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Abstract

We are concerned with sharp characterization of the contingent cone to the set defined by
number of equality constraints in the absence of classical regularity (constrained qualification
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let S be a given set in a Banach spaceX. The contingent cone(Bouligand tangent
TS(x̄) to S at a pointx̄ ∈ S is comprised by all vectorsd ∈ X possessing the followin
property: there exist a sequence{dk} ⊂ X convergent tod , and a sequence of positiv
numbers{tk} convergent to zero, such thatx̄ + tkd

k ∈ S, ∀k. The contingent cone to an
set at any point is closed. We refer to the elements of the contingent cone astangent vectors.

In addition to being of independent interest, the significance of this particular noti
tangency has to do with the fact that it turns out to be the most natural and conven
the context of optimality conditions for constrained optimization problems.

Namely, consider the optimization problem
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minimize f (x)

subject to x ∈ S, (1)

wheref :X → R is a smooth function. Then the following first-order optimality conditio
are standard. If̄x ∈ S is a local solution of problem (1), then〈

f ′(x̄), d
〉
� 0, ∀d ∈ TS(x̄). (2)

This primal necessary condition can be presented in the form

−f ′(x̄) ∈ (
TS(x̄)

)◦
,

where(TS(x̄))
◦ = {x∗ ∈ X∗ | 〈x∗, d〉 � 0, ∀d ∈ TS(x̄)} is the polar cone ofTS(x̄); X∗

stands for the (topological) dual space ofX. Hence, a specific characterization of(TS(x̄))
◦

for specificS leads to the primal–dual form of necessary optimality condition.
Necessary condition (2) is quite sharp, as it is close to sufficient, in the sense th

same cone is involved in both. Specifically, ifX is finite-dimensional, and for̄x ∈ S it holds
that 〈

f ′(x̄), d
〉
> 0, ∀d ∈ TS(x̄) \ {0},

thenx̄ is a strict local solution of (1).
Another important area of application of the notion of tangency in question is in

bifurcation theory. Specifically, let

S = {
(σ,u) ∈ Σ ×U | F(σ,u) = 0

}
,

whereΣ , U andY are Banach spaces, andF :Σ ×U → Y is a smooth mapping. Suppo
that ū ∈ U is a trivial solution, that is

Σ × {ū} ⊂ S. (3)

In order to establish the existence of bifurcation at(σ̄ , ū) for someσ̄ ∈ Σ , it is sufficient
to show that there exists a vector(ν, v) ∈ TS(σ̄ , ū) such thatv �= 0. This observation is th
essence of numerous bifurcation theorems [1,9–12,16–20].

Summarizing, sharp characterization of the contingent cone to a set given by
specific constraints is certainly of interest. In this paper, we derive the sharpest k
characterization of this kind for the set given by a finite number of equality constrain

S = {
x ∈ X | F(x)= 0

}
, (4)

whereF :X → Rl is a sufficiently smooth mapping.
By necessity,TS(x̄) ⊂ kerF ′(x̄), and the classical Lyusternik theorem says that the

verse inclusion is true provided the pointx̄ is normal, that is

rankF ′(x̄) = l. (5)

That is, the normality condition (5) guarantees the equalityTS(x̄) = kerF ′(x̄). However,
the inclusionTS(x̄) ⊃ kerF ′(x̄) is not necessarily true when (5) is violated.

The first tangent cone results valid without the normality condition were obtain
[21] (under the assumption thatF ′(x̄) = 0) and [7] (in the general setting; see also [3,8,
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16]). LetP be the orthogonal projector onto(imF ′(x̄))⊥ in Rl (note that (5) is violated i
and only if imF ′(x̄) is a proper subspace inRl). Define the mapping

Φ(x̄, ·) :X → Rl , Φ(x̄, d) = F ′(x̄)d + 1

2
PF ′′(x̄)[d, d], (6)

and the cone

T (x̄) = {
d ∈ X | Φ(x̄, d) = 0

}
= {

d ∈ kerF ′(x̄) | F ′′(x̄)[d, d] ∈ imF ′(x̄)
}
.

Then by necessityTS(x̄) ⊂ T (x̄). Moreover, ifF is 2-regular at x̄ with respect to agiven
directiond ∈ T (x̄), that is

rank
∂Φ

∂d
(x̄, d) = l, (7)

thend ∈ TS(x̄). In particular, ifF is 2-regular at̄x with respect to alld ∈ T (x̄) \ {0} (or at
least with respect to alld comprising a dense subset ofT (x̄)), thenTS(x̄) = T (x̄). Under
the relaxed smoothness assumptions, these results were obtained in [13,14].

Observe that the partial derivative in 2-regularity condition (7) can be evaluated e
itly: for ξ ∈ X,

∂Φ

∂d
(x̄, d)ξ = F ′(x̄)ξ + PF ′′(x̄)[d, ξ ].

It follows that (7) can be equivalently rewritten in the form

imF ′(x̄)+ F ′′(x̄)
[
d,kerF ′(x̄)

] = Rl . (8)

Indeed, (7) is obviously equivalent to

PF ′′(x̄)
[
d,kerF ′(x̄)

] = (
imF ′(x̄)

)⊥
. (9)

Suppose that (8) holds. Then for anyy ∈ (imF ′(x̄))⊥, there existx1 ∈ X and x2 ∈
kerF ′(x̄) such that

F ′(x̄)x1 + F ′′(x̄)[d, x2] = y.

ApplyingP to both sides of the last equality, we obtain

PF ′′(x̄)[d, x2] = y,

and hence, (9) is established. Suppose now that (9) holds. Then for anyy = y1 + y2 ∈ Rl ,
y1 ∈ imF ′(x̄), y2 ∈ (imF ′(x̄))⊥, there existsx2 ∈ kerF ′(x̄) such that

PF ′′(x̄)[d, x2] = y2.

Define ỹ = F ′′(x̄)[d, x2], thenỹ = ỹ1 + y2, ỹ1 ∈ imF ′(x̄), andy1 − ỹ1 ∈ imF ′(x̄), that
is, there existsx1 ∈ X such thatF ′(x̄)x1 = y1 − ỹ1. This finally leads to

F ′(x̄)x1 + F ′′(x̄)[d, x2] = y1 − ỹ1 + ỹ1 + y2 = y,

and hence, (8) holds.
It is now evident that normality condition (5) implies 2-regularity with respect to e

direction d ∈ X, but not vice versa. 2-regularity (e.g., with respect to every direc
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d ∈ T (x̄) \ {0}, which is relevant in the context of tangency) is a substantially weake
sumption than normality. At the same time, 2-regularity is also violated in many impo
cases. The following simple example is sort of model in these considerations.

Example 1.1. Let X = R2, l = 1, F(x) = x2
1 − x3

2, x = (x1, x2), x̄ = 0. It is easy to see
thatT (x̄) is the linear subspace spanned by(0,1), andF is not 2-regular at̄x with respect
to anyd ∈ T (x̄). Geometric considerations suggest thatTS(x̄) is the ray spanned by(0,1),
and, e.g.,(0,1) ∈ TS(x̄), while (0,−1) /∈ TS(x̄).

Hence, some further development of the results of [7,21] is needed, in order to
tools sharp enough to separate the two cases in Example 1.1. In Section 3, we pro
improvement which does this job.

Our approach is based on the theory of second-order optimality conditions deve
in [3,4]. This theory was previously used in order to obtain the implicit function theo
relevant for abnormal points [5], as well as bifurcation theorems [6]. We briefly review
necessary results from [3,4] in Section 2.

This work was initiated by [2], where the higher-order (higher than 2) optimality
ditions were used for characterization of tangent directions.

A few words about our notation which is fairly standard. Above, we have already
imA for the image space of a linear operatorA, and kerA for its null space, respectivel
All finite-dimensional spaces are supposed to be equipped with the Euclid inner p
〈· , ·〉 and the corresponding norm| · |. The orthogonal complement of a subspaceM in a
finite-dimensional space is denoted byM⊥. The symbol〈·, ·〉 will be used for the duality
pairing as well.

2. Second-order necessary conditions

In this section, we briefly review the second-order necessary optimality condition
veloped in [3,4]. We emphasize that these conditions are meaningful even in the con
abnormal solutions, while for customary necessary conditions this is not the case.

Let Z be a Banach space, and consider the optimization problem

minimize f (z)

subject to F(z) = 0, (10)

where a cost functionf :Z → R and a constraint mappingF :Z → Rl are assumed to b
twice continuously differentiable in a neighborhood of a pointz̄ ∈ Z.

Define the Lagrangian function of problem (10): forz ∈ Z, λ0 ∈ R, andλ ∈ Rl ,

L(z,λ0, λ,µ) = λ0f (z)+ 〈
λ,F (z)

〉
.

Define the coneΛ(z̄) of Lagrange multipliers associated withz̄. This cone is comprised b
all pairs(λ0, λ) ∈ (R+ × Rl) \ {0} such that

∂L

∂z
(z̄, λ0, λ) = 0.

By the Lagrange principle, if̄z is a local solution of (10), thenΛ(z̄) �= ∅.
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The central role in the optimality conditions presented below is played by the coneΛl(z̄)

which we define next, and which is in general smaller than the cone of all Lagrange
tipliers. The coneΛl(z̄) is comprised by all pairs(λ0, λ) ∈ Λ(z̄) possessing the followin
property: there exists a linear subspaceΠ = Π(λ0, λ) in Z such that

Π ⊂ kerF ′(z̄), codimΠ � l,〈
∂2L

∂z2 (z̄, λ0, λ)ζ, ζ

〉
� 0, ∀ζ ∈ Π.

Theorem 2.1 [3,4]. If z̄ is a local solution of problem(10), thenΛl �= ∅, and, moreover,

max
(λ0,λ)∈Λl

|λ0|+|λ|=1

〈
∂2L

∂z2
(z̄, λ0, λ)ζ, ζ

〉
� 0, ∀ζ ∈ kerF ′(z̄). (11)

3. Tangent vectors

We are now in a position to apply Theorem 2.1 in order to characterize the conti
cone to the setS given by (4). The key observation is the following: it is easy to see
d ∈ TS(x̄) if and only if z̄ = (0,0) is not a local solution of the optimization problem

minimize −t

subject to F
(
x̄ + t (d + x)

) = 0 (12)

in unknownz = (x, t) ∈ Z = X × R.
Throughout the rest of this paper, we assume thatS is defined in (4), whereF :X → Rl

is four times continuously differentiable in a neighborhood of a pointx̄ ∈ S.
Let R be the orthogonal projector onto imF ′(x̄), while P be the orthogonal projecto

onto (imF ′(x̄))⊥ in Rl . Recall that the mappingΦ(x̄, ·) is defined in (6). For a give
d ∈ X, define the coneYl (x̄;d) comprised by all elementsλ ∈ (im(∂Φ/∂d)(x̄, d))⊥ \ {0}
possessing the properties〈

λ,η(d)
〉
� 0, (13)

and there exists a linear subspaceΠ = Π(λ) in Z such that

∂Φ

∂d
(x̄, d)ξ + τη(d) = 0, ∀(ξ, τ ) ∈ Π, codimΠ � l, (14)

〈
λ,

1

2
PF ′′(x̄)[ξ, ξ ] + τRF ′′(x̄)[d, ξ ] + τ

2
PF ′′′(x̄)[d, d, ξ ]

+ τ2

3! RF ′′′(x̄)[d, d, d] + τ2

4! PF (4)(x̄)[d, d, d, d]
〉
� 0, ∀(ξ, τ ) ∈ Π, (15)

where

η(d) = 1

2
RF ′′(x̄)[d, d] + 1

3!PF ′′′(x̄)[d, d, d].
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Theorem 3.1. For a given vectord ∈ T (x̄), the following condition is sufficient for th
inclusiond ∈ TS(x̄): eitherYl (x̄;d) = ∅, or there existξ ∈ X and a real numberτ such
that

∂Φ

∂d
(x̄, d)ξ + τη(d) = 0, (16)

〈
λ,

1

2
PF ′′(x̄)[ξ, ξ ] + τRF ′′(x̄)[d, ξ ] + τ

2
PF ′′′(x̄)[d, d, ξ ]

+ τ2

3! RF ′′′(x̄)[d, d, d] + τ2

4! PF (4)(x̄)[d, d, d, d]
〉
< 0, ∀λ ∈ Yl (x̄;d). (17)

Proof. According to the Hadamard lemma, for everyξ ∈ X sufficiently close to zero, ther
exists a symmetric bilinear mappingQ(ξ) :X ×X → Rl such that

F(x̄ + ξ) = F ′(x̄)ξ + 1

2
F ′′(x̄)[ξ, ξ ] + Q(ξ)[ξ, ξ ], (18)

Q(0) = 0,Q(·) is twice continuously differentiable near zero, and∀ξ ∈ X,

(
Q′(0)ξ

)[ξ, ξ ] = 1

3!F
′′′(x̄)[ξ, ξ, ξ ], (19)

(
Q′′(0)[ξ, ξ ])[ξ, ξ ] = 1

4!F
(4)(x̄)[ξ, ξ, ξ, ξ ]. (20)

Using (18), the equality constraints of problem (12) can be equivalently rewritten i
form

0 = RF
(
x̄ + t (d + x)

)

= t

(
F ′(x̄)x + t

2
RF ′′(x̄)[d + x, d + x] + tRQ

(
t (d + x)

)[d + x, d + x]
)
, (21)

0 = PF
(
x̄ + t (d + x)

)

= t2
(
PF ′′(x̄)[d, x] + 1

2
PF ′′(x̄)[x, x] + PQ

(
t (d + x)

)[d + x, d + x]
)
, (22)

where the definition ofR andP and the inclusiond ∈ T (x̄) are taken into account.
It is clear from (21) and (22) that the feasible set of problem (12) consists of two p

One piece is defined by the equalityt = 0, and the cost function of problem (12) takes o
the zero value on this piece. Another piece is defined byt �= 0 and the equalities

F ′(x̄)x + t

2
RF ′′(x̄)[d + x, d + x] + tRQ

(
t (d + x)

)[d + x, d + x] = 0, (23)

PF ′′(x̄)[d, x] + 1

2
PF ′′(x̄)[x, x] + PQ

(
t (d + x)

)[d + x, d + x] = 0. (24)

In order to prove thatd ∈ TS(x̄), it suffice to show that under our assumptions, the ne
sary optimality conditions given by Theorem 2.1 are violated atz̄ = (0,0) for the following
optimization problem:
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subject to (23) and (24). (25)

Note that the constraints of this problem are twice continuously differentiable nearz̄.
Define the Lagrangian function of problem (25): forz = (x, t) ∈ Z, λ0 ∈ R, andλ ∈ Rl ,

L(z,λ0, λ) = −λ0t +
〈
λ,F ′(x̄)x + t

2
RF ′′(x̄)[d + x, d + x]

+ tRQ
(
t (d + x)

)[d + x, d + x] +PF ′′(x̄)[d, x]
+ 1

2
PF ′′(x̄)[x, x] +PQ

(
t (d + x)

)[d + x, d + x]
〉
.

Employing (19) and (20), by direct computations we obtain, forζ = (ξ, τ ) ∈ Z,〈
∂L

∂z
(z̄, λ0, λ), ζ

〉
= −λ0τ −

〈
λ,F ′(x̄)ξ +PF ′′(x̄)[d, ξ ]

+ τ

2
RF ′′(x̄)[d, d] + τ

3!PF ′′′(x̄)[d, d, d]
〉

=
〈
λ,

∂Φ

∂d
(x̄, d)ξ

〉
+

(〈
λ,

1

2
RF ′′(x̄)[d, d]

+ 1

3!PF ′′′(x̄)[d, d, d]
〉
− λ0

)
τ, (26)

〈
∂2L

∂z2
(z̄, λ0, λ)ζ, ζ

〉
=

〈
λ,

1

2
PF ′′(x̄)[ξ, ξ ] + τRF ′′(x̄)[d, ξ ]

+ τ

2
PF ′′′(x̄)[d, d, ξ ] + τ2

3! RF ′′′(x̄)[d, d, d]

+ τ2

4! PF (4)(x̄)[d, d, d, d]
〉
. (27)

By (26), we see that the coneΛ(z̄) is comprised by all pairs(λ0, λ) ∈ (R × Rl) \ {0}
such thatλ ∈ (im(∂Φ/∂d)(x̄, d))⊥ and〈

λ,
1

2
RF ′′(x̄)[d, d] + 1

3!PF ′′′(x̄)[d, d, d]
〉
= λ0 � 0.

Moreover, from (19), (23), (24) and (27) and the definition ofYl (x̄;d) it follows that the
coneΛl(z̄) is comprised by pairs(〈λ,η(d)〉, λ), λ ∈ Yl (x̄;d). It is now evident that the
necessary conditions of Theorem 2.1 are violated atz̄ if and only if Yl (x̄;d)= ∅, or there
exists(ξ, τ ) ∈ Z satisfying (16) and (17). ✷

We now consider the important particular case when

η(d) /∈ im
∂Φ

∂d
(x̄, d). (28)

In this case, the sufficient condition for tangency given by Theorem 3.1 takes a con
ably simpler form.
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Let the coneỸl−1(x̄;d) be comprised by elementsλ ∈ (im(∂Φ/∂d)(x̄, d))⊥ \ {0} satis-
fying (13) and possessing the following property: there exists a linear subspaceL = L(λ)

in X such that

L ⊂ ker
∂Φ

∂d
(x̄, d), codimL � l − 1, (29)

〈
λ,PF ′′(x̄)[ξ, ξ ]〉 � 0, ∀ξ ∈ L. (30)

Note that (28) implies codimker(∂Φ/∂d)(x̄, d) = rank(∂Φ/∂d)(x̄, d) � l − 1.

Corollary 3.1. For a given vectord ∈ T (x̄) satisfying(28), the following condition is
sufficient for the inclusiond ∈ TS(x̄): eitherỸl−1(x̄;d)= ∅, or there exists

ξ ∈ ker
∂Φ

∂d
(x̄, d) (31)

such that〈
λ,PF ′′(x̄)[ξ, ξ ]〉 < 0, ∀λ ∈ Ỹl−1(x̄;d). (32)

Proof. Under (28), for a givenλ ∈ Rl , a linear subspaceΠ in Z satisfies (14) and (15) i
and only ifΠ = L × {0}, where the linear subspaceL in X satisfies (29) and (30). Th
follows from the fact that the equality in (14) can hold for someξ ∈ X with τ = 0 only,
and the obvious relation between codimΠ and codimL. It is evident now thatYl (x̄;d) =
Ỹl−1(x̄;d), and (16) and (17) take place for someξ ∈ X and a real numberτ if and only if
ξ satisfies (31) and (32), andτ = 0. Application of Theorem 3.1 completes the proof.✷
Example 3.1 (Compare with Example 1.1). Let X = R2, l = 1, F(x) = x2

1 − x3
2 + ω(x),

x = (x1, x2), whereω : R2 → R is an arbitrary function four times continuously differe
tiable near 0 and such that its first three derivatives vanish at 0. Letx̄ = 0.

We haveR = 0,P = 1, and ford = (d1, d2) ∈ T (x̄),

∂Φ

∂d
(x̄, d) = 0, d1 = 0.

In particular,

η(d) = −d3
2 �= 0

providedd �= 0. Furthermore, the conẽYl−1(x̄;d) is comprised by all numbersλ �= 0 such
that

λη(d) = −λd3
2 � 0,

λF ′′(x̄)[ξ, ξ ] = 2λξ2
1 � 0, ∀ξ = (ξ1, ξ2) ∈ R2,

and in particular,λ � 0. If d2 > 0, then obviouslyỸl−1(x̄;d) = ∅, and we conclude tha
d ∈ TS(x̄) according to Corollary 3.1. At the same time, ifd2 < 0, then it is easy to see th
the sufficient condition for tangency given by Corollary 3.1 is not satisfied.
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Example 3.2. Let X = R3, l = 2, F(x) = (x2
1 + x2

2 − x3
3, x1(x1 − x3 + x3

3)) + ω(x),
x = (x1, x2, x3), whereω : R3 → R2 is an arbitrary mapping four times continuously d
ferentiable near 0 and such that its first three derivatives vanish at 0. Letx̄ = 0.

Here,Ỹl−1(x̄;d) = ∅ for d = (δ,0, δ) with δ > 0, and hence,d ∈ TS(x̄) according to
Corollary 3.1.

Finally, the sufficient condition for tangency given by Theorem 3.1 can be simp
even without the additional assumption (28), though the resulting condition is som
less subtle. Let̃Yl be the cone defined similar tõYl−1, but with l − 1 in the right-hand side
of the inequality in (29) replaced byl.

Corollary 3.2. For a given vectord ∈ T (x̄), the following condition is sufficient for th
inclusiond ∈ TS(x̄): either Ỹl (x̄;d) = ∅, or there existsξ ∈ X satisfying(31), and such
that 〈

λ,PF ′′(x̄)[ξ, ξ ]〉 < 0, ∀λ ∈ Ỹl (x̄;d). (33)

Proof. Let λ ∈ Yl (x̄;d); thenλ ∈ (im(∂Φ/∂d)(x̄, d))⊥ \ {0}, (13) holds, and there exis
a linear subspaceΠ in Z satisfying (14) and (15). SetL = {ξ ∈ X | (ξ,0) ∈ Π}. Obvi-
ously, the inclusion in (29) holds, codimL � codimΠ � l, and (30) is satisfied. Henc
λ ∈ Ỹl (x̄;d), and this proves the inclusionYl (x̄;d) ⊂ Ỹl (x̄;d). Now, if ξ ∈ X satisfies
(31) and (33), then (16) and (17) also hold with thisξ andτ = 0. In order to complete th
proof, it is sufficient to refer to Theorem 3.1.✷

Unlike Corollary 3.1, Corollary 3.2 does not make the job in Example 3.1. We
modify this example in order to demonstrate the situation when both Corollaries 3.1 a
are applicable.

Example 3.3. Let X = R3, l = 1, F(x) = x2
1 + x2

2 − x3
3 + ω(x), x = (x1, x2, x3), where

ω : R3 → R is an arbitrary function four times continuously differentiable near 0 and
that its first three derivatives vanish at 0. Letx̄ = 0.

Here,Ỹl (x̄;d) = ∅ for d = (0,0, d2) with d2 > 0, and both Corollaries 3.1 and 3.2 a
appropriate in order to show thatd ∈ TS(x̄).

Moreover, Corollary 3.2 can be applicable when Corollary 3.1 is not. Of course
can happen only when (28) is violated, and in particular, condition (13) can be drop
the definition ofỸl (x̄;d).

Example 3.4. LetX = R5, l = 1,F(x) = x2
1 +x2

2 −x2
3 −x2

4+ω(x), x = (x1, x2, x3, x4, x5),
whereω : R5 → R is an arbitrary function four times continuously differentiable near 0
such that its first three derivatives vanish at 0. Letx̄ = 0.

We haveR = 0,P = 1, and ford = (0,0,0,0, d5) ∈ T (x̄),

∂Φ
(x̄, d) = 0, η(d) = 0.
∂d
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al. 14
The coneỸl (x̄;d) is comprised by all numbersλ �= 0 such that

λF ′′(x̄)[ξ, ξ ] = 2λ
(
ξ2
1 + ξ2

2 − ξ2
3 − ξ2

4

)
� 0, ∀ξ = (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ L,

for some linear subspaceL in X such that codimL � 1. Suchλ does not exists, since th
index of the quadratic formξ → λF ′′(x̄)[ξ, ξ ] :X → R should be less or equal to 1, b
this is obviously not the case for anyλ �= 0. Hence,Ỹl (x̄;d)= ∅, and by Corollary 3.2 we
conclude thatd ∈ TS(x̄).

Recall that, in the 2-regular case,(im(∂Φ/∂d)(x̄, d))⊥ = {0}, and hence, all the cone
Yl (x̄;d), Ỹl−1(x̄;d), andỸl (x̄;d), are necessarily empty. In particular, Theorem 3.1
each of Corollaries 3.1 and 3.2 are applicable in the 2-regular case.

Finally, we emphasize that Theorem 3.1 and each of Corollaries 3.1 and 3.2 can
plicable only provided the corresponding coneYl (x̄;d), Ỹl−1(x̄;d), or Ỹl (x̄;d), is pointed
(the empty cone is pointed, by definition).
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