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Abstract

We are concerned with sharp characterization of the contingent cone to the set defined by a finite
number of equality constraints in the absence of classical regularity (constrained qualification).
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1. Introduction

Let S be a given set in a Banach spake The contingent congBouligand tangent)
Ts(x) to S at a pointx € S is comprised by all vectorg € X possessing the following
property: there exist a sequengé} c X convergent tad, and a sequence of positive
numbers{r;} convergent to zero, such that r,d* € S, Vk. The contingent cone to any
setat any pointis closed. We refer to the elements of the contingent ctareasit vectors

In addition to being of independent interest, the significance of this particular notion of
tangency has to do with the fact that it turns out to be the most natural and convenient in
the context of optimality conditions for constrained optimization problems.

Namely, consider the optimization problem
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minimize  f(x)
subjectto x €S, Q)

wheref : X — Ris a smooth function. Then the following first-order optimality conditions
are standard. If € S is a local solution of problem (1), then

(f’(i),d)}O, Vd € Ts(x). (2)
This primal necessary condition can be presented in the form
—f'(x) € (Ts(i))o,
where (Ts(x))° = {x* € X* | (x*,d) <0, Vd € Ts(x)} is the polar cone of’s(x); X*
stands for the (topological) dual spaceXdfHence, a specific characterization(@§ (x))°
for specificS leads to the primal-dual form of necessary optimality condition.
Necessary condition (2) is quite sharp, as it is close to sufficient, in the sense that the

same cone is involved in both. SpecificallyXifis finite-dimensional, and for € S it holds
that

(f'(®).d)>0, VdeTs()\{0},

thenx is a strict local solution of (1).
Another important area of application of the notion of tangency in question is in the
bifurcation theory. Specifically, let

S={(o,u)e X x U | F(o,u) =0},

whereX, U andY are Banach spaces, afhd ¥ x U — Y is a smooth mapping. Suppose
thati € U is atrivial solution, that is

X x {i} CS. (3)

In order to establish the existence of bifurcatiori@tu) for somes € ¥, it is sufficient
to show that there exists a vector, v) € Ts(a, i) such that # 0. This observation is the
essence of numerous bifurcation theorems [1,9-12,16-20].

Summarizing, sharp characterization of the contingent cone to a set given by more
specific constraints is certainly of interest. In this paper, we derive the sharpest known
characterization of this kind for the set given by a finite number of equality constraints:

S={xeX|F(x) =0}, (4)

whereF : X — R/ is a sufficiently smooth mapping.
By necessity7s(x) C kerF’(x), and the classical Lyusternik theorem says that the con-
verse inclusion is true provided the points normal that is

rankF’'(x) = 1. (5)

That is, the normality condition (5) guarantees the equdlifyc) = ker F’(x). However,
the inclusionT’s(x) D kerF’(x) is not necessarily true when (5) is violated.

The first tangent cone results valid without the normality condition were obtained in
[21] (under the assumption that (x) = 0) and [7] (in the general setting; see also [3,8,15,
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16]). Let P be the orthogonal projector ongon F’(x))* in R! (note that (5) is violated if
and only if imF’(x) is a proper subspace R/). Define the mapping
1
(i, ):X—>R, @&, d)=F()d+ EPF”()z)[d, dl, (6)
and the cone
T(x)={deX| P, d) =0}
={d ekerF'(x)| F"(¥)[d,d] €imF'(x)}.
Then by necessitfs(x) C T (x). Moreover, if F is 2+egular atx with respect to ajiven
directiond € T (x), thatis
0P
k— (G, d) =1 7
rank— (x,d) =1, (7)

thend € Ts(x). In particular, if F is 2-regular afc with respect to alll € T'(x) \ {0} (or at
least with respect to all comprising a dense subsetBtx)), thenTs(x) = T (x). Under
the relaxed smoothness assumptions, these results were obtained in [13,14].
Observe that the partial derivative in 2-regularity condition (7) can be evaluated explic-

itly: for & € X,

8§D - ’, = 1=

w(x,d)é =F'(x)§+ PF (x)[d, £].
It follows that (7) can be equivalently rewritten in the form

im F'(%) + F"(%)[d, kerF'(¥)] = R". (8)
Indeed, (7) is obviously equivalent to

PF"(®)[d, kerF'()] = (im F'(%)) " ©)
Suppose that (8) holds. Then for amye (im F/(x))+, there existx! € X and x?
kerF’(x) such that

F'(X)xt+ F'(®)[d, x*] = y.
Applying P to both sides of the last equality, we obtain

PF"(X)ld,x* =y,

and hence, (9) is established. Suppose now that (9) holds. Then fer-any + y2 € R,
yleimF/(%), y? € (im F/(x))*, there exists:? € ker F’(x) such that

PF"(®)[d,x°] =y
Definej = F”(x)[d, x?], theny = 51 + y2, 1 eim F'(x), andy! — 1 e im F/(%), that
is, there exists® € X such thatF’(x¥)x = y! — 31. This finally leads to

F'@xt+ F'(0)ld, x4 =yt =51+ 50+ y2 =y,
and hence, (8) holds.

It is now evident that normality condition (5) implies 2-regularity with respect to every
directiond € X, but not vice versa. 2-regularity (e.g., with respect to every direction
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d € T(x) \ {0}, which is relevant in the context of tangency) is a substantially weaker as-
sumption than normality. At the same time, 2-regularity is also violated in many important
cases. The following simple example is sort of model in these considerations.

Example 1.1. Let X =R?, 1 =1, F(x) =x7 — x3, x = (x1, x2), ¥ = 0. It is easy to see
that7 (x) is the linear subspace spanned(Byl), andF is not 2-regular at with respect
to anyd e T (x). Geometric considerations suggest thatx) is the ray spanned b, 1),
and, e.g.(0, 1) € Ts(x), while (0, —1) ¢ Ts(x).

Hence, some further development of the results of [7,21] is needed, in order to obtain
tools sharp enough to separate the two cases in Example 1.1. In Section 3, we provide an
improvement which does this job.

Our approach is based on the theory of second-order optimality conditions developed
in [3,4]. This theory was previously used in order to obtain the implicit function theorems
relevant for abnormal points [5], as well as bifurcation theorems [6]. We briefly review the
necessary results from [3,4] in Section 2.

This work was initiated by [2], where the higher-order (higher than 2) optimality con-
ditions were used for characterization of tangent directions.

A few words about our notation which is fairly standard. Above, we have already used
im A for the image space of a linear operatgrand kerA for its null space, respectively.

All finite-dimensional spaces are supposed to be equipped with the Euclid inner product
(-,-) and the corresponding norim|. The orthogonal complement of a subspa¢en a
finite-dimensional space is denoted k. The symbol(-, -) will be used for the duality
pairing as well.

2. Second-order necessary conditions

In this section, we briefly review the second-order necessary optimality conditions de-
veloped in [3,4]. We emphasize that these conditions are meaningful even in the context of
abnormal solutions, while for customary necessary conditions this is not the case.

Let Z be a Banach space, and consider the optimization problem

minimize  f(z)
subjectto F(z) =0, (10)

where a cost functiorf : Z — R and a constraint mapping: Z — R’ are assumed to be
twice continuously differentiable in a neighborhood of a pgiatZ.
Define the Lagrangian function of problem (10): foe Z, 19 € R, andx € R/,

L(z, 20, %, ) = Ao f (2) + (A, F(2)).

Define the conel(z) of Lagrange multipliers associated wighThis cone is comprised by
all pairs(o, A) € (R4 x R\ {0} such that

oL _
— (2,20, 1) =0.
0z

By the Lagrange principle, & is a local solution of (10), ther (z) # @.
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The central role in the optimality conditions presented below is played by the/,ghe
which we define next, and which is in general smaller than the cone of all Lagrange mul-
tipliers. The coneA,(Z) is comprised by all pairéio, 1) € A(zZ) possessing the following
property: there exists a linear subsp@te= IT(1o, A) in Z such that

T ckerF'(z), codimiT <,

3L _
——(2,20,1)5,5) 20, V¢ ell
9z
Theorem 2.1 [3,4]. If z is a local solution of probleniL0), then A; # @, and, moreover,

92L
max (——(Z,A0, M), ¢) >0, V¢ ekerF'(2). (11)
(ro,meA; \ 022

[Aol+[A|=1

3. Tangent vectors

We are now in a position to apply Theorem 2.1 in order to characterize the contingent
cone to the sef given by (4). The key observation is the following: it is easy to see that
d € Ts(x) if and only if z = (0O, 0) is not a local solution of the optimization problem

minimize —¢
subjectto F(x+1(d+x))=0 (12)
inunknownz = (x,t) e Z=X x R.

Throughout the rest of this paper, we assume $hatdefined in (4), wher@ : X — R/
is four times continuously differentiable in a neighborhood of a poiats.

Let R be the orthogonal projector onto ifi(x), while P be the orthogonal projector
onto (im F/(¥))* in R'. Recall that the mapping (%, -) is defined in (6). For a given
d € X, define the cong) (x; d) comprised by all elementse (im(d®/3d)(x, d))* \ {0}
possessing the properties

(r, n(@) >0, (13)

and there exists a linear subspdée= I7(1) in Z such that

%@, d)E +1n(d)=0, V(£ 1) e, codimT <1, (14)
1
<x, SPF/®)IE 1+ TRF'(D)ld, §1+ %PF”/(X)[d, d, ]
72 72
+ g RF"(D)ld.d.d) + mPF““(f)[d, d.d, d]> >0, V(¢ vell, (15)

where

n(d) = %RF”()E)[d, d]+ %PF”'()E)[d, d,d].
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Theorem 3.1. For a given vectord € T (x), the following condition is sufficient for the
inclusiond € Ts(x): either ) (x; d) = @, or there exis& € X and a real numbet such
that

0P

ﬁ(f,d)é-l-fn(d):(), (16)
1

<)», EPF"(J?)[& El+TRF"(0)Id, §]1+ %PFW()?)[d, d,&]

2 2
+ %RF”’@)[d, d,d]+ %PF(“)(X)[d, d,d, d]> <0, Vreli(x;d). (17)

Proof. According to the Hadamard lemma, for evérg X sufficiently close to zero, there
exists a symmetric bilinear mappi@(€) : X x X — R/ such that

1
F()?+$)=F/(i)$+§F”(i)[€,$]+Q(%‘)[é,%‘], (18)
Q(0) =0, Q(-) is twice continuously differentiable near zero, affde X,
1
(Q'08)I5. 61= 3 F"(DIE. £, 81, (19)
1
(Q"(0)[£,£])IE, €1 = EF(“)(JF)[«E,E,&E]- (20)

Using (18), the equality constraints of problem (12) can be equivalently rewritten in the
form

0=RF(x+1(d+x))
= t(F/()E)x + %RF”()E)[d +x,d+x]+tRQ(t(d +x))[d+x,d +x]>, (21)
0=PF(Xx+1(d+x))
= tZ(PF”()E)[d, x]+ %PF”()E)[x, x]+ PO(1(d+x))ld+x.d +x]>, (22)
where the definition ok and P and the inclusior € T (x) are taken into account.
Itis clear from (21) and (22) that the feasible set of problem (12) consists of two pieces.

One piece is defined by the equality- 0, and the cost function of problem (12) takes only
the zero value on this piece. Another piece is defined$y and the equalities

t
F'(X)x + ERF”()E)[d +x,d+x]+tRQ(t(d +x))[d +x,d +x]=0, (23)
1
PF"(®)d, x]+ EPF”(;E)[x, x1+ PO(t(d+x))ld+x,d+x]=0. (24)
In order to prove that € Ts(x), it suffice to show that under our assumptions, the neces-

sary optimality conditions given by Theorem 2.1 are violateg-at(0, O) for the following
optimization problem:
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minimize —¢
subjectto  (23) and (24) (25)

Note that the constraints of this problem are twice continuously differentiable;near
Define the Lagrangian function of problem (25): fo& (x, ) € Z, A0 € R, andx € R/,

L(z,20,A) = —Aot + <)», F'(X)x + %RF"()?)[d +x,d+x]
+1RO(t(d +x))[d + x,d + x]+ PF"(D)[d, x]
+ %PF”()E)[x, x]+PQ(t(d+x))d+x.d +x]>.
Employing (19) and (20), by direct computations we obtaingfer (¢, 1) € Z,
<%(2, A0, 1), ,;> = ot <A, FI(0) + PF'(D)[d, £]
+ %RF”()E)[d, dl+ éPF”/()E)[d, d, d]>
= <A, 9 s, d)§> + (<A LRF @), a
ad 2

+%PF/”()E)[d,d,d]>—ko)t, (26)

azL = 1 1= 1=
<a—Z2(Z7)"07)")€7§>:<)"7 EPF (-x)[gvé]'i_TRF (-x)[dvé]

2
i %PF”/()E)[d, d, €]+ %RF”’@)[d, d.d]
T2 4=

By (26), we see that the con(z) is comprised by all pairéio, ») € (R x R!) \ {0}
such that € (im(3®/3d)(x, d))* and

1 1
<x, ERF”()E)[d, dl+ §PF”’()E)[d, d, d]> =0 >=0.

Moreover, from (19), (23), (24) and (27) and the definitiordbfx; d) it follows that the
cone A;(z) is comprised by pairg(r, n(d)), A), L € V;(x; d). It is now evident that the
necessary conditions of Theorem 2.1 are violategiband only if ), (x; d) = @, or there
exists(&, t) € Z satisfying (16) and (17). O

We now consider the important particular case when

L
n(d) ¢im - (x. d). (28)

In this case, the sufficient condition for tangency given by Theorem 3.1 takes a consider-
ably simpler form.
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Let the cong),_1(x; d) be comprised by elementse (im(3®/dd)(x, d))* \ {0} satis-
fying (13) and possessing the following property: there exists a linear subgpade(i)
in X such that

LC ker%(%, d), codimL <[—-1, (29)
(A, PF"(X)[£.€])>0, VéelL. (30)
Note that (28) implies codimkér® /dd)(x, d) =ranko®/dd)(x,d) <1 — 1.

Corollary 3.1. For a given vectord € T (x) satisfying(28), the following condition is
sufficient for the inclusiod € Ts(x): either),_1(x; d) = @, or there exists

I _
Ee kera(x, d) (31)
such that
(h, PF"()[£,€]) <0, VieV_1(F;d). (32)

Proof. Under (28), for a given. € R/, a linear subspacH in Z satisfies (14) and (15) if
and only if IT = L x {0}, where the linear subspadein X satisfies (29) and (30). This
follows from the fact that the equality in (14) can hold for sofne X with r = 0 only,
and the obvious relation between codifrand codinL. It is evident now thad/, (x; d) =
YVi_1(x; d), and (16) and (17) take place for sofne X and a real number if and only if
& satisfies (31) and (32), and= 0. Application of Theorem 3.1 completes the proofa

Example 3.1 (Compare with Example D)ilet X =R?, 1 =1, F(x) = x2 — x3 + w(x),
x = (x1, x2), wherew:R% — R is an arbitrary function four times continuously differen-
tiable near 0 and such that its first three derivatives vanish at G £40.

We haveR =0, P =1, and ford = (d1, d») € T (x),

0D _
ﬁ(x,d)—O, d]_—o

In particular,

n(d) =—d3 #0
providedd # 0. Furthermore, the cog_1(x:; d) is comprised by all numberps=£ 0 such
that

an(d) = —rd3 >0,

MF'(B)E €1 =206 >0, VE=(61,6) R,

and in particularp > 0. If d2 > 0, then obviousl;dil_l(i; d) =@, and we conclude that
d € Ts(x) according to Corollary 3.1. At the same timedif < 0, then it is easy to see that
the sufficient condition for tangency given by Corollary 3.1 is not satisfied.
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Example 3.2. Let X = R3, /=2, F(x)= (xf + x22 - xg,xl(xl — x3+ xg’)) + w(x),

x = (x1, x2, x3), wherew: R® — R? is an arbitrary mapping four times continuously dif-

ferentiable near 0 and such that its first three derivatives vanish at @.£€
Here,Y,_1(x;d) = @ for d = (5,0, 8) with § > 0, and hence/ € Ts(x) according to

Corollary 3.1.

Finally, the sufficient condition for tangency given by Theorem 3.1 can be simplified
even without the additional assumption (28), though the resulting condition is somewhat
less subtle. Led), be the cone defined similar 891, but with/ — 1 in the right-hand side
of the inequality in (29) replaced by

Corollary 3.2. For a given vectow € T (x), the following condition is sufficient for the
inclusiond € Ts(x): either ) (x; d) = @, or there existg € X satisfying(31), and such
that

(n, PF"(X)[E,£1) <0, Vrei(F;d). (33)

Proof. Letx € Y, (x; d); theni € (im(3®/dd)(x,d))* \ {0}, (13) holds, and there exists
a linear subspacél in Z satisfying (14) and (15). Sdt = {¢£ € X | (¢, 0) € I1}. Obvi-
ously, the inclusion in (29) holds, codim< codimIT < I, and (30) is satisfied. Hence,
A € Vi(x; d), and this proves the inclusial (x; d) C Yi(x; d). Now, if £ € X satisfies
(31) and (33), then (16) and (17) also hold with thiandz = 0. In order to complete the
proof, it is sufficient to refer to Theorem 3.10

Unlike Corollary 3.1, Corollary 3.2 does not make the job in Example 3.1. We next
modify this example in order to demonstrate the situation when both Corollaries 3.1 and 3.2
are applicable.

Example3.3.Let X =R3, [ =1, F(x) = x? + x2 — x3 + 0 (x), x = (x1, x2, x3), where
w:R3— Ris an arbitrary function four times continuously differentiable near 0 and such
that its first three derivatives vanish at 0. liet 0.

Here, ), (x; d) = ¢ for d = (0, 0, do) with d> > 0, and both Corollaries 3.1 and 3.2 are
appropriate in order to show thate Ts(x).

Moreover, Corollary 3.2 can be applicable when Corollary 3.1 is not. Of course, this
can happen only when (28) is violated, and in particular, condition (13) can be dropped in
the definition ofY,; (x; d).

Example3.4.Let X = RS 1=1,F(x)= x%—i—x%—x%—xi—i—a)(x), x = (x1, X2, X3, X4, X5),
wherew: R® — R is an arbitrary function four times continuously differentiable near 0 and
such that its first three derivatives vanish at 0. ket 0.

We haveR =0, P =1, and ford = (0,0, 0,0, ds) € T (x),

P
—(x,d)=0 d)=0.
g 5 =0, nd)
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The cone));(x; d) is comprised by all numbepss 0 such that

AF"(D)E, E1=20(E2 + 62 — 65 —£2) >0, VE = (£1, 82 &3,6a,85) € L,

for some linear subspadein X such that codink < 1. Suchx does not exists, since the
index of the quadratic forr§ — AF”(x)[£,£]: X — R should be less or equal to 1, but
this is obviously not the case for any 0. Hence ) (x; d) = ¥, and by Corollary 3.2 we
conclude that/ € Ts(x).

Recall that, in the 2-regular casém(d®/3d)(x, d))* = {0}, and hence, all the cones
Vi(x;d), Yi—1(x; d), andY)(x; d), are necessarily empty. In particular, Theorem 3.1 and
each of Corollaries 3.1 and 3.2 are applicable in the 2-regular case.

Finally, we emphasize that Theorem 3.1 and each of Corollaries 3.1 and 3.2 can be ap-
plicable only provided the corresponding conéx; d), Vi_1(x; d), or Y (x: d), is pointed
(the empty cone is pointed, by definition).
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