, is not well-suited to finding all the satisfying assignments for a particular for-
mula. The method we adopt to address this problem is to add a clause to the current for-
mula for each satisfying assignment found that prevents that assignment from being
discovered again. This, however, introduces very long clauses into the formula in large
problems, which makes finding a new satisfying assignment increasingly difficult. In addi-
tion, we encountered technical problems with zChaff after adding many large clauses.
Nonetheless, this method proved feasible for a suitably wide range of problems to demon-
strate the efficacy of the APPSSAT approach.

APPSSAT maintains a tree of action-observation paths that indicates the current optimal
plan. In other words, each action node indicates the values (probabilities of satisfaction)
of each action, given the subtree rooted there, and the best action. Each time a satisfying
assignment is found it is installed in that tree in such a way that the optimal plan so far
can be easily extracted from the tree. Given a new action-observation path, the algorithm
follows existing nodes in the tree to the extent possible (i.e. if they match the actions and
observations in the path being installed). If a point is reached when this is no longer pos-
sible, additional nodes are constructed to make it possible to install that action-observation
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path. The probability of that path (i.e. the probability of the chance variable instantiation
that generated the action-observation path) is then propagated upward from the leaf of that
path, changing the values of actions and the best action at each action node along that path
as necessary. To continue the example begun in the summary of APPSSAT’s operation above,
the next chance variable instantiation to be processed would be either cvpa0:7

1 ¼ true and
cvpa0:7

2 ¼ false, or cvpa0:7
1 ¼ false and cvpa0:7

2 ¼ true, each with a probability
p2 = 0.21. Suppose the first one is chosen. There is only one satisfying assignment that is
consistent with this setting of the chance variables: pa1 = true, noop1 = false, optd1 =
true, pa2 = false, noop2 = true. The corresponding action-observation path,
pa1 = true! optd1 = true! noop2 = true, is already in the tree, so the value of all
the actions on this path (paint at time step 1 and do nothing at time step 2) would be
increased to 0.49 + 0.21 = 0.7. Since the value of doing nothing at time step 1 is still 0.49
and the value of painting at time step 1 is now 0.7, the optimal plan extracted will now
be to paint at time step 1 and do nothing at time step 2. This plan has a value, or probability
of success, of 0.7, which makes sense since the probability of success of the paint action is
0.7.

Pursuing this example further, we find that the next chance variable instantiation to be
processed, cvpa0:7

1 ¼ false and cvpa0:7
2 ¼ true, is consistent with two action-observation

paths: pa1 = true! optd1 = false! pa2 = true and noop1 = true!optd1 =
false! pa2 = true. The first action-observation path agrees on the first action
(pa1 = true) with the already-installed action-observation path pa1 = true! optd1 =
true! noop2 = true, but differs in the value of the observation and the action at time
step 2: this action-observation path provides a course of action when it is observed that the
part has not been painted (optd1 = false), namely to paint at time step 2 (pa2 = true).
The value of the paint action at time step 2 on this path will have the value 0.21 (the value
of the chance variable instantiation that produced it), and this value will be propagated
upward to the paint-at-time-step-1 action and will increase the value of this action to
0.7 + 0.21 = 0.91. Intuitively, this is because we now have a potential plan tree that pre-
scribes an action for both possible values of the observation variable after the paint action
is taken at time step 1: when it is observed that the paint action did work, the old action-
observation path (pa1 = true! optd1 = true! noop2 = true) prescribes the noop
action at time step 2, and when it is observed that the paint action did not work, the
new action-observation path (pa1 = true! optd1 = false! pa2 = true) prescribes
the paint action at time step 2. The value of the first path, when the observation variable
is true, is 0.7, and the value of the new path, when the observation variable is false, is
0.21. Since the value of an observation (or branch) node is the sum of the values of its chil-
dren, the value of this observation node, and thus the value of the paint-at-time-step-1
action that leads to it, is 0.91.

The second consistent action-observation path (noop1 = true! optd1 = false!
pa2 = true) increases the value of that path, which already exists, but only from 0.49
to 0.49 + 0.21 = 0.7. So the optimal plan extracted at this point would prescribe the paint
action at time step 1 and then the noop action at time step 2 if the paint action is successful
and another paint action at time step 2 otherwise. The probability of success of this plan
would be calculated as 0.91. And this plan and probability of success, which are optimal,
will remain the same when the last chance variable instantiation is processed (cvpa0:7

1 ¼
false and cvpa0:7

2 ¼ false) since there are no satisfying assignments that extend this
instantiation.
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Note that APPSSAT can determine after the installation of every action-observation path
whether the probability of success of the current optimal plan has increased. And because
the values of all the actions are maintained in each action node, it is easy to extract the
current optimal plan, thus making this an anytime algorithm. It is also possible at this
point, although computationally relatively expensive, to evaluate the real probability of
success of that plan. Assuming we have processed only some fraction of the chance vari-
able instantiations and their associated satisfying assignments, the probability of success
of the current optimal plan is only a lower bound on the real probability of success of that
plan, since the current plan may be successful for some chance variable instantiations that
have not yet been processed. APPSSAT can find the real probability of success by evaluating
the full assignment tree using that plan, essentially by running the ZANDER algorithm with
the values of the action variables dictated by the plan being evaluated. This can be done
either every time the probability of the current tree increases or at intervals.

If the lower bound on the probability of success of the current optimal plan (or the
actual probability of success) is sufficient (either 1.0 or exceeding a user-specified thresh-
old), APPSSAT halts and return the plan and probability; otherwise, APPSSAT continues
processing chance variable assignments. Note that the probability of success of the just-
extracted plan can be used as a new lower threshold in subsequent plan evaluations, often
allowing additional pruning to be done. The quality of the plan produced increases (if the
optimal success probability has not already been attained) with the available computation
time. Fig. 4 presents pseudocode for the algorithm.

Because the chance variable instantiations are investigated in descending order of
probability, a plan with a relatively high percentage of the optimal success probability
can potentially be found quickly. An exception is a domain in which the high probability
situations are hopeless and the best that can be done is to construct a plan that addresses
some number of lower probability situations. Even here, the basic SSAT heuristics used
will allow APPSSAT to quickly discover that no plan is possible for the high-probability
situations, and lead it to focus on the low-probability situations for which a plan is fea-
sible. Of course, if all chance-variable assignments are considered, the plan extracted is
the optimal plan, but, as we shall see, the optimal plan may sometimes be produced even
after only a relatively small fraction of the chance-variable assignments have been
considered.

Unlike ZANDER, which, in effect, looks at chance variable instantiations at a particular
time step based on the instantiation of variables (particularly action variables) at previous
times steps, APPSSAT, by enumerating complete instantiations of the chance variables in
descending order of probability, examines the most likely outcomes of all actions at all
time steps. This approach may seem counter-intuitive. Instead of instantiating all the
chance variables, perhaps it would make more sense to instantiate chance variables based
on the instantiation of variables (particularly action variables) at previous times steps. For
example, given the action choice made at the first time step, what is the most likely instan-
tiation of chance variables facing the agent now? This type of approach is more similar to
the operation of ZANDER—searching the SSAT tree of possible assignments—except that the
search would be sped up by considering only the more likely chance variable instantia-
tions. This would require a significant amount of overhead to keep track of which chance
variable instantiations have been checked for which action choices and, in many cases,
would entail the repeated solving of a number of SSAT subproblems with one or more
chance variable settings changed.



Fig. 4. The APPSSAT algorithm for approximating the solution of probabilistic planning problems encoded as SSAT

instances.
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The APPSSAT approach seeks to accomplish a similar goal in a different way. By enumer-
ating complete instantiations of the chance variables in descending order of probability,
APPSSAT is choosing the most likely outcomes of all actions at all time steps. Because it
is not taking variable independencies into account, it does so somewhat inefficiently. At
the same time, however, by instantiating all the chance variables at the same time, APPSSAT

reduces the SSAT problem to a much simpler SAT problem. Although this approach will also
entail the repeated solving of a number of subproblems with one or more chance variable
settings changed, our conjecture is that solving a large number of SAT problems will take
less time than solving a large number of SSAT problems, particularly if one makes use of a
state-of-the-art SAT solver like zChaff [22]. Obviously, this will depend on the relative
number of problems involved, but we have chosen to explore the approach embodied in
APPSSAT first.

Most of the operations in APPSSAT can be performed as or more efficiently than the oper-
ations necessary in the ZANDER framework. The chance variable instantiations can be gen-
erated in descending order in time linear in the number of instantiations using a priority
queue. APPSSAT finds all consistent action-observation paths using zChaff, as described
above. Although, in some cases, this was clearly faster than the alternative of doing a
depth-first search of the assignment tree checking for satisfiability using pruning heuristics
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(the central operation of ZANDER), it is not clear that this is always the best choice. More
investigation is needed here. The current best plan is continuously maintained in the tree
of action-observation paths resulting from the processing of the chance variable instanti-
ations. Finally, plan evaluation requires a depth-first search of the entire assignment tree,
but heuristics speed up the search, and the resulting probability of success can be used as a
lower threshold if the search continues, thus potentially speeding up subsequent
computation.

5. Results

We tested APPSSAT on three domains similar to those ZANDER was tested on in [1]: TIGER,
COFFEE-ROBOT, and SPEARFISHING. All three problems have uncertain initial conditions and
noisy observations. The characteristics of these problems are described in Table 1. All
experiments were conducted on a 2.5 GHz Power Mac G5 with 1 Gbyte of RAM, running
OS X 10.4.3.

Before discussing the results, we note that ZANDER relies heavily on memoization, i.e.
saving the results of solved subproblems for possible future reuse. Clearly, this can use
up a great deal of memory. At the same time, memoization allows the solver to avoid need-
less duplication of identical subtrees, so avoiding memoization completely is not always
the most effective way to conserve memory. We have provided results for three types of
memoization in ZANDER: no memoization, memoization of all subproblems, and memoiza-
tion of only those subproblems that are solved when both values of a variable are
explored. In general, as indicated in Table 2, this last option is usually the best one. (Please
refer to Table 2 in the following discussion of results.)

In the TIGER problem, ZANDER easily finds the optimal plans for both a 5-step plan
(0.93925 probability of success) and a 10-step plan (0.994371 probability of success).
Table 1
Characteristics of test problems

Planning problem
(number of states)

Size statistic Number of time steps

5 10 15 20 25

TIGER (8) No. actions/step 3 3 3 3 3
State propositions/step 3 3 3 3 3
No. observations/step 1 1 1 1 1
Total number variables 45 90 135 180 225
Total number clauses 154 309 464 619 774

COFFEE (64) No. actions/step 3 3 3 3 3
State propositions/step 6 6 6 6 6
No. observations/step 1 1 1 1 1
Total number variables 83 163 243 323 403
Total number clauses 192 382 572 762 952

SPEAR (256) No. actions/step 8 8 8 8 8
State propositions/step 8 8 8 8 8
No. observations/step 2 2 2 2 2
Total number variables 212 422 632 842 1052
Total number clauses 525 1040 1555 2070 2585



Table 2
APPSSAT is often able to produce a plan with some probability of success in cases where ZANDER would run out of
memory

Problem Solver Type of
memoization

CPU seconds and probability (optimal in boldface) by number of steps
in plan

5 10 15 20 25

TIGER APP NA 5.62 3.13 5.45 3.81 5.87
0.93925 0.755651 0.401477 0.20102 0.130602

ZAN None 0.015 0.45 M M M
0.93925 0.994371

SPLT 0.015 0.113 3.84 185.0 M
0.93925 0.994371 0.998732 0.999856

All 0.016 0.092 2.82 M M
0.93925 0.994371 0.998732

COFFEE APP NA 0.47 0.55 0.40 0.18 0.23
0.8906 0.7665 0.815 0.5 0.5

ZAN None 0.11 M M M M
0.8906

SPLT 0.08 190.98 M M M
0.8906 0.93761

All 0.12 M M M M
0.8906

SPEAR APP NA 0.12 0.16 0.28 1.71 2.93
0.23365 0.23365 0.23365 0.23365 0.23365

ZAN None 7.80 M M M M
0.242737

SPLT 1.65 M M M M
0.242737

All 2.81 M M M M
0.242737

APP = APPSSAT, ZAN = ZANDER; NA = memoizing not applicable, None = no memoizing; SPLT = memoize only
subproblems based on splits; All = memoize all subproblems, M = memory exhausted.
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Using memoization allows it to find an optimal 15-step plan (0.998732 probability of suc-
cess) and the selective memoization technique allows ZANDER to find the optimal 20-step
plan (0.999856 probability of success), but at the 25-step level all variants of ZANDER

exhaust memory before they are able to find a plan. APPSSAT finds the optimal 5-step plan,
although it takes longer than ZANDER. However, although APPSSAT is never able to find the
optimal plan for this problem as quickly as ZANDER, APPSSAT is able to find a plan with
some chance of success in all the cases in which ZANDER exhausts memory and is thus
unable to find any plan. In the 25-step case, for example, all variants of ZANDER exhaust
memory, but APPSSAT is able to produce a plan with a success probability of 0.130602 in
5.87 CPU seconds. For other plan lengths (10, 15, and 20 steps) Table 2 shows success
probabilities that APPSSAT is able to reach in reasonable amounts of time. We see the same
results for both the COFFEE-ROBOT and SPEARFISHING problems, the disparity between the
two planners being most pronounced in the SPEARFISHING domain, in which all variants
of ZANDER are unable to produce a plan with a length of 10 or more steps while APPSSAT

is able to produce suboptimal plans (probability of success of 0.23365) for all horizons up
to 25 steps.
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6. Further work

We need to improve the efficiency of APPSSAT if it is to be a viable approximation tech-
nique, and there are a number of techniques we are in the process of implementing that
should help us to achieve this goal. First, when APPSSAT is processing the chance variable
instantiations in descending order, in many cases the difference between two adjacent
instantiations is small. We can probably take advantage of this to find the action-observa-
tion paths that satisfy the new chance variable instantiation more quickly.

Second, since we are repeatedly running a SAT solver to find action-observation paths
that lead to satisfying assignments for the chance-variable assignments, and since two
chance variable assignments will frequently generate the same satisfying action-observa-
tion path, it seems likely that we could speed up this process considerably by incorporating
learning into APPSSAT.

Finally, we are investigating whether plan simulation (instead of exact calculation of the
plan success probability) would be a more efficient way of evaluating the current plan.

One possible use for this (or any) approximation technique is to use the approximation
technique in a framework that interleaves planning and execution, in order to scale up to
even larger domains than approximation alone could attack. The idea here would be to use
the approximation technique to calculate a ‘‘pretty good’’ first action (or action sequence),
execute that action or action sequence, and then continue this planning/execution cycle
from the new initial state. This approach could improve efficiency greatly (at the expense
of optimality) by focusing the planner’s efforts only on those contingencies that actually
materialize.
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