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Abstract

In this paper, first we show that an analogy of the Christoffel-Darboux formula holds for the zonal spherical functions for the
Gelfand pair (U (n), U (n — 1)). Next, making use of it, we deal with the problem on point-wise convergence of Fourier expansion
by means of the zonal spherical functions for (U (n), U(n — 1)).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let Py(x) be the Legendre polynomial of degree ¢, and let denote /(2¢ + 1)/2 P¢(x) by p¢(x). Then the set
{pe1€£=0,1,2,...} is a complete orthonormal system of the Hilbert space L2((—1, 1)) with inner product

1
(f.0)= [ roozeiax.
-1
As is well known (cf. [4,6]), under suitable conditions for f € Lz((—l, 1)), the following holds:
o0
&)=Y (f pOpe(x). (1)

£=0
On the other hand, we have

k 1 k
20+ 1
S, popex) = f f(y)<§: 2+ Pe(x)PAy))dy,
=0

=0 he!

and
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k

k+1
D @e+ D P(x) Pe(y) = i (Pk+1(X)Pk(y) Pe(x) Piy1 (). 2
=0

The formula (2) is known as the Christoffel-Darboux formula and plays an important rule in the proof of (1). Notice
that the formula (2) follows from the following recurrence relation:

(€ +2)Ppya(x) — (20 +3)x Py (x) + (€ + D P(x) =0, £>0.

In general, let p¢(x) be a real-valued polynomial of degree ¢, {p, | £ =0, 1,2,...} a system of polynomials or-
thonormal with respect to a positive measure on an interval (a, b), and assume that the system satisfies a recurrence
relation of the following form:

DPe12(x) — (Agx + Be)peg1(x) + Cepe(x) =0, £2=0.

Then it is known (cf. [1]) that the Christoffel-Darboux formula holds under some suitable conditions for Ay, By
and Cy

i
sz(X)pe(y) pk+1(x)pk(y) Pk(x)PkJrl()’), k>0, 3

x_
=0 Y

Let us turn to the zonal spherical functions for the Gelfand pair (U (n), U(n — 1)). They are related closely to the
Jacobi polynomials (cf. [5]) and given by the orthogonal functions G 4, p, g =0, 1,2, ..., which have the following
generating function (cf. [7]):

(1—2Re(wz) + [w[?)' ™" Z Gpq@wP@?, w,zeC, |w| <1, |z <1
r.q=0
Besides, we have the following recurrence relations for the system (G, 4 | p,g =0, 1,2, ...} (cf. [3]):

(P4 D(Gpi1,441@) =2G p11,4() + (p+n—=1)(Gpg(2) =2Gpg+1(2)) =0, p,q >0, C))
@+ D(Gpi1,g+1(2) =2Gpg41()) + (g +n = 1)(Gpqg(x) =2Gpt1,4(2) =0, p,qg=0. )
We are reasonably led to the question whether a situation similar to the Legendre case occurs in the case of the zonal
spherical functions for (U (n), U (n — 1)).
The first purpose of this paper is to show that an analogy of the Christoffel-Darboux formula (3) holds for the
system {Gp 4 | p,g=0,1,2,...}.
The second purpose of this paper is to deal with the problem on point-wise convergence of the Fourier expansion
for f(z) defined on the unit open disk |z] < 1in C

f@= )" pgGpqQ,

p.q=0
. <p+q+n—1>pq'<r(n—1>)2
P4 T T (p+n— DI(g +n —

/ f)Gpqw)(1 = |wl )
lw|<1
where dw = du dv with w = u 4 iv. More precisely, under some conditions for f(z), we shall show that
f@)= lim D pqGrg. (6)
Fo<p.g<k

The first purpose is dealt with in Section 3 and the second one in Section 4.
2. Notation and preliminaries
Throughout this paper let n be a positive integer such that n > 2. We shall use the notation Ng, C, C"*, U (n) for

the set of nonnegative integers, the field of complex numbers, the usual n-dimensional complex space and the unitary
group of degree n, respectively. For z € C let Re(z) be the real part of z, and z — Z the usual conjugation in C.
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We denote by S(C") the unit sphere in C", and set e; ='(1,0,...,0) € S(C"). Then we have the identification
Umn)/Um — 1) = S(C") by the mapping gU(n — 1) + gey, g € U(n). Further, the zonal spherical functions for
(U@m), U(n — 1)) are given by the functions G, 4, p, g € No. That is to say, for each p, g € Ny define

Gp,q((gel ,e1))
Gp.qa(D
where (, ) denotes the canonical inner product on the complex vector space C". Then the set {¢, 4 | p, g € No} is equal

to the set of all the zonal spherical functions for (U (n), U(n — 1)). We remark that G, ,(z) = G 4(z) = G 4(2).
Let D be the unit open disk |z| < 1 in C, and let L?(D) be the Hilbert space of Lebesgue measurable functions f
on D with

§0p,q(g) = , geU(n),

I fllp= /|f(z)‘2(1 - Izlz)n_zdz < 00,
D

where dz = dx dy with z = x 4 iy. The inner product is given by

(f, 9)p = / F@ED(1 —12P)" 2 dz.
D

Then the set (G 4 | p, g € No} is a complete orthogonal system of L?(D).
The Jacobi polynomials Pe(a’ﬁ ) (x),£=0,1,2,..., are defined by the Rodrigues formula (cf. [2]):

1t [/
(W), (1-xn~a +x>—ﬂ%[(1 — 0“1+ 0.

A function is assumed to be complex-valued. Denote I'(« + £)/ I" (&) by ()¢, where I' is the Gamma function.

PP () =

3. Christoffel-Darboux formula for the system {G, , | p, q € No}

In this section we shall show the following theorem, which can be regarded as a Christoffel-Darboux formula for
the system {G, 4 | p, g € No}.
Theorem 1. For an arbitrary positive integer k, we have

Z (pt+qg+n—1)plq!
F(p+n—DI'(@+n—1)

0<p.g<k
k
pl(k+ 1)!
= g T = DTt £ n =) (Crart @G pikw) = Grp@ G p(w)-
Set
+qg+n—1)plqg’ _
Lyg(z,w)= (ptqtn=Dplq Z—w)Gp ¢(@)Gp q(w).

'p+n—DIr'(g+n—-1)
Then Theorem 1 may be rewritten in the following:

k

1k + 1!
Y Lpgew=) = o +n”_ Drc =T (Crat1 @Cpa@) = Grp@Girrip@). (7)
0<p.g<k p=0

We shall make some preparations to show the formula (7). First, we show the following lemma.

Lemma 1. For any p, q € No, we have

(P+q+mziGpt14@D=(p+n—1Gp 4@ +(@q+ DGpti1,4+12), (3
(p+qg+mzGp 11 =(@+n—1DG, 4@+ (p+DGpi1,4+1:). )
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Proof. If we add (4) to (5) and solve it for z G 4+1(z), then we have

p+qg+2 p+q+2n-2 _
G =— G —G —-zG .
< PJH—I(Z) Ptqtn p+1,q+l(z)+ Ptqgtn p,q(Z) Z p+1,q(Z)

Substituting this into (5), we can obtain (8). Similarly, we can also obtain (9). O
Remark. Another proof of Lemma 1 can be found in [8].
It follows from Lemma 1 the following lemma.

Lemma 2. For an arbitrary positive integer k, we have

k
p!
L , W) = G G -G )G
13;@ p.q (2 W) I;F(n_l)r(l?‘f‘”_l)( 0.p()G1,pW) — G 1(D)G po(w))
k
pl(k+ 1)!
erzz‘I Fotn = DFG =1 Crart @0k = Gip @Gt p(w).

Proof. If we replace p by p — 1in (8) and g by ¢ — 1 in (9), then we have

(P+g+n—126, 4@ =(P+n—2)Gp_14@) + @+ 1DGp 4+1(2), (10)
(P+qg+n—1z2Gp 4@ =(@q+n—=2)Gp 4-1@) + (p+ DG p11,4(2). (11)
We multiply the recurrence relation (10) by G, 4(w) and denote the resulting equation by (10),G,, ,(w). Further,
we multiply by G, ,(z) the recurrence relation (11) with z and w interchanged, and denote the resulting equation
by (11)Gp 4(z). Then the difference (10);Gp 4 (w) — (11),Gp 4(2) is given as follows:
(P+qg+n—1)EZ-w)Gp4(Gpq(w)
=(p+n-— 2)Gp—l,q(Z)Gp,q(w) —(p+ l)Gp,q(Z)Gp+l,q (w)
- {(61 +n— Z)Gp,q(Z)Gp,q—l(w) —(g+ 1)Gp,q+l(Z)Gp,q(w)}s p.q =1
Hence, we obtain that for p,q > 1
(p+q+n—1plq!
'p4+n—-—DI'(g+n—-1)

=1pq(zw) — Ipyiqz w) — (Jpg(z, w) = Jpg41(2, w)),

(Z - w)Gp,q(Z)Gp,q (w)

where
rlq!
I, 4(z,w)= Gy_1.4(G w),
p,q( ) F(p+n—2)F(q+n—1) p l,q() p,q( )
and
plq!
Jp,q(Za w) = Gp,q (z)G,,,q_l(w).

C(p+n—DI(@g+n—-2)
This completes the proof. O

By the definition of L 4(z, w), the left-hand side of Theorem 1is } o, ,<x Lp.q(z, w), and the left-hand side
of Lemma2is 3, , < Lpq(z, w). Let us consider the difference } o, o< Lp.g(z, w) =3 1<, o<k Lpg(z, w).
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Yo Lpg@w)— Y LygGzow)

0<p, q<k 1<p q<k

1 _
= ZLO gz w) + Z Loz, w W(Z — w)Go,0(2)Go.0(w)

_Z (p+n—1)p!

= ~T(— DI (p+n—1) (Z —w)(Go,p(2)Go,p(w) + G p,0(2)Gp0(w))

n—1

* Ty ¢ WGe@Goow). "

Therefore, we obtain

Lemma 3. For an arbitrary positive integer k, we have

p!
E L E G G -G G
0k q(Z w) = F(n— DT (p +n 1){( O,p(z) l,p(w) p,l(Z) p,O(w))

+(p+n—1E—w)(Go,p@)Go p(w) +Gpo@)Gpow))}

+Xk: Lk +1)! (G (2)Gpr(w) — Gi.»(2)G (w))

S Tp+n=Dlk+n—1) ph+1) T p k k.p(D)Grt1,p
n—1

T § ™ WC00@Goow).

Proof. This follows from Lemma 2 and (12). O

We shall now show the assertion (7). In Lemma 3, replacing G0, Go,p, Gp,1, G1,p by the explicit expressions,
we see that

Z Lpg(z.w)= Xk: kD) (G pa+1()G p k(W) = Gk, p(2)Gig1,p(w))
0<p.g<k Pl '(p+n—DIr'k+n—-1)
+i1 (Kp(z.w) = Kppi(z,w) + ﬁ( —w)Go,0(2)Go,0(w),
where .
Kp(zow) = (p+n-—2) (z”*‘wp—zpwpfl),

(C(n—1))3(p — D!
which implies (7).

4. Point-wise convergence of Fourier expansion by the system {G, , | p, g € No}

For each p, ¢ € Ny, let F, ; be the normalization of G, ; with respect to the norm of L?(D). Then the set {F}, ; |
P, q € Np} is a complete orthonormal system of L?(D). By simple calculations we have

F,.(2) = (p+q+n—1Dplg!(T(n—1))>2
POV aT(p+n—DI(g+n—1)

Gpq(2).

In this section, making use of Theorem 1, under some conditions for f € L2(D) we shall show that

f@=lim > (f Fpg)pFpq)

0<p.g<k



S. Watanabe / J. Math. Anal. Appl. 338 (2008) 1378-1386 1383

which is equivalent to (6). While the right-hand side of the Christoffel-Darboux formula (2) consists of two terms for
any k, that of the Christoffel-Darboux formula (7) consists of k + 1 terms. Therefore, comparing with the proof of the
formula (1), we need some devices to prove the formula above. In what follows, we divide this section into four parts.

4.1. Evaluation of | f(2) — X o< p.g<k (s Fp.)) D Fp,q (2]

Let k be a positive integer, and let us evaluate the absolute value | f(z) — Zogp,qgk (f, Fp,g)pFp,4(2)|. By simple
calculations we see that

Z (fs qu)Dqu(Z)—/f(w)< Z Fme,q(Z)>(1—|w|2)n_2dw

0<p.g<k 0<p.g<k
/ f(w)(

where dw = du dv with w = u + i v. Further, we have

_ (I'(n —1))? (p+q+n—1plq! _
> Fpg(@)Fpq(@) = ———— > T m— O G LG

n—2

p,q(w)F,,,q(z)>(1 —wl?)" " dw, (13)

0<p,g<k

0<p,g<k 0<p.g<k
C'(n—1))>2
= X LG
< 0< g <k

On the other hand, since the set {F, 4 | p, g € No} is a complete orthonormal system of L%(D), the following holds:

/( 3 Fp,q(w)Fp,q(z))(l—|w|2)"‘2dw=1.
D

0<p.g<k

Hence, we have

f@= Y (fFpgpFpq@

0<p,g<k

:/(f(z)—f(u)))( Z Fp,q(w)Fp,q(Z)> (1 - |w|2)n—2dw

D 0<p,g<k

—1))? —
GRSy (R f“‘”( > Lp,q<z,w)>(1—|w|2)"‘2dw

T Z—w
D 0<p.g<k

Therefore, by Theorem 1, we obtain

f@= Y (fFpgpFpy@

0<p.g<k
k

_ (D(n—1))? Z plk+ 1)! / f(z) (w)
- e :OF(p+n—l)l"(k+n—l) W

% (G pi1@)G p i () — Gip(2)Gryr,p (@) (1 — Jw|?)"

Using the formula (14), we can arrive at the following:

dw. (14)

‘f(z) > (FFp)pFpg(@

0<p,q<k

k

(F(n— 1))? 3 pl(k +1)!
T F'p+n—Dr'k+n—-1)

(Apk+ Bpi), 15)
p=0
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where

’

Api= ‘G,,,kﬂ(z) / w@,k(ru)(l ) dw
D

f@)— f(w)

B,r=1|G
Dok ’ kp(2) =

D

Grrr,p@) (1 — |w|2)n_2dw‘.

4.2. Evaluations of Ap x and Bp

Set
_f@—fw)

I—w

¢(z, w)
regard this function as a function of w and suppose that it belongs to L*(D) as a function of w. Let us evaluate

Ap k, Bp k. By the Riemann-Lebesgue lemma, we see that there exists a positive number M such that the following
inequality holds for all p, g € Np:

‘/fﬂ(z,w)Fp,q(w)(l - lez)”_zdw' <M.
D

In other words,

‘/fﬂ(z, w)Gpq (W) (1~ |w|2)n_2dw’ < M\/ nl(p+n—-Drg+n—1
D

(p+q+n—1plg!Tn—1)>%

for all p, g € Ny. Therefore, we have

al(p+n—-—DI'k+n—1)

Api S M‘G”‘k“(Z)’\/(p Thtn—Dpkl(T(n— 1) (16)
20(p+n — DIk +n)

Bris M|Gk”’(Z)|\/<p +k+n)plk+ DI (n — 1)2 a7

4.3. Evaluation of |G p x(2)|

Let 0 < p <k and let us evaluate |G x(z)]. Set z = re'?. As is well known (cf. [5]), the following equality holds:
(_1)Pei(p—k)9

0\ __
Gpu(re”) = n—2Wk—p+1),

k=P PP D (1 - 2r2). (18)

On the other hands, it is known that the maximum value of |P,§k_p’”_2) (x)]in =1 <x < 1is givenby (s + 1),/p!,
where s = max{k — p, n — 2} (cf. [1,2]). Therefore, we can conclude that
(ptn=! = 4 p<n-—2,

(n—2)1plk!"

rk—p

|Gpa(re)| <
b Zﬁj:QSTET, k — p>n-— 2.

19)

4.4. Conclusion

Let us return to the inequality (15). By (17) and (19), if k — p < n — 2, we have
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plk+ 1)!
T(ptn—DlGktn—1) P*
M+ 1) w7(p4n—2)k+n—1)!
S =202k +n -2\ (prk+mplk+ 1)

_ Mk +1) atk+n—1)
S (m=-202\ (p+k+n)plk+1)!

M [7(k+ 1)
< .
((n =2)H2 k!

Similarly, if kK — p > n — 2, we have

pl'k+ 1)!
T(ptn—Dl(ktn—1) P*
- Mrk=r nk+ DIk +n—1)
S =202\ (p+n =2k +n—2!p+k+n)p!

< Mr*P e+ D! MYm+TD 4,1
S-n2\ (ph T (m—2)2 | pr

where r = |z|. Therefore, we obtain

T(ptn—DLktn—1) P*

p=0
Mk+1) [kt MJzG+D 1
< + rk Z —— 0, ask— oo. (20)
((n —2)!)? k! ((n—2)1? = rPp!
Remark. This argument is valid for 0 < r < 1. But, since 0P =0 for k — p > n — 2, the conclusion holds also for

r=0.
In the same way, by (16) and (19), we have

M
pl(k + 1)! W\/% k+1—-p<n-2,

kS
F(p+n—DItk+n—-1)"" MVTEED hktl=p L gy | psp—2.
((n=2)Y) p!
Hence, we can obtain
k plk + 1!
Z Apr—0, ask— oo. 1)
pzoF(p+n—l)F(k+n— nH -

By (15), (20) and (21), we can arrive at

— 0, ask— oo.

‘f(z)— > (fFpg)nFpq(@

0<p,q<k

That is to say,

f@=lim 3 (f Fpg)pFpq):

0<p,g<k



1386 S. Watanabe / J. Math. Anal. Appl. 338 (2008) 1378—1386

Theorem 2. Let f € L*(D) and z € D. If f satisfies
2
/ f@) —i(w)‘ (1= )" dw < s,

7 —
where dw = du dv with w = u + iv, then the following holds:

f@=lim > (f Fpg)pFpq()

0<p,q<k

Example. Set f(z) = |z|. By the inequality ||z] — |w|| < |z — w], the function f satisfies the assumptions of Theorem 2
for all z € D. On the other hand, by (18) we have
Dol pO@n=2 (1 _ ) 12(1 4 11241, p=
/ 0TI (1 — )" dw = | T e S PO =0 A0 p =g,
D O’ p 7é q

Combine this relation with the following connection formula (cf. [1]):

B+, i(7/—Ol)p—e(Ol-i-,B-i‘1)£(¢1+ﬁ+25+1)(,3+)/+17+1)e

P(avﬁ)(t)
(a+p+2)), (P—O!B+De@a+B+D@+p+p+2)e ¢ ’

P,(,V’ﬁ)(t) —
=0
where @« = 1/2, B =n — 2 and y = 0. Then we obtain

T2(=1)P(n = 1)p(=1/2),

2(p)*TC(p+n+1/2)

/|w|G,,,,,(w)(1—|w|2)"‘2dw=
D
Therefore, we can arrive at

oo
2l =) cpGp (),

p=0
7 PEDPRp+n = D =2)) (= D)y (=1/2),
r= 2(p+n -2 (p+n+1/2)

References

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.

[2] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953.

[3] M. Ichida, Orthonormal systems in Hilbert spaces and orthogonal polynomials, Master’s thesis, The University of Aizu, 2004.

[4] D. Jackson, Fourier Series and Orthogonal Polynomials, Dover, New York, 2004.

[5] K.D. Johnson, N.R. Wallach, Composition series and intertwining operators for the spherical principal series I, Trans. Amer. Math. Soc. 229
(1977) 137-173.

[6] N.N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.

[7] S. Watanabe, Generating functions and integral representations for the spherical functions on some classical Gelfand pairs, J. Math. Kyoto
Univ. 33 (1993) 1125-1142.

[8] M.J. Zygmunt, Recurrence formula for polynomials of two variables, orthogonal with respect to rotation invariant measures, Constr. Approx. 15
(1999) 301-309.



