
Journal of Approximation Theory 163 (2011) 707–723
www.elsevier.com/locate/jat

Full length articles

Explicit min–max polynomials on the disc

Ionela Moale∗, Franz Peherstorfer

Group for Dynamical Systems and Approximation Theory, Institute for Analysis, Johannes Kepler University Linz,
Altenbergerstr. 69, A-4040 Linz, Austria

Available online 12 February 2011

Communicated by András Kroó

Abstract

Denote by Π 2
n+m−1 := {

∑
0≤i+ j≤n+m−1 ci, j x i y j

: ci, j ∈ R} the space of polynomials of two
variables with real coefficients of total degree less than or equal to n + m − 1. Let b0, b1, . . . , bl ∈

R be given. For n, m ∈ N, n ≥ l + 1 we look for the polynomial b0xn ym
+ b1xn−1 ym+1

+

· · · + bl xn−l ym+l
+ q(x, y), q(x, y) ∈ Π 2

n+m−1, which has least maximum norm on the disc and
call such a polynomial a min–max polynomial. First we introduce the polynomial 2Pn,m(x, y) =

xGn−1,m(x, y) + yGn,m−1(x, y) = 2xn ym
+ q(x, y) and q(x, y) ∈ Π 2

n+m−1, where Gn,m(x, y) :=

1/2n+m(Un(x)Um(y) + Un−2(x)Um−2(y)), and show that it is a min–max polynomial on the disc.
Then we give a sufficient condition on the coefficients b j , j = 0, . . . , l, l fixed, such that for every

n, m ∈ N, n ≥ l + 1, the linear combination
∑l

ν=0 bν Pn−ν,m+ν(x, y) is a min–max polynomial. In
fact the more general case, when the coefficients b j and l are allowed to depend on n and m, is considered.
So far, up to very special cases, min–max polynomials are known only for xn ym , n, m ∈ N0.

c⃝ 2011 Elsevier Inc. All rights reserved.

1. Introduction

We study here the following uniform approximation problem: let D := {(x, y) ∈ R2
:

x2
+ y2

≤ 1} be the bivariate unit disc, let P be a homogeneous polynomial of two variables of
degree n + m, n, m ∈ N0, n + m ≥ 1, i.e.,

P(x, y) :=

n+m−
i=0

ai xn+m−i yi , ai ∈ R, i = 0, . . . , n + m, (1)
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and let Π 2
n+m−1 := {

∑
0≤i+ j≤n+m−1 ci, j x i y j

: ci, j ∈ R} denote the space of polynomials of
two variables with real coefficients of total degree less than or equal to n + m − 1. For each
n, m ∈ N0, n + m ≥ 1, we would like to know a polynomial p∗

∈ Π 2
n+m−1 such that ‖P − p∗

‖

has the least max norm on D, i.e.,

‖P − p∗
‖ := max

(x,y)∈D
|P(x, y) − p∗(x, y)|

= min
p∈Π 2

n+m−1

max
(x,y)∈D

|P(x, y) − p(x, y)|.

P − p∗ is called min–max polynomial on D. For the bivariate monomial case P(x, y) = xn ym ,
Gearhart [3] discovered in his fundamental paper that for every n, m ∈ N0, n + m ≥ 1, the
polynomials

Gn,m(x, y) :=
1

2n+m (Un(x)Um(y) + Un−2(x)Um−2(y))

= xn ym
+ q(x, y), q ∈ Π 2

n+m−1 (2)

are min–max polynomials on the disc, where Un(x) := sin(n + 1) arccos x/ sin arccos x, −1 ≤

x ≤ 1, n ∈ N0, and Un(x) := −U−n−2(x) when n ∈ Z, n < 0. Another best approximation to
xn ym for each n, m ∈ N has been found by Reimer, the so-called Reimer polynomials; see [8].
For monomials of special degree, other best approximations have been found by Bojanov et al.
[1, p. 491], Braß[2, p. 59] and Newman and Xu [7]; see [1, p. 494]. A sufficient condition for
a polynomial to be a min–max polynomial is given in [12, Theorem 2], but most likely it holds
very rarely, if at all; for a more detailed discussion see Remark 3.9 at the end of the paper.

The key property of the Gearhart polynomials Gn,m is that they become on the boundary ∂D
of the disc

Gn,m(cos ϕ, sin ϕ) =


(−1)[m/2]

2n+m−1 cos(n + m)ϕ, if m even,

(−1)[m/2]

2n+m−1 sin(n + m)ϕ, if m odd.

(3)

Since |Gn,m(x, y)| attains its maximum on D at the points (cos ϕ j , sin ϕ j ), j = 1, . . . , 2(n+m),
where the ϕ j ’s are the zeros of sin(n + m)ϕ when m is even and the zeros of cos(n + m)ϕ when
m is odd, it follows by the results of Shapiro [11] that the function σ defined on the plane by

σ(x, y) :=


(−1) j , if (x, y) = (cos ϕ j , sin ϕ j ),

0, otherwise,
(4)

is an extremal signature with respect to Π 2
n+m−1 (for details on extremal signatures see [4,5,10]);

hence Gn,m is a min–max polynomial on D. In the same way one obtains immediately that if the
coefficients ai of the polynomial P(x, y) from (1) satisfy one of the following four conditions:

a2 j+1 = 0 and ± a4 j , ∓a4 j+2 ∈ R+

0 for j = 0, 1, 2, . . . ,

a2 j = 0 and ± a4 j+1, ∓a4 j+3 ∈ R+

0 for j = 0, 1, 2, . . . ,
(5)

(that is, all the coefficients of odd index are zero and the coefficients of even index alternate
in sign, or the converse situation), then

∑n+m
i=0 ai Gn+m−i,i is a min–max polynomial on D; see

[3, Theorem 3.1]. In fact, a more general statement with any min–max polynomial for monomials
instead of Gn+m−i,i was proven. Though it was repeatedly pointed out in the literature that it
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would be of high interest to find min–max polynomials with given coefficients ai there has been
no progress on this question since the seventies, that is, since Gearhart [3].

In this paper we attack the problem in the following way. First we introduce new bivariate
min–max polynomials, defined as follows, for n, m ∈ N:

Pn,m(x, y) :=
1
2

xGn−1,m(x, y) +
1
2

yGn,m−1(x, y)

= xn ym
+ q(x, y), q ∈ Π 2

n+m−1. (6)

Taking into consideration that for n = 0 or m = 0 the min–max polynomial for the monomial
case is unique (see [3]), we define also, for n, m ∈ N,

Pn,0(x, y) := Gn,0(x, y) andP0,m(x, y) := G0,m(x, y), respectively. (7)

Representing the given polynomial P(x, y) from (1) in terms of Pn,m(x, y), i.e.,

P(x, y) =

n+m−
i=0

ai Pn+m−i,i (x, y) + q(x, y), q ∈ Π 2
n+m−1

we derive a sufficient condition on the ai ’s, which depends on the length of the linear combination
(that is, on the difference of the indices of the last and first non-zero coefficient) but not on n, m,
such that P(x, y) − q(x, y) is a min–max polynomial.

The paper is organized as follows. In the next section we present and discuss the result just
announced. The proofs are given in Section 3.

2. The main result

As mentioned above, the polynomials Pn,m introduced in (6) will be crucial in what follows.

Proposition 2.1. The polynomial Pn,m(x, y) given by (6) is a min–max polynomial on D.

Loosely speaking, in contrast to the Gearhart polynomials from (2), the Pn,m’s have the ad-
vantage of being stable with respect to perturbation, since the global extremal values are attained
at the boundary of D only.

Notation 2.2. Let for n, m ∈ N0, i ∈ N,

Qn,m(x, y) := Un(x)Um−2(y) + Un−2(x)Um(y), (8)

Σi (x, y) :=
1
2
[Qi,i (x, y) + 4xyUi−1(x)Ui−1(y)]

+
2[(−1 − (−1)i )/2]

i/2−1
− Qi,i (x, y)

2(1 − x2 − y2)
, (9)

and

σi (x, y) := Ui (x)Ui−2(y) +
2[(−1 − (−1)i )/2]

i/2−1
− Qi,i (x, y)

2(1 − x2 − y2)
. (10)

It will be proved in Proposition 3.8 that Σi (x, y) and σi (x, y) are polynomials which satisfy
the following inequalities on D:

|Σi (x, y)| ≤ Mi and |σi (x, y)| ≤ Mi , (11)
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where

Mi := i3/3 + i2. (12)

In addition 0 ≤ (−1)i/2−1Σi (x, y) and 0 ≤ (−1)i/2−1σi (x, y) if i is even.
Our main result is now the following sufficient condition for a polynomial to be a min–max

polynomial on D.

Theorem 2.3. Let n, m, k ∈ N0 be such that n + m ≥ 3 and 1 ≤ k ≤ n + m − 2, and
ai ∈ R, i = 0, . . . , k, be given. If for all (x, y) ∈ D

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j a j+i


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y) ≥ 0, (13)

then
k−

i=0

ai Pn+m−i,i (x, y) =

k−
i=0

ai xn+m−i yi
+ q(x, y),

for q ∈ Π 2
n+m−1, is a min–max polynomial on D.

Furthermore, the minimum deviation of the min–max polynomial is given by

 k−
i=0

ai Pn+m−i,i (x, y)


2

=


[k/2]∑
i=0

(−1)i a2i

2

+


[(k−1)/2]∑

i=0
(−1)i a2i+1

2

22(n+m−1)
. (14)

Note that as a0 appears in the third expression only, it plays a special role. As an immediate
consequence of Theorem 2.3 we obtain:

Corollary 2.4. Let ñ, m̃, l ∈ N be such that l ≤ ñ − 2 and suppose that b0, b1, . . . , bl ∈ R
satisfy

l−
i=0

b2
i − 2

l−
i=1


l−i−
j=0

b j b j+i


Σi (x, y) ≥ 0 (15)

(which implies that
∑l

ν=0 bν Pñ−ν,m̃+ν = b0x ñ ym̃
+ · · · + bl x ñ−l ym̃+l

+ q̃(x, y), q̃ ∈ Π 2
ñ+m̃−1

is a min–max polynomial on D with respect to Π 2
ñ+m̃−1). Then for every n, m ∈ N satisfying

n ≥ ñ, m ≥ m̃ and n − m = ñ − m̃, the polynomial
∑l

ν=0 bν Pn−ν,m+ν(x, y) = b0xn ym
+ · · · +

bl xn−l ym+l
+ q(x, y), q ∈ Π 2

n+m−1, is a min–max polynomial on D.

Next let us consider some special cases. When we fix two consecutive coefficients we obtain:

Corollary 2.5. Let us have n, m, i ∈ N0, n + m ≥ 3, i ≤ n + m − 3, and a, b ∈ R. Then
a Pn+m−i,i (x, y) + bPn+m−(i+1),i+1(x, y) is a min–max polynomial on D.

The very special case axn+m
+bxn+m−1 y appears in [3, p. 201], proved there in a completely

different way.
Checking condition (13) with the help of Mathematica when three consecutive coefficients

are given yields:
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Corollary 2.6. Let us have n, m ∈ N0, n + m ≥ 5, 1 ≤ i ≤ n + m − 4, and let b, c ∈ R be
such that

c ≥ 5 + |b| + 2


6 + 3|b| or c ≤ 5 + |b| − 2


6 + 3|b|.

Then Pn+m−i,i (x, y)+bPn+m−(i+1),i+1(x, y)+cPn+m−(i+2),i+2(x, y) is a min–max polynomial
on D.

The case b = 0 and c ≤ 0 is a special case of (5) and is already known [3, Theorem 3.1].
In the following we give simple but very rough sufficient conditions on the coefficients of the

homogeneous polynomial from (1) such that relation (13) is satisfied. As usual, we define for
a = (a0, a1, . . . , ak) ∈ Rk+1

‖a‖2 :=


a2

0 + a2
1 + · · · + a2

k and ‖a‖1 := |a0| + |a1| + · · · + |ak |.

Corollary 2.7. Let n, m, k ∈ N0 be such that n + m ≥ 3 and 1 ≤ k ≤ n + m − 2. Let
ai ∈ R, i = 0, . . . , k, l ∈ {0, 1, . . . , k − 1} be the smallest index such that al ≠ 0 and let Mk−l
be given by (12).

(a) Put a := (a0, a1, a2, . . . , ak). If

(1 + Mk−l)‖a‖
2
2 − a2

0 − Mk−l‖a‖
2
1 ≥ 0, (16)

then
∑k

i=0 ai Pn+m−i,i (x, y) is a min–max polynomial on D.
(b) Suppose that we have ±a4 j , ∓a4 j+2 ∈ R+

0 and ±a4 j+1, ∓ a4 j+3 ∈ R+

0 , j = 0, 1, 2, . . .,
and put ae := (a0, a2, . . .) and ao := (a1, a3, . . .). If

‖ae‖
2
2 + ‖ao‖

2
2 − a2

0 − 2Mk−l‖ae‖1‖ao‖1 ≥ 0, (17)

then
∑k

i=0 ai Pn+m−i,i (x, y) is a min–max polynomial on D.

Inequality (16) gives a rough description of the wide parameter space covered by our ap-
proach. Concerning explicit examples, let us consider the case of two arbitrary given coefficients
(conditions for several coefficients can be derived from (16) also but they become a little bit more
lengthy).

Corollary 2.8. (a) Let us have n, m, k, l ∈ N0, n + m ≥ 5, 3 ≤ k ≤ n + m − 2, 1 ≤ l ≤ k − 2,

and let b ∈ R be such that |b| ≤ 1/(Mk−l +


M2

k−l − 1) or |b| ≥ Mk−l +


M2

k−l − 1. Then
Pn+m−l,l(x, y) + bPn+m−k,k(x, y) is a min–max polynomial on D.

(b) Let us have n, m, k ∈ N0, n + m ≥ 4, 2 ≤ k ≤ n + m − 2, and let b ∈ R be such that
|b| ≥ 2Mk . Then Pn+m,0(x, y) + bPn+m−k,k(x, y) is a min–max polynomial on D.

If the coefficients satisfy the sign condition of Corollary 2.7(b), then (17) will give better
bounds than (16). For example, in the above case of two given coefficients it follows by (17) that
Pn+m−l,l(x, y) + bPn+m−k,k(x, y), k − l even, is a min–max polynomial if (−1)(k−l)/2−1b ≤ 0,
in agreement with (5). Let us further exemplify this for the case of three coefficients:

Corollary 2.9. Let us have n, m, l, k, j ∈ N0, n + m ≥ 5, 3 ≤ k ≤ n + m − 2, 1 ≤ l < j < k,
and let l, j be even (odd) and k odd (even). Let b, c ∈ R be such that (−1)( j−l)/2b ≥ 0 and

|c| ≤ (1 + b2)/(Mk−l(1 + |b|) +


M2

k−l(1 + |b|)2 − (1 + b2)) or |c| ≥ Mk−l(1 + |b|) +



712 I. Moale, F. Peherstorfer / Journal of Approximation Theory 163 (2011) 707–723
M2

k−l(1 + |b|)2 − (1 + b2). Then Pn+m−l,l(x, y) + bPn+m− j, j (x, y) + cPn+m−k,k(x, y) is a
min–max polynomial on D.

Finally we note that the min–max polynomials from Theorem 2.3 have an extremal signature
σ of the form (4), where ϕ j , j = 1, . . . , 2(n + m), are the zeros of sin((n + m)ϕ − α), for some
α ∈ [0, 2π).

Notation 2.10. If P is a homogeneous polynomial of degree n + m, n, m ∈ N0, n + m ≥ 3,
defined by (1), then let Vn+m−1[P] denote the space of best approximations; i.e.,

Vn+m−1[P] := {p∗
∈ Π 2

n+m−1 : ‖P − p∗
‖ = inf

p∈Π 2
n+m−1

‖P − p‖}. (18)

In [2, p. 61] there is given an upper bound for the dimension of Vn+m−1[P], understood as the
dimension of the affine space generated by this non-empty convex set. In what follows we give a
sufficient condition on the coefficients of P for which this upper bound is also a lower bound.

Corollary 2.11. Let n, m, k ∈ N0 be such that n + m ≥ 3 and 1 ≤ k ≤ n + m − 2, and
ai ∈ R, i = 0, . . . , k be given. Suppose that

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j a j+i


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y) > 0, (19)

for all (x, y) ∈ D. Then

dim Vn+m−1


k−

i=0

ai xn+m−i yi


=


n + m − 1

2


. (20)

For monomials xn ym, n, m ∈ N, n + m ≥ 3, this corollary follows immediately from
[3, Theorem 2.2]; see also [2].

3. Proofs

Let us briefly outline the idea of the proof of Theorem 2.3. We will demonstrate that linear
combinations of Pn,m’s satisfy the following quadratic equation (a bivariate Pell type equation),
which is the keystone for our investigations.

Theorem 3.1. Let n, m, k ∈ N0 be such that n + m ≥ 3, 1 ≤ k ≤ n + m − 2, and
ai ∈ R, i = 0, . . . , k, be given. Furthermore, let σi (x, y) and Σi (x, y), i ∈ N, be given
by (10) and (9) respectively. Then the following identity holds:

k−
i=0

ai Pn+m−i,i (x, y)

2

+


k−

i=0

ai Pn+m−(i+1),i+1(x, y)

2

=


[k/2]∑
i=0

(−1)i a2i

2

+


[(k−1)/2]∑

i=0
(−1)i a2i+1

2

22(n+m−1)
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−
1 − x2

− y2

22(n+m−1)

a0Un+m−1(x) +

k−
i=1

ai pn+m−i,i (x, y)

2

+


k−

i=1

ai pn+m−i−1,i−1(x, y)

2

+

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j a j+i


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y)


(21)

where

pn,m(x, y) := xUn−2(x)Um(y) + yUn−1(x)Um−1(y). (22)

By the quadratic equation (21) it is easy to see that if the term in square brackets in the RHS
of (21) is nonnegative on D, then the polynomial

∑k
i=0 ai Pn+m−i,i (x, y) takes on its global

extremal values on ∂D at the zeros of
∑k

i=0 ai Pn+m−(i+1),i+1(x, y). Now if En,m denotes the
minimum deviation given by (14),

Ee
n,m :=

[k/2]∑
i=0

(−1)i a2i

2n+m−1 and Eo
n,m :=

[(k−1)/2]∑
i=0

(−1)i a2i+1

2n+m−1 ,

and α ∈ [0, 2π) is uniquely determined by cos α = Ee
n,m/En,m and sin α = Eo

n,m/En,m ,
then with the help of (3) it can be shown that on ∂D the following relation holds:∑k

i=0 ai Pn+m−(i+1),i+1(cos ϕ, sin ϕ) = En,m sin((n + m)ϕ − α). Thus the points (cos ϕ j ,

sin ϕ j ), j = 1, . . . , 2(n + m), where ϕ j are the zeros of sin((n + m)ϕ − α), build the support
of an extremal signature; recall (4). Hence

∑k
i=0 ai Pn+m−i,i (x, y) is a min–max polynomial on

D if condition (13) is satisfied. Thus Theorem 2.3 follows.
The proof of Theorems 2.3 and 3.1 requires only elementary tools once one has found the

right ansatz, that is, that one has discovered that the Pn,m’s are min–max polynomials and that
linear combinations of such polynomials are good candidates for being min–max polynomials,
since the Pn,m’s are quite resistant to perturbations.

To derive (21) let us first show that the polynomials Gn,m and Pn,m satisfy a quadratic
equation.

Remark 3.2. In the following, we use frequently the following identities involving the Cheby-
shev polynomials of the second kind, which are very easy to verify:

(a) Un(x)Un−2(x) = U 2
n−1(x) − 1,

(b) U 2
n (x) + U 2

n−2(x) − 2 = (4x2
− 2)U 2

n−1(x),

(c) Un(x) + Un−4(x) = (4x2
− 2)Un−2(x),

(d) Un(x)Un−k−2(x) = Un−1(x)Un−k−1(x) − Uk(x),

(23)

where n, k ∈ Z.

Proposition 3.3. (a) Let us have n ∈ N, m ∈ N0. Then

[Gn,m(x, y)]2
+ [Gn−1,m+1(x, y)]2
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=
1

22(n+m−1)
−

1 − x2
− y2

22(n+m−1)


U 2

n−1(x)U 2
m(y) + U 2

n−2(x)U 2
m−1(y)


. (24)

(b) Let us have n, m ∈ N, n ≥ 2. Then

[Pn,m(x, y)]2
+ [Pn−1,m+1(x, y)]2

=
1

22(n+m−1)
−

1 − x2
− y2

22(n+m−1)


1 + p2

n,m(x, y) + p2
n−1,m−1(x, y)


, (25)

where pn,m(x, y) is given by (22).

Proof. (a) By (2) and (23)(a) and (23)(b), we have

22(n+m)
{[Gn,m(x, y)]2

+ [Gn−1,m+1(x, y)]2
}

= U 2
n (x)U 2

m(y) + U 2
n−2(x)U 2

m−2(y) + U 2
n−1(x)U 2

m+1(y) + U 2
n−3(x)U 2

m−1(y)

+ 2Un(x)Un−2(x)Um(y)Um−2(y) + 2Un−1(x)Un−3(x)Um+1(y)Um−1(y)

= U 2
n−1(x)(U 2

m+1(y) + U 2
m−1(y) − 2) + U 2

n−2(x)(U 2
m(y) + U 2

m−2(y) − 2)

+ (U 2
n (x) + U 2

n−2(x) − 2)U 2
m(y) + (U 2

n−1(x) + U 2
n−3(x) − 2)U 2

m−1(y) + 4

= 4 + [(4x2
− 2) + (4y2

− 2)]

U 2

n−1(x)U 2
m(y) + U 2

n−2(x)U 2
m−1(y)


.

Thus, relation (24) is proved.
(b) By the definition (6) of Pn,m(x, y) we obtain

[Pn,m(x, y)]2
+ [Pn−1,m+1(x, y)]2

=
1
4

x2

[Gn−1,m(x, y)]2

+ [Gn−2,m+1(x, y)]2


+
1
2

xy(Gn,m−1(x, y) + Gn−2,m+1(x, y))Gn−1,m(x, y)

+
1
4

y2

[Gn,m−1(x, y)]2

+ [Gn−1,m(x, y)]2


. (26)

As an immediate consequence of the definition (2) of Gn,m(x, y) and of (23)(c) it follows that
for n, m ∈ N0, n ≥ 2,

Gn,m(x, y) + Gn−2,m+2(x, y) = −
1 − x2

− y2

2n+m−2 Un−2(x)Um(y). (27)

Combining relation (26) with relation (24) written for Gn−1,m(x, y) and Gn−2,m+1(x, y),
relation (27) for Gn,m−1(x, y) and Gn−2,m+1(x, y), the definition (2) of Gn−1,m(x, y) and
relation (24) written for Gn,m−1(x, y) and Gn−1,m(x, y), and taking into consideration notation
(22), we derive immediately relation (25). �

Remark 3.4. For n ∈ N, by (6) one obtains easily that Pn,1(x, y) = Gn,1(x, y), which combined
with (7) and (24) yields

[Pn,0(x, y)]2
+ [Pn−1,1(x, y)]2

=
1

22(n−1)
−

1 − x2
− y2

22(n−1)
U 2

n−1(x). (28)

To derive the quadratic equation (21) for linear combinations we need also expressions for
Pn,m(x, y)Pn−i,m+i (x, y) + Pn−1,m+1(x, y)Pn−i−1,m+i+1(x, y).
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Let S0(x, y) := 0 and for i ∈ N let

Si (x, y) :=
2[(−1 − (−1)i )/2]

i/2−1
− Qi,i (x, y)

2(1 − x2 − y2)
, (29)

where the polynomials Qi,i are given by (8).

Proposition 3.5. (a) Let n, m, i ∈ N0 be such that 1 ≤ i ≤ n − 1. Then

Gn,m(x, y)Gn−i,m+i (x, y) + Gn−1,m+1(x, y)Gn−i−1,m+i+1(x, y)

=
[(−1 − (−1)i )/2]

i/2

22(n+m−1)
−

1 − x2
− y2

22(n+m−1)
[rn,m(x, y)rn−i,m+i (x, y)

+ rn−1,m−1(x, y)rn−i−1,m+i−1(x, y) − Si (x, y)], (30)

where rn,m(x, y) := Un−1(x)Um(y).
(b) Let n, m, i ∈ N be such that 1 ≤ i ≤ n − 2. Then

Pn,m(x, y)Pn−i,m+i (x, y) + Pn−1,m+1(x, y)Pn−i−1,m+i+1(x, y)

=
[(−1 − (−1)i )/2]

i/2

22(n+m−1)
−

1 − x2
− y2

22(n+m−1)
[pn,m(x, y)pn−i,m+i (x, y)

+ pn−1,m−1(x, y)pn−i−1,m+i−1(x, y) − Σi (x, y)], (31)

where pn,m(x, y) is given by (22).

Proof. (a) Let us consider first the case where i is even. We begin with the obvious identity

Gn,m(x, y) + (−1)i/2−1Gn−i,m+i (x, y)

=

i/2−1−
j=0

(−1) j Gn−2 j,m+2 j (x, y) + Gn−2 j−2,m+2 j+2(x, y)


= −
1 − x2

− y2

2n+m−2

i/2−1−
j=0

(−1) jUn−2 j−2(x)Um+2 j (y),

where for the last equality we have used (27). Equivalently,

Gn−i,m+i (x, y) = (−1)i/2Gn,m(x, y)

+
1 − x2

− y2

2n+m−2 (−1)i/2
i/2−1−

j=0

(−1) jUn−2 j−2(x)Um+2 j (y).

Using this expression and the corresponding one for Gn−i−1,m+i+1(x, y), as well as the defini-
tion (2) of Gn,m(x, y) and Gn−1,m+1(x, y), we have

Gn,m(x, y)Gn−i,m+i (x, y) + Gn−1,m+1(x, y)Gn−i−1,m+i+1(x, y)

= (−1)i/2

[Gn,m(x, y)]2

+ [Gn−1,m+1(x, y)]2
+

1 − x2
− y2

22(n+m−1)
q(x, y)


(32)

where

q(x, y) :=

i/2−1−
j=0

(−1) jUn(x)Un−2 j−2(x)Um(y)Um+2 j (y)
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+

i/2−1−
j=0

(−1) jUn−2(x)Un−2 j−2(x)Um−2(y)Um+2 j (y)

+

i/2−1−
j=0

(−1) jUn−1(x)Un−2 j−3(x)Um+1(y)Um+2 j+1(y)

+

i/2−1−
j=0

(−1) jUn−3(x)Un−2 j−3(x)Um−1(y)Um+2 j+1(y).

Applying relation (23)(d) to Un(x)Un−2l−2(x), Un−2(x)Un−2l−4(x), Um−1(y)Um+2l−1(y)

and Um+1(y)Um+2l+1(y), the polynomial q(x, y) defined above becomes

q(x, y) = Un−1(x)Um(y)

i/2−1−
j=0

(−1) j Qn−2 j−1,m+2 j+2(x, y)

+ Un−2(x)Um−1(y)

i/2−1−
j=0

(−1) j Qn−2 j−2,m+2 j+1(x, y)

+

i/2−1−
j=0

(−1) j (Un−2(x)Un−2 j−2(x) − Un−1(x)Un−2 j−3(x))U2 j (y)

+

i/2−1−
j=0

(−1) jU2 j (x)(Um−1(y)Um+2 j+1(y) − Um(y)Um+2 j (y))

=: A(x, y) + B(x, y) + C(x, y) + D(x, y),

where the polynomials Qn,m are given by (8).
After cancellations in A(x, y) and B(x, y) and by relation (23)(d) in the case of C(x, y) and

D(x, y), we obtain

A(x, y) = U 2
n−1(x)U 2

m(y) + (−1)i/2−1Un−1(x)Un−i−1(x)Um(y)Um+i (y)

B(x, y) = U 2
n−2(x)U 2

m−1(y) + (−1)i/2−1Un−2(x)Un−i−2(x)Um−1(y)Um+i−1(y)

C(x, y) = D(x, y) = −

i/2−1−
j=0

(−1) jU2 j (x)U2 j (y),

and consequently the expression of q(x, y). This expression combined with the quadratic equa-
tion (24) of the Gearhart polynomials yields relation (30) if we prove that for i even, i ≥ 2,

Si (x, y) = (−1)i/2−12
i/2−1−

j=0

(−1) jU2 j (x)U2 j (y). (33)

But this can be easily verified by induction and with the help of the formula

Qn,m(x, y) + Qn+2,m+2(x, y) = −4(1 − x2
− y2)Un(x)Um(y), (34)

for n, m ∈ N0, obtained from (8) and (23)(c).
Concerning the case where i is odd, for i = 1 relation (30) follows by (27) and the definition

(2) of Gn−1,m(x, y). When i ≥ 3, the proof runs in a similar way to that when i is even, except
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that by induction one shows now that for i odd, i ≥ 3,

Si (x, y) = (−1)(i−3)/22
(i−3)/2−

j=0

(−1) jU2 j+1(x)U2 j+1(y). (35)

(b) By definition (6) of Pn,m(x, y), we get

Pn,m(x, y)Pn−i,m+i (x, y) + Pn−1,m+1(x, y)Pn−i−1,m+i+1(x, y)

=
x2

4


Gn−1,m(x, y)Gn−i−1,m+i (x, y) + Gn−2,m+1(x, y)Gn−i−2,m+i+1(x, y)


+

xy

4


Gn,m−1(x, y)Gn−i−1,m+i (x, y) + Gn−1,m(x, y)Gn−i−2,m+i+1(x, y)


+

Gn−1,m(x, y)Gn−i,m+i−1(x, y) + Gn−2,m+1(x, y)Gn−i−1,m+i (x, y)


+

1
4

y2 Gn,m−1(x, y)Gn−i,m+i−1(x, y) + Gn−1,m(x, y)Gn−i−1,m+i (x, y)

.

This expression coupled with (30) and the fact that

Σi (x, y) = ((−1 − (−1)i )/2)i/2−1
+ xy(Si+1(x, y) + Si−1(x, y)) + (x2

+ y2)Si (x, y),

as one can easily verify, yields the desired relation (31). �

For i ∈ N, let

si (x, y) :=


2(−1)i/2−1 y − Qi,i−1(x, y)

2(1 − x2 − y2)
, if i even

2(−1)(i−3)/2x − Qi,i−1(x, y)

2(1 − x2 − y2)
, if i odd.

(36)

Proposition 3.6. (a) Let us have n, i ∈ N, 1 ≤ i ≤ n − 1. Then

Gn,0(x, y)Gn−i,i−1(x, y) + Gn−1,1(x, y)Gn−i−1,i (x, y)

=
−Qi,i−1(x, y) − 2(1 − x2

− y2)si (x, y)

22(n−1)

−
1 − x2

− y2

22n−3 [Un−1(x)Un−i−1(x)Ui−1(y) − si (x, y)]. (37)

(b) Let us have n, i ∈ N, 1 ≤ i ≤ n − 2. Then

Pn,0(x, y)Pn−i,i (x, y) + Pn−1,1(x, y)Pn−i−1,i+1(x, y)

=
[(−1 − (−1)i )/2]

i/2

22(n−1)
−

1 − x2
− y2

22(n−1)
[Un−1(x)pn−i,i (x, y) − σi (x, y)], (38)

where pn−i,i (x, y) is defined by (22).

Proof. (a) First let us consider the case where i is even. For i = 2, by (2) and (23)(a) and (23)(c),
we have

Gn,0(x, y)Gn−2,1(x, y) + Gn−1,1(x, y)Gn−3,2(x, y)

=
1

22n−2


Un(x)Un−2(x)y − U 2

n−2(x)y − Un−1(x)Un−3(x)y
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+ Un−1(x)Un−3(x)4y3
+ Un−1(x)Un−5(x)y


=

1

22n−2


(U 2

n−1(x) − 1)y − (Un−1(x)Un−3(x) + 1)y − Un−1(x)Un−3(x)y

+ Un−1(x)Un−3(x)4y3
+ Un−1(x)((4x2

− 2)Un−3(x) − Un−1(x))y


= −
y

22n−3 −
1 − x2

− y2

22n−3 [Un−1(x)Un−3(x)U1(y)].

Since s2(x, y) = 0, relation (37) when i = 2 is proved. The case where i ≥ 4 is handled like in
Proposition 3.5, noting that for i even, i ≥ 4,

si (x, y) = (−1)i/2−12
i/2−1−

j=1

(−1) jU2 j (x)U2 j−1(y)

which can be proved by induction.
Next we consider the case where i is odd. For i = 1, by (2) and (23)(c) and (d), we have

Gn,0(x, y)Gn−1,0(x, y) + Gn−1,1(x, y)Gn−2,1(x, y)

=
1

22n−1


Un(x)Un−1(x) − Un(x)Un−3(x)

−Un−1(x)Un−2(x) + Un−2(x)Un−3(x) + 4Un−1(x)Un−2(x)y2


=
1

22n−1


Un(x)Un−1(x) − (Un−1(x)Un−2(x) − U1(x))

−Un−1(x)Un−2(x) + (Un−1(x)Un−4(x) + U1(x)) + 4Un−1(x)Un−2(x)y2


=
x

22n−3 −
1 − x2

− y2

22n−3 Un−1(x)Un−2(x),

and thus, since s1(x, y) = 0, relation (37) when i = 1 is proved. In the case i ≥ 3, the relation
follows by the same procedure as the one indicated in the proof of Proposition 3.5, except that
here, for i odd, i ≥ 3,

si (x, y) = (−1)(i−3)/22
(i−3)/2−

j=0

(−1) jU2 j+1(x)U2 j (y).

(b) The proof is similar to that of Proposition 3.5, except that in this case one has to verify
that

σi (x, y) = ((−1 − (−1)i )/2)i/2−1
+ xsi+1(x, y) + ysi (x, y). �

Proof of Theorem 3.1. The identity (21) is a direct consequence of Proposition 3.3(b), Re-
mark 3.4 and of Propositions 3.5(b) and 3.6(b). �

What remains to be derived are estimates for Σi (x, y) and σi (x, y). To this end, we show first
the following:

Proposition 3.7. (a) Let us have n, m ∈ N. For all (x, y) ∈ D it holds that

|Qn,m(x, y) − 2(1 − x2
− y2)Un(x)Um−2(y)| ≤ 2. (39)
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(b) Let us have n, m ∈ N. For all (x, y) ∈ D it holds that

|Qn,m(x, y) − (1 − x2
− y2)(Qn,m(x, y) + 4xyUn−1(x)Um−1(y))| ≤ 2. (40)

Proof. (a) By the definition (8) of the polynomials Qn,m and the well-known recurrence relation
of the Chebyshev polynomials of the second kind, we have

Qn,m(x, y) + Qn+2,m(x, y) = (Un+2(x) + Un(x))Um−2(y) + (Un(x) + Un−2(x))Um(y)

= 2xUn+1(x)Um−2(y) + 2xUn−1(x)Um(y)

= 2x Qn+1,m(x, y)

and, similarly,

Qn,m−2(x, y) + Qn,m(x, y) = 2yQn,m−1(x, y).

With the help of these relations and of (34) we can write

Qn,m(x, y) − 2(1 − x2
− y2)Un(x)Um−2(y)

=
1
2
(Qn,m(x, y) + Qn+2,m(x, y)) +

1
2
(Qn,m−2(x, y) + Qn,m(x, y))

= x Qn+1,m(x, y) + yQn,m−1(x, y). (41)

One can show, by analogy with Proposition 3.3(a), that for n, m ∈ N0,

[Qn+1,m+1(x, y)]2
+ [Qn,m(x, y)]2

= 4 − (1 − x2
− y2)


4U 2

n (x)U 2
m−1(y) + 4U 2

n−1(x)U 2
m(y)


. (42)

Now, by (41), by applying the Schwarz inequality and using afterwards (42), we obtain that for
all (x, y) ∈ D, relation (39) holds.

(b) With the help of the well-known recurrence relation of the Chebyshev polynomials of the
second kind, of (34) and of (41), we get

Qn,m(x, y) − (1 − x2
− y2)(Qn,m(x, y) + 4xyUn−1(x)Um−1(y))

= x[x Qn,m(x, y) + yQn+1,m+1(x, y)] + y[x Qn−1,m−1(x, y) + yQn,m(x, y)]. (43)

Furthermore, like for Proposition 3.3(b), we have that for n, m ∈ N0 it holds that

[x Qn+1,m+1(x, y) + yQn+2,m+2(x, y)]2
+ [x Qn,m(x, y) + yQn+1,m+1(x, y)]2

= 4 − (1 − x2
− y2)


4 + 4q2

n,m(x, y) + 4q2
n−1,m+1(x, y)


, (44)

where qn,m(x, y) := xUn(x)Um−1(y) + yUn+1(x)Um(y).
By a simple application of Schwarz’s inequality in (43) and by (44), we conclude that (40)

holds, and thus the proposition is proved. �

Proposition 3.8. Let us have i ∈ N. Then the following estimates hold:

|Σi (x, y)| ≤ Mi and |σi (x, y)| ≤ Mi , (45)

for all (x, y) ∈ D, where Mi is given by (12).
Furthermore, if i is even,

0 ≤ (−1)i/2−1Σi (x, y) and 0 ≤ (−1)i/2−1σi (x, y), (46)

for all (x, y) ∈ D.
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Proof. By (9) and (29) we see that

Σi (x, y) =
1
2
[Qi,i (x, y) + 4xyUi−1(x)Ui−1(y)] + Si (x, y), (47)

and by (10) and (29) that

σi (x, y) = Ui (x)Ui−2(y) + Si (x, y). (48)

We use the equivalent representations of Si (x, y), given by (33) when i is even and (35) when i
is odd, to show that

|Si (x, y)| ≤
i3

3
(49)

for all (x, y) ∈ D. The well-known fact that |Un(x)| ≤ n + 1, n ∈ N0, −1 ≤ x ≤ 1, leads to the
very rough estimate

|Un(x)Um(y)| ≤ (n + 1)(m + 1), (50)

when (x, y) ∈ D, n, m ∈ N0. Now, if i is even, by (33), we have

|Si (x, y)| ≤ 2
i/2−1−

j=0

|U2 j (x)U2 j (y)| ≤ 2
i/2−1−

j=0

(2 j + 1)2
=

(i − 1)i(i + 1)

3
≤

i3

3
,

for any (x, y) ∈ D. The case where i is odd is handled likewise.
If as usual Tn(cos x) := cos n arccos x, n ∈ N0, −1 ≤ x ≤ 1, then from the well-known

relation T 2
n+1(x) + (1 − x2)U 2

n (x) = 1, we obtain immediately that

y2U 2
n (x) = 1 − [T 2

n+1(x) + (1 − x2
− y2)U 2

n (x)] ≤ 1,

for all (x, y) ∈ D. Similarly we deduce that x2U 2
m(y) ≤ 1 for (x, y) ∈ D, and combining the

two inequalities we obtain that

|xyUn(x)Um(y)| ≤ 1 (51)

for all (x, y) ∈ D.
By (47), (42), (51) and (49), we get

|Σi (x, y)| ≤
i3

3
+ 3, (52)

for all (x, y) ∈ D. Also, by (48), (50) and (49), we obtain that

|σi (x, y)| ≤
i3

3
+ i2

− 1, (53)

for all (x, y) ∈ D. Noting that by (9), Σ1(x, y) = 2xy, and hence |Σ1(x, y)| = 2


x2 y2 ≤

2 x2
+y2

2 ≤ 1, and taking into consideration notation (12), we can rewrite the inequalities (52) and
(53) as (45).

Concerning (46), this is an immediate consequence of (9) and (40) and (10) and (39). �

Proof of Proposition 2.1. Using the definition (6) of Pn,m we get by Schwarz’s inequality and
by Proposition 3.3(a) that |Pn,m(x, y)| ≤ 1/2n+m−1 for all (x, y) ∈ D. Moreover, (3) and (6)
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imply that

Pn,m(cos ϕ, sin ϕ) =


(−1)[m/2]

2n+m−1 cos(n + m)ϕ, if m even,

(−1)[m/2]

2n+m−1 sin(n + m)ϕ, if m odd.

Hence, |Pn,m(x, y)| attains its maximum on D at the points (cos ϕ j , sin ϕ j ), j = 1, . . . , 2(n +

m), where ϕ j ’s are the zeros of sin(n + m)ϕ when m is even and the zeros of cos(n + m)ϕ when
m is odd, which form the support of an extremal signature. Thus the assertion is proved. �

Proof of Corollary 2.4. If one puts in Theorem 2.3 a0, . . . , am−1 = 0 and am+ν = bν for
ν = 0, . . . , l then condition (13) becomes (15) and Corollary 2.4 follows. �

Proof of Corollary 2.5. If i = 0, condition (13) is b2
− 2abσ1(x, y) ≥ 0, for all (x, y) ∈ D,

which holds for any a, b ∈ R, since by (10), σ1(x, y) = 0.
If i ≥ 1, then condition (13) is a2

+ b2
− 2abΣ1(x, y) ≥ 0 for all (x, y) ∈ D. Since by (9),

Σ1(x, y) = 2xy, and using the fact that on the disc |xy| ≤ 1/2, we get a2
+ b2

− 2abΣ1(x, y) ≥

(|a| − |b|)2
≥ 0 for all (x, y) ∈ D.

The assertion now follows by Theorem 2.3. �

Proof of Corollary 2.6. In order to apply Theorem 2.3 in this case, we need those values of b
and c for which

1 + b2
+ c2

− 2bΣ1(x, y) − 2cΣ2(x, y) − 2bcΣ1(x, y) ≥ 0,

for all (x, y) ∈ D. By (10), this is equivalent to

1 + b2
+ c2

− 2c − 4bxy − 4bcxy − 4cx2
− 4cy2

− 16cx2 y2
≥ 0,

for all (x, y) ∈ D. The values for b and c in the statement of the corollary were the output of the
following command in Mathematica:

Resolve[ForAll[x, −1 ≤ x ≤ 1, ForAll[y, −1 ≤ y ≤ 1,

Implies[x2
+ y2

≤ 1, 1 + b2
+ c2

− 2c − 4bxy − 4bcxy

−4cx2
− 4cy2

− 16cx2 y2
≥ 0]]], b, c, Reals]; .

The assertion is thus proved. �

Proof of Corollary 2.7. (a) Taking into consideration the bound Mi from (45) for Σi (x, y) and
σi (x, y), we have

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j a j+i


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y)

≥

k−
i=1

a2
i − Mk−l2

k−1−
i=0


k−

j=i+1

|a j |


|ai | = ‖a‖

2
2 − a2

0 − Mk−l(‖a‖
2
1 − ‖a‖

2
2).

Therefore, condition (13) is obviously satisfied if ‖a‖
2
2 − a2

0 − Mk−l(‖a‖
2
1 − ‖a‖

2
2) ≥ 0, that is,

if (16) holds.
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Concerning (b), in addition to (45) we use also (46), and thus we have for the expression in
(13)

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y)

≥ ‖ae‖
2
2 + ‖ao‖

2
2 − a2

0 − Mk−l‖ae‖1‖ao‖1,

which gives condition (17). �

Proof of Corollary 2.8. The statements are simple verifications of condition (16) from
Corollary 2.7(a) with ai = 0 if i ∈ {0, . . . , k} \ {l, k}, al = 1 and ak = b for statement (a)
and ai = 0 if i ∈ {1, . . . , k − 1}, a0 = 1 and ak = b for statement (b). �

Proof of Corollary 2.9. The assertion follows immediately by (17) in Corollary 2.7(b) with
ai = 0, i ∈ {0, . . . , k} \ {l, j, k}, al = 1, a j = b, ak = c. �

Proof of Corollary 2.11. If assumption (19) is satisfied, then by Theorem 2.3, the polynomial
F(x, y) :=

∑k
i=0 ai Pn+m−i,i (x, y) is a min–max polynomial on D and we let En,m denote its

minimum deviation, defined by (14). For any q ∈ Π 2
n+m−3, the polynomial F(x, y) + (1 − x2

−

y2)q(x, y) has the form of a min–max polynomial and hence

‖F + (1 − x2
− y2)q‖ ≥ En,m . (54)

Since (19) is assumed to hold on the compact set D, there exists ε > 0 such that

k−
i=1

a2
i − 2

k−1−
i=1


k−i−
j=1

a j a j+i


Σi (x, y) − 2a0

k−
i=1

aiσi (x, y) ≥ 22(n+m−1)ε,

for all (x, y) ∈ D. Thus, by relation (21), we have

(En,m)2
− (F(x, y))2

≥ ε(1 − x2
− y2), (55)

for all (x, y) ∈ D. Furthermore, for any polynomial q ∈ Π 2
n+m−3 such that ‖q‖ ≤


(En,m)2 + ε

− En,m , it holds, using ‖F‖ = En,m , that

|2F(x, y)q(x, y) + (1 − x2
− y2)q2(x, y)| ≤ 2‖F‖ ‖q‖ + ‖q‖

2
≤ ε, (56)

for all (x, y) ∈ D. Combining (55) and (56), it follows that

|F(x, y) + (1 − x2
− y2)q(x, y)|2 ≤ (En,m)2

for all (x, y) ∈ D, and hence that

‖F + (1 − x2
− y2)q‖ ≤ En,m . (57)

Therefore, by (54) and (57), the polynomial F + (1 − x2
− y2)q is a min–max polynomial on D,

for every q ∈ Π 2
n+m−3 such that ‖q‖ ≤


(En,m)2 + ε − En,m , which implies that

dim Vn+m−1


k−

i=0

ai xn+m−i yi


≥ dim Π 2

n+m−3. (58)

On the other hand, as we already mentioned, the extremal signature in this case is formed
of 2(n + m) points on ∂D, (xi , yi ), i = 1, 2, . . . , 2(n + m). Then according to Möller
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[6, p. 43], this extremal signature, obtained by Shapiro, is a primitive one and the rank of the
matrix (xk

i yl
i ) i=1,2(n+m),

k+l=0,n+m−1

is 2(n +m)−1. But since all min–max polynomials agree on the points

forming the support of a primitive extremal signature (see for example [9, Theorem 1]), we have
that

dim Vn+m−1


k−

i=0

ai xn+m−i yi


≤ dim Π 2

n+m−1 − (2(n + m) − 1); (59)

see also [2] for this bound in a more general setting. Since dim Π 2
N =


N+2

2


, N ∈ N0, by (58)

and (59), taking into account that dim Π 2
n+m−1 − (2(n + m) − 1) = dim Π 2

n+m−3, relation (20)
follows. �

Remark 3.9. Checking the proof of Theorem 2 in [12] it turns out that the given sufficient con-
dition, that is, the inequality above (9) in [12], has to be modified as follows, using the notation
from there:

‖ f (cos ϕ, sin ϕ)‖ ≤
1
2n

n

2
− 1


‖An( f, ϕ)‖, (60)

i.e., the factor 1/2n is missing in [12]. As a consequence the condition will be satisfied very rarely,
if at all. For instance, for the case of monomials f (x, y) = xk yn−k it is not difficult to show that
| f (

√
2/2,

√
2/2)| ≥ 1/2n(n −2) which implies that the corrected condition (60) does not hold if

n ≥ 3. In the case of a homogeneous polynomial f (x, y) = ak xk yn−k
+ al x l yn−l , ak, al fixed,

condition (60) does not hold if n ≥ n0, n0 sufficiently large, which can be shown by bounding
the norm of f from below by its value at (

√
3/2, 1/2) or (1/2,

√
3/2), depending on the relations

between k, l and [n/2].
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