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Abstract 

The paper reviews several implementations of the Generalized minimal error method (GMERR method) for solving 
nonsymmetric systems of linear equations that minimize the Euclidean norm of the error in the related generalized Krylov 
subspace. We show the relation to the methods in the symmetric indefinite case. A new variant of the GMERR method 
is proposed and the stable implementation based on the Householder transformations is discussed. Numerical stability of 
the most frequent implementations is analyzed and the theoretical results are illustrated by numerical examples. (~) 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let Ax = b be a system of  linear algebraic equations, where A is a real nonsingular matrix of 
order N and b,x are N-dimensional real vectors. 

Among the broad variety of  iterative Krylov space methods for the solution of this system (surveys 
can be found e.g. in [8, 12, 24, 5]) we consider the method that starts with an initial approximation 
x0 and generates the nth approximate solution x, in the form 

x. 6Xo + ATK.(AT, ro), (1) 
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satisfying the error minimization property 

IIx - x .II  = min IIx - ull ,  ( 2 )  
uExo+AXKn(AX,ro) 

where r0 = b-Axo  is the initial residual and ATKn(AT, ro)--Kn(AT,ATro) is the nth generalized Krylov 
subspace generated by the transpose of the matrix A and the vector Afro 

K~(AT,AXro) = span {ATro,AT(ATro),..., (AT)~-I(AXro)}. (3) 

It can be easily shown that the error minimization property (2) is equivalent to the condition that 
the nth error x -  x, orthogonal to the space AXKn(Ar, ro), i.e. 

x - x,  l AXK,(A T, ro ) = b - Ax,  l K,(A T, ro ). (4) 

The approximation given by conditions (1) and (2) always exists and is unique. The convergence 
of the error norms is assured to be monotonic. The GMERR method, however, does not have, in 
general, the finite termination property. In general nonsymmetric case one can construct examples 
for which the GMERR method terminates with the nonzero residual norm at the iteration n <N.  
Moreover it was shown in [34] that GMERR without restarts converges for every right-hand side if 
and only if the system matrix is normal. 

For A symmetric, several algorithms generating the approximations determined by (2) were pro- 
posed and discussed in [10, 23, 17, 6]. Although these methods are mathematically equivalent, their 
behavior in the finite precision arithmetic may substantially differ. It was reported that some of them 
are numerically unstable and the most efficient and stable ones were proposed. 

The first method for solving symmetric indefinite systems which is characterized by the minimal 
error property 

IIx - x .II  = min IIx - nil ( 5 )  
uCxo+Kn(A,Aro) 

is the orthogonal direction (OD) method proposed by Fridman in [10]. However, this implementation 
is unstable (see e.g. [23, 24]). The first numerically stable algorithms for symmetric indefinite systems 
were proposed by Paige and Saunders in [17]. They considered the symmetric Lanczos method to 
generate an orthonormal basis of the Krylov subspace K,(A, ro) and using this basis proposed a 

L satisfying stable algorithm SYMMLQ which produces at every step an auxiliary approximation x, 
the minimal error property (5). 

Another approach was taken by Fletcher [6] who described the Bi-CG algorithm for nonsymmetric 
systems and then modified its symmetric variant to obtain the OD method by Fridman. This algorithm 
computes the orthogonal, but not normalized, basis of the subspace Kn(A,Aro) and it faces some 
numerical difficulties. A stabilization of the OD method, named STOD, was proposed by Freund and 
Stoer [23]. Theoretical equivalence of the SYMMLQ method and OD method developed from the 
Bi-CG algorithm was already known by Fletcher [6]. Another stable implementation of the symmetric 
indefinite minimal error method (ME) was presented by Freund in [7]. 

In the nonsymmetric case, the concept of error minimization was introduced in [30], where the 
Generalized minimal error method (GMERR) has been proposed. In this paper, we describe the 
original implementation and propose other variants of the GMERR method, where the approximate 
solution in the form (1) is constructed via different set of orthonormal vectors that span the gener- 
alized Krylov space (3) and the Krylov space K,(AT, ro) generated by the transpose of the matrix 
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A and the initial residual r0. We show their relation to the methods in the symmetric indefinite 
case and we investigate the numerical stability of  the implementation based on the Householder 
transformations. 

The paper is organized as follows. In Section 2, we review the original implementation of  the 
GMERR method and show some theoretical results. Section 3 is devoted to other variants of  GMERR 
based on the orthonormal bases of  the generalized Krylov space ATK,(AT, ro) and the Krylov space 
K,(AT, ro). The connection to symmetric methods is discussed and some questions concerning their 
numerical stability are examined. In Section 4, a new stable implementation of  GMERR based 
on Householder transformations is proposed and discussed. Finally, we present several numerical 
examples and give some conclusions. 

2. Generalized minimal error method (GMERR) 

The original implementation, presented in [30] is based on the generating two sequences of  vectors 
wl,...,Wn and u l , . . . , u ,  and is implemented as follows: 

Algorithm 2.1. Generalized minimal error method (GMERR) 

x0, ro = b - Ago, wl = ro/IlArro II, ul = A~w,, 

n--  1,2 . . . . .  

x. =x . -1  + [(b,w.) - (x._l,u.)]u., 

~s,. = -(ATu.,uJ), J=  1,... ,n, 

t~n+l =ATUn q- ~ ~j, nUj, 
j=l  

~.+1 = u. + ~ aj,.wj, 
j= l  

w.+, = II. 

u . + ,  = a o + , / l l a . + , l l .  

From the algorithm 2.1 it is clear that the vectors U l , . . .  , U  n build up the orthonormal basis of  the 
subspace ATK.(AT, ro), the vectors w~ . . . .  ,w. build up the AAa-orthonormal basis of  the subspace 
K.(Ar, ro) and both bases are generated by the scheme equivalent to the classical Gram-Schmidt 
orthogonalization. It is well known, that this orthogonalization technique is numerically unreliable 
and may be replaced by more stable modified Gram-Schmidt scheme or even iterated classical or 
modified Gram-Schmidt orthogonalization. For details of  different orthogonalizations which can be 
used we refer to [2, 20, 11, 15]. 

If we denote the AAr-orthonormal basis IV. = [wl,. . .  ,w.] of  the Krylov space K.(AT, ro), then the 
recurrences from the algorithm 2.1 can be written as a recursive column-by-column QR decomposi- 
tion of  the matrix [ro,ATW._1] assuming the innerproduct (u, v)~uT = uTAATv 

[ro,AXW._l] = W.G., WX~AATW. =1. (6) 
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with an upper triangular matrix G,. The nth approximate solution x, can be written in the form 

Xn-~Xo + A T W n f n  (7) 

and condition (4) which is equivalent to the error minimization condition (2) implies 

L = (ATWn)T( x -- XO) = W~ro. (8) 

Then the approximation solution x, and the nth residual can be updated step by step 

Xn =Xn-I + (ro, Wn)ATWn, (9) 

rn = r,_l - (ro, w,)AATw,. (10) 

From condition (4) the inner product (r0,w,) in (9) and (10) can be replaced by (r,-1,Wn) or, when 
the residual vector not computed, by ( b , w , ) -  (x,_l,ATw,). 

By (9) GMERR can be formulated so that only one matrix-vector multiplication is needed per 
iteration step if the residuals are not calculated. For realistic problems the matrix-vector multiplication 
dominates the work of  the other operations like dot products and triadic expressions. As matrix- 
vector multiplications and triadic operations can be efficiently implemented on vector and parallel 
machines [31], GMERR is well suited for today's supercomputers. 

A problem for GMERR is the controlling of  the convergence because the errors decrease but they 
cannot be calculated. If we observe the norm of the residuals, it may increase or may oscillate even 
the errors decrease. Moreover, an additional matrix-vector multiplication is needed for the calculation 
of the residuals. Therefore, we propose to calculate the residuals only every mth step (e.g. m = 20) 
and to apply residual-minimizing smoothing [14, 22, 28, 33]. The norm of  the smoothed residuals 
can be used for control. 

The exact variant presented here cannot be calculated with a short recurrence unless certain favor- 
able conditions are valid. For example for A symmetric, the calculation of  the u, and wn is possible 
with a short recurrence. For practical applications with large and sparse systems a restarted version 
has to be applied. Minimization properties corresponding to (2) are valid in the restart interval. 

We remark that the original GMERR definition [30] is a little more general than stated in (1) and 
(2). The approximation is chosen such that 

x, C Xo + AX K,(A x, wl ), 

where Wl is arbitrary, and 

Nx - x, II = min Ilx - ull. 
uExo+dr Kn(AZ,wl ) 

(11) 

(12) 

The optimal choice of  W 1 would be W 1 = A - r ( x - x o ) =  A-TA-lro because then the solution is obtained 
in the first step following from (12). But the calculation of this optimal wt would be as difficult as 
the solution of  the original system. A natural choice for Wl is the here considered wl = ro/llATroll. 

We recognize for GMERR a similar structure as for GMRES [20]. Both methods distinguish 
in the Krylov space chosen for the approximations and in the minimization principle. GMRES 
minimizes the residuals instead of the errors and converges to the exact solution in a finite number 
of  iteration steps. For symmetric matrices the spanned Krylov spaces are close and numerical tests 
confirm that the methods behave in a similar way. We also remark that if we apply GMERR to the 
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normal equations ATAx =ATb, then we obtain a method mathematically equivalent to Craig's method 
CGNE [3]. 

The analysis of  the convergence of  GMERR is not yet settled. At least we can state the following 
result for normal matrices: 

Theorem 2.1. Let tr(A) be the spectrum o f  A, I-ln_l the set o f  all polynomials o f  deoree n - 1 
with the constant coefficient equal to unity, i.e. p ( 0 ) =  1 for pE/ /~-1 .  I f  A is normal, then for the 
errors o f  G M E R R  

IIx -x.II  min max 1(1 - p'(O)2)p(, )lllx -x011 (13) 
p E H n - I  2Eft(A) 

is satisfied, where p' denotes the derivative of  the polynomial p. 

Proof. As A is normal, there exists an orthonormal matrix C and a diagonal matrix D such that 
A = C- 'DC.  From Eq. (2) follows: 

I Ix -x . l l - -  min X - Xo + E fl,(AT )iro 
fll,...,fln--I i=1 

"_72 
min x - Xo + ~ fli(AX)iA(x - Xo) 

fll,...,fln--1 i=1 

X n--_~ - - X 0 )  = min - Xo -[- f l i ( C T D T C - T ) i C - I D C ( x  
fll ,...,fln-1 i=1 

~< min fliCT(DTyC-TC-'DC + I IIx - x011 
fll,...,fln-I i='  

min IIC-111 E fl, CC(D yC- C-1D + I IICIIIIx- xolt ~< 
fll,...,fln--I i=1 

= min ~ fl~(DT)iD+I llx-x011 
fl'"'"fl"-~ i=l 

as C is orthonormal 
n--1 

~< min max ~ fl~2 i+~ + 1 IIx- x011, 
fl,,...,fl°_, , ~ ( n )  

as D is a diagonal matrix consisting of  the eigenvalues. The polynomial in the last inequality is of  
degree n, the constant coefficient equal to unity and the first power of  2 is missing. Thus, it can be 
written as (1 - p ' (0)2)p(2) ,  where p E / / , - t .  [] 

A direct consequence of  Theorem 2.1 is that GMERR converges fast for normal matrices if the 
eigenvalues are clustered. By substituting the polynomial p in (13) by a normalized Chebyshev 
polynomial further results similar to those of  residual-minimizing methods involving the condition 
number of A can be derived. Note that the polynomial (1 - p ' (0)2)p(2)  in (13) is a polynomial 
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of degree n, where the first power of 2 is missing and the constant coefficient is equal to unity. If 
p'(O) =0 ,  then the polynomial in (13) simplifies. The result for the errors of GMERR is similar to 
the well known result for the residuals of GMRES [20] applied to normal matrices: 

IIr ll min  max Ip( )lllroll- 
pEll,, 2Ea(A) 

(14) 

However, if A is similar to a diagonal matrix, we do not obtain for GMERR an analogue to the 
estimate for GMRES where the right-hand side of (14) is multiplied by the condition number of the 
eigenvector matrix. 

The investigations in [7] show that GMERR is competitive with GMRES if the matrix is symmet- 
ric. The residual reduction is slightly better for GMRES while the error reduction is slightly better 
for GMERR. This could be expected from Theorem 2.1. Theorem 2.1 further suggests that GMERR 
behaves similar as GMRES also for normal matrices because the estimate is similar to the GMRES 
estimate (14). For normormal matrices there are no theoretical results up to now. Practical tests 
give a rather confusing impression. There are examples where GMRES works fine while GMERR 
converges very slowly. There are also few examples where GMERR is very fast but GMRES is 
very bad. The later presented tests show this behavior. 

The valuation becomes more difficult for the restarted variant. For restarted GMRES the iterate 
is in the same space as for the exact method and, therefore, the restarted version is always worse 
than the exact. For restarted GMERR the iterate is in a different space than for the exact method. 
Numerical tests show that restarted GMERR can be sometimes substantially better than the exact 
method for distinct problems. As regards a valuation of GMERR for non-normal matrices further 
research is necessary. 

3. Other variants of the GMERR method 

In this section, we formulate two other variants of the GMERR method based on the generation 
of the set of orthonormal vectors that span either the generalized Krylov space K.(AT,ATro) or the 
Krylov subspace K.( A v, ro ), respectively. 

First we consider the formulation of GMERR, which is analogical to the variant of the GM- 
RES method [20] presented by Walker and Lu Zhou (for details see [29]) and which computes 
an orthonorrnal basis Q. = [ql,. . .  ,q.] of the generalized Krylov space Kn(AT,ATro)=ATK,(AT, ro). 
Analogously to GMRES, this can be done via recursive column by column QR factorization of the 
matrix [ATro,AT Q._1] 

AT[ro, Q._I]=Q.S., QTQ.=I., (15) 

where Sn is an upper triangular matrix. Then, the approximation (1) has the form 

x. =x0 + Q.t. (16) 

and from the optimality condition (4) written as QT(x. - x ) =  0 we obtain 

t.=QT(x --Xo). (17) 
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From (16) and denoting t, = [~l,. . . ,  ~n] T it is clear that the approximate solution x, and the residual 
vector r~ can be updated step by step 

x. =x . -1  + ~.q., (18) 

r. =r ._ l  - ~.Aq.. (19) 

Since t. cannot be computed directly from (17), consider the optimality condition (4) in the form 

[ATro,ATQn-I]T(x -- Xn) = 0. ( 2 0 )  

Using (20) with (16) and factorization (15) we receive the lower triangular system for the unknown 
vector t. 

s f t .=[ro ,  Q._llTro, (21) 

which can be solved easily and G can be obtained as 

= --  E i = 1  Si, n~i (22) ~. (q._, ,ro) .-1 , 

where [s~,.,... ,&,.]T is the nth column of the upper triangular matrix Sn. Alternatively, when the 
residual is computed, from the optimality condition (4), rewritten as [ro, Q._l]Tr.=O we get the 
formula for the coefficient ~. in the form 

(r ._ l ,q . )  
G - ( 2 3 )  

Sn, n 

It can be easily seen that in the symmetric case, this variant of GMERR reduces to the OD 
method proposed by Fridman in [10] and known as numerically unstable. From this point we can 
expect poor numerical behavior of the particular implementations of this variant. We think that this 
behavior can be explained by arguments very similar to ones presented by Walker and Lu Zhou for 
the GMRES method in [29, Section 3]. Consider the matrix 

B,=[ro,  q~, . . . ,q , - l ] ,  (24) 

where ql , . . .  ,q,-1 are computed via the shifted Arnoldi recurrence (15). Similarly to Walker and Lu 
Zhou we can conclude that the matrix B, may become ill-conditioned for some initial residual r0. 
Then from (15) we would have 

S1,1/Sn, n <~ l(,(Sn ) ~/£( AT )l~(On ) (25) 

and s.,. used in (22) or in (23) may become very small. Then we can expect this variant to be 
numerically unstable. 

We note here that the original formulation of GMERR from [30] reduces in the symmetric case to 
the STOD, introduced by Stoer and Freund [23]. The STOD method was designed as a stabilization 
of the unstable OD method for the symmetric indefinite systems. From this we can deduce that 
the numerical behavior of original variant can be more stable than that of the variant analogical to 
the Walker and Lu Zhou variant of GMRES. This can be the case, especially when more reliable 
orthogonalization than classical Gram-Schmidt used in the original algorithm (see the comments at 
the end of previous section). 
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In the following we describe a formulation of GMERR which we consider to be superior to other 
formulation when considering the numerical stability and when considering the stable orthogonal- 
ization such as one based on the Householder transformations. This formulation of  GMERR is, in 
some sense, analogical to the classical formulation of  GMRES (see e.g. the classical paper [20]) 
and it is based on the orthonormal basis V~ = Iv1 . . . .  ,vn] of the Krylov space K.(AV, ro), computed 
via the Arnoldi recurrence 

=ro/llroll ,  ATV  = vT+IVn+I-~-In+l, (26) 

where H.+t,. is upper Hessenberg matrix of  order (n + 1) × n. Then the nth approximate solution 
(1) can be written in the form 

xn = Xo + A v V.y.. 

The unknown vector y.  can be obtained from condition (4) and rewritten as 

(A v V~)V(AX V. )y. = (A T V~ )a'(x - x0) = V~ro. 

Using the Arnoldi recurrence (26) with the matrix A v we obtain 

OS+l,nOn+l,nYn = Ilrollet. 

(27) 

(28) 

(29) 

Consider, analogously to classical variant of  GMRES, the upper Hessenberg matrix H.+~,. reduced 
to the upper triangular matrix via Givens rotations 

Then, the system (29) can be solved easily by backsubstitution solving two triangular systems 

T R, RnYn = Ilr0lle,. (31) 

Slightly different approach of  computing the unknown vector y, can be found in [5]. 
From (27) it also for the residual of  the approximate solution r, follows that 

r~ = r0 - AA T V~y~ (32) 

and from the equality (28) we have 

I'. = - ( I -  V~V.T)AAvV~y~. (33) 

We note here that in the symmetric case, this formulation of  the GMERR method reduces to 
the stable implementation presented by Freund in [7] and is also closely related to the SYMMLQ 
algorithm presented by Paige and Saunders in [17], which is also numerically stable. 

4. Implementation of GMERR method based on the Householder transformations 

In the previous section, we discussed the variant of  GMERR based on the generating the or- 
thonormal basis V~ = [Vl,..., vn] of  the Krylov subspace Kn(A v, to). Particular implementations can be 
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obtained from the general formulation by specifying the orthogonalization technique. Here we shall 
concentrate on the Householder orthogonalization which is numerically more reliable, but requires 
somewhat more arithmetic and storage than usual Gram-Schmidt factorization. For details we refer 
to [26, 27]. We consider the following algorithm: 

Algorithm 4.1. Householder implementation of GMERR method 

Xo, ro = b - Axo, 

P l = I - 2 s l s • ,  IIs, l l = l .  Plro=llrolle . Vl=Plel, 

n =  1,2 . . . . .  

Pn+l = I  T 

Pn+l(PnPn_l...PlAy,) = (hi,, , . . . ,  hn+l,n, O,..., O) T, 

I)n+l = P1P2 ...P,+te,+l, 

J ,(J,- i  ...J2J1)H,+l,, = ( O" ) , 

T g.z. = IIr011e,. 

R, y, = z,, 

x~ =Xo +ATV~y,,. 

In the following we will present three different examples that illustrate the efficiency of GMERR 
in comparison to other iterative solvers, the efficiency of the here proposed stable implementation and 
the influence of the restart parameter on the convergence. We also study different implementations 
for the restarted version of the method. 

Artificial examples showing the efficiency of GMERR in comparison to other iterative solvers 
were presented in [30]. Here we give an example obtained by courtesy of the manufacturer Pfisterer 
in Stuttgart, Germany. The electrostatic field of a 145 kV plug as used in interfaces between power 
cables and gas-insulated circuits is modelled by solving Poisson's differential equation 

A~b = -p-  (34) 
e 

with Dirichlet and Neumann boundary conditions. The quantity (k is the electric scalar potential, 
p is the space charge density and e is the permitivity constant; for details see [32]. Eq. (34) was 
solved by the boundary element method using concentrated charges with a "region-oriented" charge 
simulation method [1]. The dimension of the linear system is 1346. The eigenvalues of the system 
matrix are scattered over the complex plane and there is a cluster at zero. We compare the original 
implementation of GMERR (denoted by GS) and the implementation using Householder reflections 
(denoted by HT) with the Gram-Schmidt implementation of GMRES; see Fig. 1. Both GMERR 
implementations perform similarly except in the last step, where the Householder implementation 
achieves better final accuracy close to the multiple of machine precision. If we consider the reduction 
of the relative residuals GMRES initially seems to converge better than GMERR. But the errors 
show a quite different behavior (the "exact" solution was calculated by Gaussian elimination). While 
GMERR reduces the relative errors by one order of magnitude very fast the GMRES errors oscillate 
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Fig. 1. GMERR and GMRES for the electric plug example. 

heavily and stay above the initial error until iteration step N (note that the number of matrix-vector 
multiplications corresponds to the number of iterations). The reduction of the GMRES residuals 
gives a completely wrong information; GMERR proceeds at least to the solution. We also remark 
that we applied to this example other iterative methods. CGNE did not come closer to the solution 
until iteration step N. Other Krylov subspace methods like BiCGSTAB [25] and QMR [9] did not 
perform better - as could be expected because they do not fulfil a minimization property in the 
Euclidean norm. Even preconditioning by approximate inverses did not improve the convergence. 

The next example considers the numerical stability of different implementations. We compared 
the performance of the variant of GMERR analogical to the classical variant of GMRES with the 
original implementation. We considered the implementations with Householder orthogonalization as 
well as classical and modified Gram-Schmidt orthogonalization on the problem A x  = b, where the 
matrix A and the solution x were chosen as 

TPl(n,00 A =  

1 0 . . .  0~] 

0 2 ... 
X ~  

0 0 ... 

This example was taken from [27, 16]; computing was done in a double precision using the Matlab 
on SGI Crimson workstation with processor R4000. 

In Fig. 2 we plotted the logarithm of the error norm on the problem TP1 versus iteration number 
for the implementation using the Householder reflections (solid line), implementations based on the 
modified and classical Gram-Schmidt (dashed and dash-dotted lines) and the original implementation 
of  GMERR (dotted line). Here the parameter ~ and the dimension of the system N were set to 

= 20000 and N = 100. From Fig. 2 it can be seen, that the algorithm using the Householder 
reflections performed markedly better than other implementations based on the Gram-Schmidt for 
both variants. The Gram-Schmidt implementations for both original variant and variant analogous to 
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Fig. 2. Comparison of different implementations of GMERR. 

the classical variant of  GMRES behaved quite badly (note that the original implementation is based 
on the classical Gram-Schmidt) and did not achieve the final error reduction of the Householder 
implementation. While for the original implementation of GMERR, the error norm tends to stagnate 
after a number of  iterations, both classical and modified Gram-Schmidt implementations of  the 
variant analogous to the Saad and Schultz variant of  GMRES initially converge to the slightly 
lower error norm than the original implementation, but then suddenly start to diverge. Following 
the previous considerations we did not include to our comparison the implementations of  the variant 
analogous to the Walker and Lu Zhou variant of  GMRES, which seem similarly to the OD method, 
numerically less stable. 

We note that while for the GMRES method it was observed and theoretically justified that the 
linear independence of  the computed vectors is important (see [13, 19]), preserving the orthogonality 
to some sufficient level (say, to the square root of  the machine precision) seems to have a crucial role 
in the stability analysis of  the variant of  GMERR analogical to the Saad, Schultz variant of  GMRES. 

In order to analyze the restarted GMERR versions let us consider now a rough model of  the 
three-dimensional Navier-Stokes equations. We will solve the following partial differential equation 
for the velocity v = (vl, v2, V3 )T, 

Av + v + p(vT~7)V = h (35) 

with Dirichlet boundary conditions on the unit cube. The parameter p simulates a Reynolds number 
and in our tests we set p =  1. The right-hand side h = ( h l , h 2 , h 3 )  T is determined so that equation (35) 
has trigonometric functions as solution. The linear system is generated by the FIDISOL program 
package [21 ]. It arises from finite difference discretizations with consistency orders 2 and 4 and from 
the linearization in the first Newton step. The calculations have been performed on a 20 x 20 x 20 
grid. The matrix is normalized, i.e. every row is divided by the sum of the absolute entries in that 
row and all diagonal entries have a positive sign. The dimension of  the system is N = 24000. 

In Fig. 3 the influence of  the restart parameter on GMERR and GMRES is shown for a fourth order 
discretization. The convergence of  GMRES becomes better if  the restart interval becomes larger. This 
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Fig. 4. Different implementations of restarted GMERR. 

could be expected because all approximations are in the same Krylov space. For GMERR the space 
spanned is different for different restart parameters. Consequently, there is no monotonous dependence 
of the convergence on the restart parameter. We obtain for this example the best convergence for 
restart parameter 20, followed by the values 10, 100 and 5. 

For a second-order discretization of (35) the original implementation (denoted by GS in Fig. 4) 
and the implementation using Householder reflections (denoted by HT in Fig. 4) is analyzed for the 
restarted version of  GMERR with the restart parameter 100. If the restart parameter is smaller the 
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differences become less visible. However, rounding errors are cummulated in the restart intervals as 
well. Only the stable implementation achieves an accuracy of the magnitude of the machine precision; 
see Fig. 4. For original implementation the error-minimizing property is lost after a residual reduction 
of 5 orders of magnitude. 

5. Conclusions 

In this paper we reviewed several implementations of the GMERR method for solving nonsym- 
metric systems of linear equations and showed their relation to the methods used in the symmetric 
indefinite case. We proposed a new implementation of the GMERR method based on the House- 
holder reflections and showed that this implementation is numerically superior on some examples. 
Although the full version of the GMERS method seems to be not competitive with the residual 
minimizing GMR.ES method our numerical experiments also illustrate that restarting of the GMERR 
method may be an attractive alternative. The choice of the restart parameter and deep understanding 
of the convergence of all and also restarted method still remain as open questions. 
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