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Almlr~'t--In the secretary problem one seeks to maximize the probability of hiring the best of N 
candidates who are interviewed in succession and must be accepted or rejected at the interview. A simple 
dynamic program is formulated and solved. Numerical results are given for secretary problems of small 
size. 

1. INTRODUCTION 

In the secretary problem a strategy is sought for maximizing the probability of choosing the best 
among N available candidates. They are interviewed in succession and the decision to hire must 
be made at the end of an interview before the remaining candidates have been seen. This problem 
has attracted more attention than is perhaps warranted by its immediate applications, since it 
involves some clever probabilistic reasoning [1, 2]. For a survey, cf. Ref. [3]. 

The optimal strategy is known to be this: Let a certain number of candidates pass and after that 
accept the first who is the best so far. To demonstrate that this is the optimal strategy and to 
calculate the number of initial candidates to be passed over Lindley [4], who calls this the marriage 
problem, was the first to introduce a dynamic program. His solution involves, however, an ad 
hoc probabilistie argument. Lindley addresses in fact a more general problem in which expected 
utility is maximized and this utility need not be zero/one as in his formulation of the secretary 
problem. 

In this paper we propose a dynamic program simpler than Lindley's, solve it and give results 
of some numerical calculations. 

The following terminology will be used: 

winning: choosing the best among all candidates 
value: the expected probability of winning 

viable candidate: any candidate who is best so far. 

Let m be the number of candidates seen and n the number not yet seen, so that 

m + n = N  

is the total number of candidates. 
We choose m as our state variable. It is useful to introduce two value functions. Let Vm be the 

value when m candidates have been observed and the mth is not chosen; and u~ be the value when 
m candidates have been observed and the m th is a viable candidate. 

When the last observed candidate is not viable, then an optimal policy requires that the search 
be continued so that vm applies. A decision rule is needed for the case that the last candidate is 
viable, and this decision rule can depend only on the state variable m and the total number N. 

2. DYNAMIC PROGRAM 

There are two principles of optimality, one for each value function: 

m 1 
V m = S2m+ I + - -  (1) m + l  m +  l urn+l" 

Equation (1) expresses this: Given that the mth is not chosen, the m + lth will be either a viable 
candidate [with probability l/(rn + 1)] or not [with probability m/(m + 1)]. If not, the value 
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(expected probability of  winning) will become Vm +~, because the m + 1 th will certainly not be 
chosen. But if so, the value will become u,,+j (the value if an optimal decision is made at stage 
m + 1): 

u,. = m a x  , [ m • (2) 

Equation (2) expresses this: Given that the mth is a viable candidate, there is a decision either to 
choose it or to continue. If  chosen, the value is m/N,  which is just the probability the chosen one 
is best among all N. If  not chosen, the value is v,,, as already established. 

Starting with m = N, equations (1) and (2) may be solved recursively along the following lines. 
By definition of  u,, and v~, 

v~, = 0, u~v = 1. (3) 

N o w ,  

and  

Furthermore, 

UN_ 1 
N - 1  1 1 

N v ~ + ~ [ u u = ~  

u u _ l = m a x  , v u _ l  = m a x  '~r  = N 

N - 2  1 
VN_2 N - 1 "DN-| "JW~--'I "uN-I 

N - 2  1 1 N - 1  
- N - 1  ~/-~ N - 1  N 

= 2 + = N  + 

and 

UN- 2 ~--- m a x  N ' M + 

~ T m a x  1, + . 

The pattern is now clear and readily verified: 

and  

m / l  1 ~ - 1 )  v , , = ~ .  + + . . . +  (4) 
m + l  

u m = ~ m a x  1, + + . . . +  . (5) 
m + l  
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3. ANALYSIS 

The implied optimal policy is as follows. No secretary who is best so far (and hence a viable 
candidate) will be accepted as long as 

N - I  l 

- < 1  
i = m  l 

and the first viable candidate will be chosen when m i> m*. The critical rn = m* is the solution of 

N-J 1 U - ,  1 
Z - ~ < 1 <  E i" (6) 

i=m* l i = m * -  I 

If follows that 

U O ~  V O - ~ ' V m * - I  

is the probability of finding the best among N candidates under the optimal strategy. Value and 
optimal strategy can thus be described simply in terms of a critical number m*: 

m * - - I  1 Im* 1 v°=vm*-l= m* v, , .+~-gmax--~- ,vm.  , 

using equations (1) and (2), and 

m * - I  m*(ml__g + NI___~_I)1 m* 
v0= m* N "'" + -~ m* N ' 

using expressions (4) and (6). Thus, 

m * - l (  1 + 1  1 ~ - - 1 )  
Vo= N \m*-- I m* +m* + l- + ' ' "  + (7) 

4. APPROXIMATIONS 

For an approximate determination of m* observe that 

i = m  i X 

and ~ for sufficiently large N. The approximate solution for m* in formula (6) is therefore 

(8) 

yielding 

~ J 1 fM dx . . . .  l n N - l n m  = 1, 
iffim i , X  

m* 1 
,~ (9) 

N e 

in agreement with the well-known probabilistic solution of the secretary problem [2, 3]. 

5. RESULTS 

The dynamic programming (DP) approach proves that this is, in fact, the optimal policy. For 
we have shown that in equation (2)  

m ~  l l  

i ffi m I 
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Table 1 

N 

I 2 3 4 5 6 7 8 9 10 12 15 20 

m * - l  0 0 1 I 2 2 2 3 3 3 4 5 7 
N/¢ 0.37 0.74 1.1 1.47 1.84 2.2 2.58 2.94 3.31 3.68 4.41 5.52 7.36 
v 0 I 0.5 0.5 0.46 0.43 0.43 0.41 0.41 0.41 0.40 0.40 0.39 0.38 

is a decreasing function of  m while m/N is increasing. This shows that the optimal decision is to 
accept the first best from the m*th candidate on. 

For small N the optimal m* are given in the following Table 1. We also include the 
approximation N/e and the probability 

Vo = vo(N) 

o f  f ind ing  the  bes t  p e r s o n  w h e n  u s i n g  the  o p t i m a l  s t ra tegy.  

m * -  1 is the number of candidates to be passed automatically. 
From 

s _1 d n >  - >1 
*--1 n i = m * - I  i 

we conclude that 

N 
l n ~ >  1 

o r  

N 
m * < l + - - .  

e 

Table 1 shows, in fact, that for all N, except N = 5, 

t 
where {x} is the smallest integer 

(10) 

( l l )  

>/x. Vo is decreasing and approaches slowly its limiting value 

1 
- = 0 .3678795.  
e 
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