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We give a geometric analysis of canard solutions in three-dimensional singularly
perturbed systems with a folded two-dimensional critical manifold. By analysing the
reduced flow we obtain singular canard solutions passing through a singularity on
the fold-curve. We classify these singularities, called canard points, as folded
saddles, folded nodes, and folded saddle-nodes. We prove the existence of canard
solutions in the case of the folded saddle. We show the existence of canards in the
folded node case provided a generic non-resonance condition is satisfied and in a
subcase of the folded saddle-node. The proof is based on the blow-up method.
© 2001 Elsevier Science
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1. INTRODUCTION

We consider three-dimensional systems of singularly perturbed ordinary
differential equations in standard form

ẋ=g1(x, y, z, e)

ẏ=g2(x, y, z, e)

eż=f(x, y, z, e),

(1)

with sufficiently smooth functions g1, g2, f and small parameter 0 < e ° 1.
The variables (x, y) ¥ R2 are slow variables; z ¥ R is a fast variable. The
independent variable is the slow time y.

Properties of solutions of system (1) can be studied by using methods
from dynamical systems theory. In the following we present a brief intro-
duction to this approach which is known as geometric singular perturbation
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theory. By transforming from the slow time scale y to the fast time scale
t :=y/e one obtains the equivalent fast system

xŒ=eg1(x, y, z, e)

yŒ=eg2(x, y, z, e)

zŒ=f(x, y, z, e)

(2)

One tries to analyse the dynamics of system (1) by suitably combining the
dynamics of the reduced problem

ẋ=g1(x, y, z, 0)

ẏ=g2(x, y, z, 0)

0=f(x, y, z, 0)

(3)

and the dynamics of the layer problem

xŒ=0

yŒ=0

zŒ=f(x, y, z, 0),

(4)

which are the limiting problems for e=0 on the slow and fast time scales,
respectively. The foundation of the geometric approach to singular pertur-
bation theory was given by Fenichel [Fen79]. The basic reasoning is as
follows. The reduced problem is a dynamical system on the set S :=
{(x, y, z) ¥ R3 : f(x, y, z, 0)=0}. In the following we refer to S as the cri-
tical manifold. The stability of points (x, y, z) ¥ S as equilibria of the layer
problem (4) depends on the sign of “f/“z. If “f/“z (x, y, z, 0) is uniformly
bounded away from zero for all (x, y, z) ¥ S0, where S0 … S is compact, the
critical manifold S0 is normally hyperbolic (see, e.g., [Fen71, HPS77]).
Such a normally hyperbolic invariant manifold of equilibria of the layer
problem (4) persists as a locally invariant slow manifold Se of the full
problem (1) for e sufficiently small. The restriction of the flow (1) to Se is a
small smooth perturbation of the flow of the reduced problem (3) [Fen79].
For an excellent introduction to geometric singular perturbation theory
and an overview of applications we refer to the survey by Jones [Jon95].

For normally hyperbolic critical manifolds the geometric theory is fairly
complete. However, this theory breaks down in the neighbourhood of
points where normal hyperbolicity is lost, e.g., near bifurcation points of S.
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The most common situations where this happens are fold points or points
of self-intersection of the critical manifold S.

The best known class of such problems are regular folds, where a
jumping behaviour of solutions occurs. The reduced flow is directed
towards (or away from) the fold-curve on both branches of the critical
manifold. The only possibility for solutions reaching the fold-curve is to
jump to another branch of the critical manifold. This process may occur
repeatedly as in the well known relaxation oscillations. Classical results by
means of matched asymptotic expansions for regular folds can be found in
[MR80].

In this paper we focus on the phenomenon of canards which is also due
to the loss of normal hyperbolicity. A canard solution is a solution of a
singularly perturbed system which follows an attracting slow manifold,
passes close to a bifurcation point of the critical manifold and then follows,
rather surprisingly, a repelling slow manifold for a considerable amount of
time. In geometric terms a canard solution corresponds to the intersection
of an attracting and a repelling slow manifold near a non-hyperbolic point
of S. In this context the non-uniqueness of the (center-like) slow manifolds
is of some relevance. Sometimes it is advantageous to make a fixed choice
of the in general non-unique slow manifolds and then to discuss their
intersections. We call the intersection of these fixed slow manifolds a
maximal canard. Then, canards as described above are orbits (lying in some
other slow manifold) exponentially close to the maximal canard.

We will encounter also solutions starting in a repelling slow manifold
and ending in an attracting slow manifold. Following the terminology of
Benoit [Ben83] we call such solutions faux canards. Clearly, the existence
of faux canards is less surprising than the existence of canards.

Canard solutions were discovered and first analysed by Benoit, Callot,
F. Diener, and M. Diener [BCDD81, Die84, Die94]. They also discovered
the phenomenon of canard explosion, which denotes a very fast transition
upon variation of a parameter from a small amplitude limit cycle via canard
cycles to a relaxation oscillation. For a treatment of canard cycles by
means of matched asymptotic expansions we refer to [Eck83, MKKR94].

A breakthrough in geometric theory came with the work of Dumortier
and Roussarie [DR96]. They give a detailed geometric explanation and
proof of canard cycles in van der Pol’s equation by using blow-up of sin-
gularities and foliation by center manifolds as main techniques. The
method is very powerful, but also quite intricate. For an introduction to
blow-up methods we refer to [Dum91, Dum93].

Inspired by their work Krupa and the first author have recently developed
a variant of the blow-up method in the context of singular perturbation
problems which draws more on the existing geometric singular perturbation
theory. In a series of papers [KS01a, KS01b, KS01c, KS01d] folds, canard
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points, relaxation oscillations and canard explosion, and exchange of sta-
bility of slow manifolds near transcritical and pitchfork bifurcations of the
critical manifold are analysed.

Most of the above results are for planar systems or for systems which
can be reduced to them. As far as canards are concerned one has to keep in
mind that the planar case is degenerate and canards can occur persistently
only in one-parameter families of planar vector fields.

In this paper we continue the geometric analysis of folded critical mani-
folds for system (2). The regular fold case is treated in [Wec98, SW99],
where a jumping behaviour of solutions near the fold-curve occurs. This
behaviour is very similar to the regular fold in planar systems and our
results can be viewed as extensions of the planar case given in [KS01a,
KS01b]. Classical results by means of matched asymptotic expansions can
be found in [MR80]. Note that regular fold points occur on open segments
of the fold-curve. We will see that canards are possible at more degenerate
singularities on the fold-curve.

Example 1.1. As a motivation consider the following example which is
a special case of examples considered in [Ben83]:

ẋ=−2y

ẏ=1

eż=x+z2.

(5)

The y-axis divides the critical manifold x+z2=0 into two branches, where
the lower one is attracting while the upper one is repelling. Away from the
fold-curve the branches of the critical manifold perturb smoothly to slow
manifolds. These slow manifolds can be extended by the flow near the fold-
curve, but their behaviour is not controlled by the existing hyperbolic
theory. Nevertheless there exist two exact solutions of this system given by
(x(t), y(t), z(t))=(−t2± e, t, ± t), t ¥ R, which have algebraic growth and
hence lie in the slow manifolds for |t| large. For e=0 these two solutions
correspond to solutions of the reduced flow on the critical manifold
x+z2=0 passing through the origin from the attracting to the repelling
manifold or vice versa (see Fig. 1). Hence, these e=0 solutions are singular
canards. We call the origin a canard point. From the exact solutions for
e ] 0 we conclude the existence of (maximal) canard solutions along which
the attracting and the repelling slow manifold intersect.

Note that one canard solution is passing from the repelling to the
attracting slow manifold. Canard solutions with such a behaviour are
called faux canards.
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FIG. 1. Reduced flow and singular canards (straight lines) projected to the (y, z)-plane.

Similar explicit solutions of leading order approximations will play a
crucial role in our analysis of canards.

In Section 2 we define and classify canard points in R3 (on the fold-curve
of a two-dimensional folded critical manifold) depending on the dynamics
of the reduced flow near the fold-curve. At a canard point there is a possi-
bility for the reduced flow to cross the fold-curve in finite time, similar to
the above example. In correspondence with the phase portrait of the
(desingularized) reduced flow at these points, we classify the canard points
as folded saddles, folded nodes, and folded saddle-nodes. The canard point in
the above mentioned example is a folded saddle. The aim of this work is to
prove the existence of canards near solutions of the reduced flow passing
through these canard points.

The pioneering work on canards in R3 is due to Benoit [Ben83, Ben90].
Based on methods from nonstandard analysis he analysed the existence of
canard solutions in the folded saddle and in the folded node case.
Similar results by means of matched asymptotic expansion can be found in
[MKKR94]. In [MS01] a model of a chemical oscillator involving a folded
saddle-node is analysed by using the geometric theory and blow-up. We
refer to the problem considered in [MS98] also as a prototypical example
of complicated global bifurcations (known as mixed-mode-oscillations)
involving canards in three-dimensions.

In Section 3 we describe blow-up of singularities in a form suitable for
the application to geometric singular perturbation analysis. Our exposition
follows closely [Rou93], see also [Dum93, DR96]. For a detailed exposi-
tory presentation of the blow-up method in the context of singular pertur-
bation problems we refer to [KS01b]. A blow-up is essentially a clever
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coordinate transformation by which a degenerate point is ‘‘blown-up’’ to a
sphere (in more complicated problems other manifolds arise). In certain
directions transverse to the sphere and even on the sphere one gains
enough hyperbolicity to allow a complete analysis. The technique is a
generalization of the well known blow-up method for degenerate equilibria
of planar vector fields. To apply this idea to singular perturbation
problems the singular perturbation parameter e must be included in the
blow-up! By construction the blown-up locus (the sphere) is invariant.
Surprisingly often the equations governing the dynamics on the sphere are
integrable in some sense or at least some special solutions can be found.
We remark that the latter situation will be relevant in the present analysis.
By blowing up the ‘‘fine structure’’ of the singular perturbation problem
becomes visible and the full problem can be analysed by applying or
adapting standard methods from dynamical systems theory.

Using this technique we prove in Section 4 the existence of canards in the
case of a folded saddle. Furthermore we show that canards exist for the
folded node case provided a (generic) non-resonance condition is satisfied.
Geometrically the resonances are related to the twisting of the attracting
and repelling slow manifold around the canard solution. At a resonance a
bifurcation of canards may occur because the intersection of the repelling
and the attracting slow manifold is non-transverse.

2. DYNAMICS OF THE REDUCED PROBLEM
AND CLASSIFICATION OF CANARDS

We assume that the critical manifold S={(x, y, z) : f(x, y, z, 0)=0} of
system (1) is a nondegenerate folded surface in a neighbourhood of the
origin. Sufficient conditions for this assumption are

f(0, 0, 0, 0)=0, fz(0, 0, 0, 0)=0,

fx(0, 0, 0, 0) ] 0, fzz(0, 0, 0, 0) ] 0.
(6)

Under these conditions the origin is a non-hyperbolic equilibrium of the
layer problem. Under the above assumptions the fold-curve can be param-
eterized by y, i.e., points on the fold-curve are given by (t(y), y, z(y)),
y ¥ I. Following [MKKR94], we define

l(y) :=Rfx

fy

S ·Rg1

g2

S:
(t(y), y, z(y), 0)

.

The nature of the reduced flow of system (1) depends crucially on whether
the transversality condition l(0) ] 0 is satisfied or not. The geometric meaning

424 SZMOLYAN AND WECHSELBERGER



of the transversality condition, which is called the normal switching condi-
tion in [MKKR94], is that the projection of the reduced flow into the
(x, y)-plane is not tangent to the fold-curve at the origin.

The regular fold case corresponds to situations where the transversality
condition is satisfied. In this case the reduced flow is directed towards (or
away from) the fold-curve on both branches of the critical manifold. Thus,
the only possibility for solutions reaching the fold-curve is to jump. This
behaviour is quite similar to the regular fold case in planar systems. If the
transversality condition is satisfied it holds for a segment of the fold-curve;
i.e., there exists always a segment of jump points. We refer to [Wec98,
SW99] for a geometric analysis of this case. In this work we consider the
case where the transversality condition is violated, i.e.,

l(0)=0.(7)

As will become clear later, the condition l(0)=0 is necessary for the exis-
tence of canards in system (1).

Proposition 2.1. Assume that system (1) satisfies conditions (6) and
(7). Then there exists a smooth change of coordinates which brings system
(1) to the form

ẋ=by+cz+O(x, e, y2, yz, z2)

ẏ=a+O(x, y, z, e)

eż=x+z2+O(ex, ey, ez, e2, x2z, z3, xyz),

(8)

in a neighborhood of the origin, with computable constants (a, b, c) ¥ R3. If
lŒ(0) ] 0 holds then b ] 0. If g2(0, 0, 0, 0) ] 0 holds then a ] 0.

Proof. The implicit function theorem gives a parameterization
(t(y), y, z(y)), y ¥ I, of the fold-curve for a suitable interval I. In a first
step a coordinate transformation (x, y, z)W (x−t(y), y, z−z(y)) in
system (1) rectifies the fold-curve along the y-axis. Taylor expansion of the
functions f, g1, g2 together with a sequence of linear and near identity
transformations gives the result. L

Setting e=0 in system (8) yields the reduced problem

ẋ=by+cz+O(x, y2, yz, z2)(9)

ẏ=a+O(x, y, z)

0=x+z2+O(x2, z, z3, xyz).(10)
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The reduced problem is a two-dimensional dynamical system on the
critical manifold S defined by the algebraic equation (10). The implicit
function theorem implies that the folded critical manifold is a graph
S={(x(y, z), y, z)} in a neighbourhood of the origin with

x(y, z)=−z2(1+O(y, z)),

i.e., the manifold S is approximately a parabolic cylinder near the origin.
Let Sa resp. Sr denote the lower resp. upper branch and let F denote the
fold-curve, so that S=Sa 2 F 2 Sr. The transformed system (8) satisfies
fzz(0, 0, 0, 0) > 0 which implies that the branch Sa is attracting while Sr is
repelling for the corresponding layer problem, which explains the notation.
Points on the fold-curve F are non-hyperbolic, weakly attracting from
below and weakly repelling upwards (see Fig. 2).

We differentiate the function x(y, z) with respect to time and substitute
for ẋ in (9) to obtain

ẏ=a+O(y, z)

−2z(1+O(y, z)) ż=by+cz+O(y2, yz, z2).
(11)

System (11) is the projection of the reduced vector field into the (y, z)-
plane near the origin. System (11) is singular at the fold-curve, i.e., at z=0.
The standard existence and uniqueness results for differential equations do
not hold there. In particular different solutions of system (11) may
approach the same point on the fold-curve in finite forward or backward

FIG. 2. Critical manifold, attracting and repelling branch.
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time. We will see that this allows the existence of solutions of the reduced
problem which pass from Sa to Sr through the origin or vice versa.

To obtain the dynamics of system (11) we multiply the right hand by
−2z(1+O(y, z)) and divide the second equation by this factor to obtain
the desingularized system

ẏ=−2az+O(yz, z2)

ż=by+cz+O(y2, yz, z2).
(12)

We study the phase portrait of system (12) in a neighbourhood of the
origin. It has the same phase portrait as system (11) on Sa, i.e., for z < 0.
On Sr, that is for z > 0, time has to be reversed in the phase portrait of (12)
to obtain the phase portrait of the reduced system (11).

The origin is an equilibrium of the desingularized system (12). In the
following we discuss the type of the equilibrium at the origin depending on
the parameters (a, b, c).

The eigenvalues of the linearization of system (12) at the origin are
l1, 2=(c± `c2−8ab )/2.

Lemma 2.1. For c < 0 the origin is an equilibrium of the desingularized
system (12) of the following type:

ab < 0, l1 < 0 < l2 saddle,

ab=0, l1 < 0=l2 saddle-node,

0 < 8ab < c2, l1 < l2 < 0 node,

8ab=c2, l1=l2 < 0 degenerate node,

c2 < 8ab, Re(li) < 0 focus.

(13)

Remark. These results also hold for c > 0, just the eigenvalues change
their signs. The case c=0 is discussed later.

The eigenvectors are given by v1, 2=(1, −l1, 2/2a) for a ] 0 and by
v1=(0, 1), v2=(1, −b/c) for a=0. In the following we use the terminol-
ogy saddle, saddle-node, node and focus case corresponding to the type of
the equilibrium of the desingularized system. For 8ab=c2 there exists just
one eigenvector (double eigenvalue c/2). Hence, we call this case the
degenerate node.

In the case ab=0 we are in a saddle-node situation due to the zero
eigenvalue of the equilibrium of the desingularized system for c ] 0. We
distinguish two subcases (a ] 0, b=0) resp. (a=0, b ] 0). The more
degenerate case (a=0, b=0) is not considered in the following.
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In the case (a ] 0, b=0) the eigenvectors are given by v1=(1, −c/2a),
v2=(1, 0); i.e., the center-flow corresponding to the zero eigenvalue is
tangent to the fold-curve at the origin. In this case the phase portrait near
the equilibrium depends on the higher order terms.

In the case (a=0, b ] 0) the eigenvectors are given by v1=(0, 1),
v2=(1, −b/c); i.e., the eigenvector corresponding to the nonzero eigen-
value is orthogonal to the fold-curve at the origin and the center manifold
is transverse to the fold-curve. The flow on the center manifold depends on
higher order terms.

The phase portraits of the reduced system (11) in all cases described in
Lemma 2.1 are obtained by changing the direction of the flow in the phase
portraits of the desingularized system (12) for positive z. Considered as a
singular point of the reduced flow we call the origin a folded saddle, folded
saddle-node, folded node, folded degenerate node, or folded focus. All cases
are shown in Fig. 3. The figures for the folded saddle-node case show the
least degenerate phase portraits compatible with our assumptions.

Note that the singularity at the origin is not an equilibrium for the
reduced system (11). Solutions of the desingularized system (12) which
approach the origin in backward or forward time in a hyperbolic direction
correspond to solutions of the reduced problem (11) passing through the
origin with nonzero speed. This is due to a cancellation of a simple zero in
the second equation in system (11). However, in center directions solutions
of the reduced problem approach the origin asymptotically in backward or
forward time. More specifically we consider the following distinguished
solutions of the reduced problem:

In the case of the folded saddle there exist two solutions passing through
the origin, i.e. a solution C1 corresponding to the stable manifold of the
saddle and a solution C2 corresponding to the unstable manifold of the
saddle of the desingularized system.

In the folded node case there exists a unique solution C1 corresponding
to the strong stable manifold of the origin. All other solutions passing
through the origin are tangent to the weak eigendirection at the origin.

In the degenerate node case all solutions passing through the origin are
tangent to the (unique) eigenvector.

In the folded saddle-node case a unique solution C1 corresponding to the
strong stable manifold of the saddle-node of the desingularized system
passes through the origin.

The unique solutions are shown as bold lines in the phase portraits of
Fig. 3. The dashed lines correspond to the tangent direction of the non-
unique solutions passing through the origin.

The classification scheme (13) holds for c ] 0. For c=0 the relevant
eigenvalues are l1, 2= + `−2ab and we obtain:
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FIG. 3. Phase portrait of reduced flow, c < 0, a [ 0.
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Lemma 2.2. For c=0 the equilibrium at the origin of the desingularized
system (12) is of the following type:

ab < 0, l1 < 0 < l2 saddle,

ab=0, l1, 2=0 nilpotent,

ab > 0, Re(l1, 2)=0 center.

(14)

The saddle case is analogous to the saddle case in (13). The other two
degenerate cases are not considered in this work. Note that in the intro-
ductory example (5) the origin is a folded saddle with c=0. Figure 4
shows the bifurcation diagram for the equilibrium of the desingularized
system (12).

Definition 2.1. Solutions of the reduced problem passing through a
canard point from an attracting critical manifold to a repelling critical
manifold are called singular canards.

Solutions of the reduced problem passing through a canard point from a
repelling critical manifold to an attracting critical manifold are called
singular faux canards.

The following observation follows immediately from the classification
(13) and the phase portraits in Fig. 3.

FIG. 4. Bifurcation diagram, c ] 0 and c=0.
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Lemma 2.3. A singular canard corresponds to a negative eigenvalue
li, i=1, 2. A singular faux canard corresponds to a positive eigenvalue.

Remark. In the folded saddle case there exists always one singular
canard and one singular faux canard. In all other cases there exist either
just singular canards or just singular faux canards.

The following example shows the occurrence of canard points in a
specific problem.

Example 2.1. Consider the forced van der Pol oscillator

ẋ=−z+A cos j

j̇=w

eż=x− 1
3 z

3+z,

(15)

with parameters A, w > 0 and (x, j, z) ¥ R×S1×R. We will show that all
singularities of the above classification scheme are realized as A varies. The
critical manifold is an S-shaped surface given as a graph x(z, j)=1

3 z
3−z

containing two fold-curves for z=±1. The reduced flow on the critical
manifold is given by

(z2−1) ż=−z+A cos j

j̇=w.
(16)

At the fold-curves z=±1 the reduced flow is singular. The corresponding
desingularized system is

ż=−z+A cos j

j̇=w(z2−1).
(17)

The phase portrait of the reduced system is obtained by changing the
direction of the flow in the phase portrait of system (17) for |z| < 1. We
discuss the bifurcations of the reduced flow as the amplitude of the forcing
A varies.

For A < 1 system (17) has no equilibrium, just an unstable cycle on the
repelling critical manifold. All points on the fold-curves z=±1 are jump
points (see Fig. 5).

As the amplitude of the forcing increases to the value A=1 two singular
points (z=1, j=0) and (z=−1, j=p) of system (17) are created which
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FIG. 5. Reduced flow of forced van der Pol oscillator, unstable cycle, and jump points.

split up in two pairs of singular points at (z=1, j= + arc cos(1/A)) and
(z=−1, j=p + arc cos(1/A)) for A > 1. This creation of critical points
for the desingularized system by variation of the parameter A is a standard
saddle-node bifurcation. Hence, for A=1 the singular points are folded
saddle-nodes and for A > 1 a folded saddle and a folded node exist on each
fold-curve (see Fig. 6). In the following figures only the dynamics close to
the canard points on the fold-curve z=1 is shown.

A simple eigenvalue calculation shows that the folded saddles exist for all
A > 1. The folded nodes are restricted to the interval 1 < A < Ā with
Ā=`1+1/64w2 . For A=Ā the folded nodes are degenerate folded
nodes and for A > Ā they become folded foci (see Fig. 7).

FIG. 6. Reduced flow of forced van der Pol oscillator, A=1, folded saddle-node; 1 < A < Ā,
folded saddle and folded node.
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FIG. 7. Reduced flow of forced van der Pol oscillator, A=Ā, folded saddle and deg. folded
node; A > Ā, folded saddle and folded focus.

Remark. Numerical simulation shows that the unstable cycle exists for
A < Ã, with Ã > Ā. At A=Ã the unstable cycle ends in a heteroclinic cycle
connecting the folded saddles. The heteroclinic cycle breaks for A > Ã.

We are interested in the persistence of singular canards under small pertur-
bations; i.e., we are interested in the existence of maximal canards nearby.

As a starting point for our analysis we briefly review some properties of
the slow manifolds Sa, e resp. Sr, e. For the layer problem the critical mani-
fold S is a manifold of equilibria. At each point of Sa there exist stable
fibers of the layer flow. These fibers form a foliation of W s(Sa) in an open
neighbourhood of Sa. Similarly, a foliation of Wu(Sr) exists in an open
neighbourhood of Sr (see Fig. 2). If follows from the standard theory
[Fen79] that outside a small neighbourhood U of the fold-curve the mani-
folds Sa and Sr perturb smoothly to locally invariant manifolds Sa, e and Sr, e

for sufficiently small e ] 0. Moreover, there exist smooth invariant folia-
tions of the manifold W s(Sa, e) 5 V1 in a neighbourhood V1 of the base Sa, e

and smooth invariant foliations of the manifold Wu(Sr, e) 5 V2 in a neigh-
bourhood V2 of the base Sr, e.

Recall that the slow manifolds are obtained as sections e=const. of three-
dimensional, locally invariant, center-like manifolds Ma resp. Mr of the
extended system

xŒ=e(by+cz+O(x, e, y2, yz, z2))

yŒ=e(a+O(x, y, z, e))

zŒ=x+z2+O(ex, ey, ez, e2, x2z, z3, xyz)

eŒ=0

(18)
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in the extended phase space R4. For the extended system S×{0} is a mani-
fold of equilibria. Outside of a neighbourhood U of the fold-curve the
linearization of (18) at points Sa ×{0} has a triple zero eigenvalue and one
negative eigenvalue uniformly bounded away from zero. This allows to
prove the existence of the attracting center-like manifold Ma. The repelling
center-like manifold Mr is obtained in a similar way. At the fold-curve the
linearization has a quadruple zero eigenvalue and the construction of the
slow manifolds breaks down. Clearly, the slow manifolds can be extended
in forward and backward time by the flow, however, their behaviour is
then not controlled by the singular limit problems introduced so far.

In the next section we describe the blow-up technique which allows to
analyse system (18) near the fold-curve.

3. BLOW-UP

We have seen that points on the fold-curve are more degenerate equi-
libria of system (18) than the other points of the critical manifold S. The
linearization of system (18) has a quadruple zero eigenvalue along the fold-
curve while the linearization at the other points of the critical manifold S
has a triple zero eigenvalue and one negative resp. positive eigenvalue for
z < 0 resp. z > 0.

The important insight in [DR96] is that the blow-up technique is the
right tool to desingularize nilpotent equilibria like the points on the
fold-curve, viewed as degenerate equilibria of the extended system (18). The
blow-up technique is essentially a clever coordinate transformation by
which a degenerate equilibrium is blown-up to an m-sphere with appropri-
ate m. With this procedure one gains enough hyperbolicity to allow for a
complete analysis by standard techniques. For nilpotent equilibria of
planar vector fields the blow-up technique is well known, see, e.g., [GH83,
Dum91]. In the sequel we will give a sketch of the blow up-technique in the
context needed for the analysis of the extended system (18). For a descrip-
tion of the general technique and background material we refer to [DR91,
Rou93]. Our exposition in the context of singular perturbation follows
closely [KS01b]. We consider an extended system in R4

xŒ=eg1(x, y, z, e)

yŒ=eg2(x, y, z, e)

zŒ=f(x, y, z, e)

eŒ=0.

(19)
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Let X denote the vector field corresponding to (19). Assume X(0)=0 and
fz(0, 0, 0, 0)=0, i.e. the origin is a nilpotent equilibrium. The blow-up
transformation is defined as a mapping

F : B0 … BQ R4

(x̄, ȳ, z̄, ē, r̄)W (r̄ d1x̄, r̄ d2y, r̄ d3z̄, r̄ d4ē)

with the manifolds B=S3×R, B0=S3×[−r0, r0], r0 > 0 and the weights
(d1, d2, d3, d4) ¥ Z4; i.e., the origin is blown-up by F to a three-sphere with
x̄2+ȳ2+z̄2+ē2=1.

The map F is surjective and proper, because it maps the 3-sphere
Z=S3×{0} to the origin, i.e., F−1(0)=Z. Furthermore F|B0Z is a dif-
feomorphism from B0Z to R40{0}. The map F defines the induced map
Fg : TBQ TR4 between the associated tangent bundles.

Since X(0)=0 the map F induces a vector field X̄ on B such that
F*X̄=X (see Fig. 8). It suffices to study X̄ on B0 since F(B0) is a full
neighbourhood of the origin. For the analysis of X̄ on B0 we have to
introduce charts for the manifold B. Charts are homeomorphic maps
oi : Bi Q R4 with i ¥ I and B=1i ¥ I Bi. Again, the map F induces vector
fields Xi on Bi for all i ¥ I.

To make calculations in the charts oi as simple as possible, we will use
directional blow-ups Fi which lead to directional charts oi.

Definition 3.1. Directional blow-ups Fi, i=1, ..., 2m are obtained by
setting one blown-up variable on Sm equal to ±1 in the definition of the
mapping F. The directional charts oi, i=1, ..., 2m are defined such that the
diagram in Fig. 9 commutes. In chart oi the blown-up vector field X̄ is
described by a vector field Xi, i=1, ..., 2m.

FIG. 8. Commutative diagram for the induced vector field.
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FIG. 9. Commutative diagram for the directional charts oi.

The charts oi, i=1, ..., 2m cover the m-sphere by m-planes perpendicular
to the axes. In our applications only some of these charts are needed. In the
following the subscripts for the individual charts are chosen according to
the order in which the charts are used in the analysis.

In singular perturbation problems the chart o2 corresponding to ē=1 in
the mapping F is the most important chart. The corresponding directional
blow-up is

F2: R4
Q R4

(x2, y2, z2, r2)W (rd12 x2, r
d2
2 y2, r

d3
2 z2, r

d4
2 ).

This transformation is an e-dependent rescaling of the variables (x, y, z)
since r2=e−d4; i.e., the vector field X2 is obtained by rescaling the original
variables. To emphasize the importance of the chart o2 we call this chart
the classical chart. In this chart r2 acts just as a parameter due to the
equation eŒ=0 which implies r −2=0 for the vector field X2.

In o2 the plane r2=0 is the blown-up image of the singular point at the
origin. Hence, the vector field X2 vanishes on the plane r2=0.

In the following we introduce the notion of a local vector field and the
operation of local division for local vector fields which are needed to
desingularize the blown-up vector field.

Definition 3.2. A local vector field X is defined on a compact smooth
manifold B by a finite open covering {Bi} of B with some smooth vector
field Xi on each Bi, such that for each pair of indices i, j ¥ I with
Bi 5 Bj ]” there exists a smooth function gij defined and strictly positive
in Bi 5 Bj such that Xi=gijXj on Bi 5 Bj.

Remark. A local vector field defines a phase portrait just as a vector
field. However, one allows different time parameterization of orbits in each
Bi, i ¥ I.
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Definition 3.3. Let {Bi} be a finite open covering of B, on which local
vector fields X and X̃ are given by Xi and X̃i. X̃ is the result of local
division of X if there exists smooth functions fi: Bi Q R such that Xi=fiX̃i

in Bi.

Remark. In general these functions fi are arbitrary. In our application
the functions fi vanish only on Z, i.e., where the blow-up transformation
fails to be a diffeomorphism. In more practical terms our application of
local division consists of dividing out powers of ri and this leads to vector
fields X̃i and Xi with the same phase portrait for ri > 0. However, on the
set ri=0 the vector field X̃i may show nontrivial dynamics which has been
invisible for Xi.

For each specific problem suitable weights (d1, d2, d3, d4) have to be
chosen. The choice of the weights is guided by the following requirements:

1. local division is possible to obtain the vector fields X̃i;
2. the vector fields X̃i have only hyperbolic or semi-hyperbolic equi-

libria;
3. the dynamics in the planes ri=0 can be analysed;
4. perturbation methods can be used to obtain the dynamics for

ri > 0.

We will see that the proper weights are most effectively determined in the
classical chart. With the proper choice the truncation of the vector field X̃2

obtained by setting r2=0 can be viewed as a normal form of the original
problem; i.e., it is the simplest possible description of the underlying phe-
nomena. In the applications which we have in mind it is always necessary
to consider the dynamics of this normal form (in the classical chart) on
unbounded domains. Otherwise a simple rescaling would suffice, which
means that the problem is not singularly perturbed. Points at infinity in the
classical chart correspond to points on the ‘‘equator’’ on the sphere in the blow-
up. To capture the dynamics near the ‘‘equator’’ we need additional charts
oi, i ] 2. In these other charts the variables ri become dynamic variables.

We summarize the above description of the blow-up technique in the
form appropriate for the extended system (19) in:

Definition 3.4. A desingularization of a vector field X in R4 with a
nilpotent equilibrium X(0)=0 is a blow-up transformation F: BQ R4 with
Z=F−1(0) a 3-sphere and suitable weights (d1, d2, d3, d4) such that for all
local vector fields Xi induced by F and for any point p ¥ Zi=F−1

i (0) with
X̃i(p)=0, where X̃i is a result of local division by Xi, the point p is a
hyperbolic or semihyperbolic singularity of the vector field X̃i.
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It is possible that after one blow-up some nilpotent equilibria remain.
Then additional blow-ups can be used to desingularize these nilpotent
equilibria. Thus, the blow-up technique can be seen as an iterative
procedure.

We will need to change coordinates between the charts to connect the
dynamics in the different charts.

Definition 3.5. The change of coordinates between two charts oi and
oj is defined as

oji :=oj p o−1
i .

We introduce the following notation: P̄ denotes an object in the blow-up
which corresponds to an object P in the original problem. If P̄ is described
in a chart oi then Pi denotes the object in this chart.

The most subtle part of the blow-up technique is to find the weights
(d1, d2, d3, d4) suitable for the desingularization. In singular perturbation
problems the weights are closely related to the rescalings used in the
method of matched asymptotic expansions. In fact a problem correspond-
ing to the blown-up vector field written in the classical chart lies at the core
of many of the existing classical treatments of such problems. Thus, the
weights for many singular perturbation problems are already known in the
literature.

The weights suitable for system (18) are (d1, d2, d3, d4)=(2, 1, 1, 2),
which can be found in [Ben83] resp. in [Bra93] for a certain subcase.
A theory for obtaining the weights is often associated with the notion
of Newton Polyhedra of polynomial vector fields. For a detailed description
of the existing theory we refer to [Bru80, BM90]. However, the theory of
Newton Polyhedra is less useful for higher dimensional problems since a
general method to determine the weights needed in a blow-up seems not to
exist.

In the next section we apply the blow-up method to analyse the behav-
iour and possible intersections of the extended manifolds Ma resp. Mr of
system (18).

4. ANALYSIS OF CANARDS

Recall the extended system (18) and that the slow manifolds Sa, e and Sr, e

are obtained as sections e=const. of three-dimensional center-like mani-
folds Ma resp. Mr. All calculations are done in the extended phase space,
but some of our results are stated in sections e=const. of the extended
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phase space. Outside of an arbitrary small neighbourhood U of the fold-
curve the manifolds Sa and Sr perturb smoothly to locally invariant mani-
folds Sa, e and Sr, e for sufficiently small e ] 0. The goal is to investigate
whether the extensions of the slow manifold Sa, e resp. Sr, e in forward resp.
backward time by the flow do intersect.

The possible reduced flows of system (18) are described in (13) and are
shown in Fig. 3. In all cases except the focus case singular canards exist;
i.e., there exist solutions in the reduced problem which pass at the origin
from the attracting to the repelling branch of the critical manifold or vice
versa. The following theorem is the main result of this work:

Theorem 4.1. Assume system (8). In the folded saddle and in the folded
node case singular canards C1 perturb to maximal canard solutions for
sufficiently small e.
For a folded node with l1 < l2 < 0 a maximal canard solution corresponding

to the weak eigendirection exists for sufficiently small e provided that

m2 :=
l1

l2

is not a natural number.

The main idea of the proof is as follows. We use the blow-up transfor-
mation F: B=S3×RQ R4 given by

x=r2x̄, y=rȳ, z=rz̄, e=r2ē,(20)

with (x̄, ȳ, z̄, ē) ¥ S3. It turns out that it suffices to consider two charts o1

and o2 defined by x̄=−1 resp. ē=1. For the blown-up vector field we
obtain special solutions (in the classical chart o2) which can be viewed as
extensions of the singular canards. The additional chart o1 is used to
connect the unbounded branches (in forward and backward time) of the
special solutions with the singular canards of the reduced problem. We will
show that under the conditions of Theorem 4.1 the extensions of the slow
manifolds along these special solutions in chart o2 intersect transversally
which proves the existence of maximal canard solutions in the extended
system (18).

Lemma 4.1. The change of coordinates between chart o1 and chart o2 is
given by

o12(x2, y2, z2, r2)=1 r2 `−x2 ,
y2

`−x2

,
z2

`−x2

,
1

−x2

2 , x2 < 0,(21)

o21(r1, y1, z1, e1)=1
−1
e1

,
y1

`e1

,
z1
`e1

, r1 `e1
2 , e1 > 0.(22)

CANARDS IN R3 439



4.1. Dynamics in the Classical Chart o2

We consider transformation (20) with ē=1; i.e., we consider the
directional blow-up F2: R4

Q R4 given by

F2(x2, y2, z2, r2)=(r2
2x2, r2 y2, r2z2, r

2
2).

This transformation is just an e-dependent rescaling of (x, y, z), since
r2=`e . After transformation of system (18) and desingularization of the
blown-up vector field we obtain

x −2=by2+cz2+r2h1(x2, y2, z2, r2)

y −2=a+r2h2(x2, y2, z2, r2)

z −2=x2+z2
2+r2h3(x2, y2, z2, r2)

r −2=0,

(23)

with

h1(x2, y2, z2, r2)=b1x2+b2+b3 y
2
2+b4z

2
2+b5 y2z2+O(r2)

h2(x2, y2, z2, r2)=c1 y2+c2z2+O(r2)

h3(x2, y2, z2, r2)=a1z
3
2+a2 y2+a3z2+O(r2).

Since r −2=0, this blown-up system is still a family of vector fields with
parameter r2. Setting r2=0 gives the unperturbed problem

x −2=by2+cz2

y −2=a

z −2=x2+z2
2.

(24)

The following observation is crucial:

Lemma 4.2 [Ben90]. System (24) has for b ] 0, real li ] 0 explicit
solutions ci, i=1, 2 given by

x̃2(t)=−
l2

i

4
t2−

li

2

ỹ2(t)=at

z̃2(t)=−
li

2
t,

(25)
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where li, i=1, 2 are the eigenvalues of the linearization of the desingularized
flow (12).

Remark. In the case b=0 there exists a family of solutions

(x̃2(t), ỹ2(t), z̃2(t))=1 −
c2

4
t2−

c
2
, at+k, −

c
2
t2 ,(26)

corresponding to the nonzero eigenvalue l1=c, with k ¥ R since x2 and z2
are decoupled from y2.

These special solutions are algebraic in t. The projections of these special
solutions into the (y2, z2) plane, shown in Fig. 10b, coincide with the
eigendirections at the origin of the singular canards shown in Fig. 3. The
special solutions ci, i=1, 2 in the folded saddle case are shown in Fig. 10a.
Note that to leading order the special solutions satisfy the equation
x2+z2

2=0 as tQ ±..
We will see that the special solutions (25) are backward and forward

asymptotic to equilibria P−
li

and P+
li
, i=1, 2 on the ‘‘equator’’ ē=0 of S3.

The importance of the special solutions ci, i=1, 2 is that they connect the
attracting slow manifold across the ‘‘upper half’’ ē > 0 of S3 to the repel-
ling slow manifold or vice versa. To study the unbounded branches of these
solutions in forward and backward time we need one additional chart o1

corresponding to a directional blow-up in direction of the negative x-axis.

FIG. 10. (a) Special solutions in chart o2, r2=0; (b) projection in (y2, z2) plane.
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4.2. Dynamics in Chart o1

We consider transformation (20) with x̄=−1, i.e., we consider the
directional blow-up F1: R4

Q R4 given by

F1(r1, y1, z1, e1)=(−r2
1, r1 y1, r1z1, r

2
1e1).

After transformation of system (18) and desingularization we obtain

r −1=− 1
2 r1e1 g11(r1, y1, z1, e1)

y −1=e1(g12(r1, y1, z1, e1)+
1
2 y1 g11(r1, y1, z1, e1))

z −1=f1(r1, y1, z1, e1)+
1
2 e1z1 g11(r1, y1, z1, e1)

e −1=e2
1g11(r1, y1, z1, e1),

(27)

with

g11(r1, y1, z1, e1)=by1+cz1+r1(b1+b2e1+b3 y
2
1+b4z

2
1+b5 y1z1)+O(r2

1)

g12(r1, y1, z1, e1)=a+r1(c1 y1+c2z1)+O(r2
1)

f1(r1, y1, z1, e1)=−1+z2
1+r1(a1z

3
1+a2 y1e1+a3z1e1)+O(r2

1).

Note that system (27) has two invariant subspaces, namely the hyperplanes
r1=0 and e1=0. Their intersection corresponds to the invariant plane
{(0, y1, z1, 0) : (y1, z1) ¥ R2}. The dynamics in this plane is governed by

y −1=0

z −1=−1+z2
1.

There are two lines of equilibria La, 1=(0, y1, −1, 0) and Lr, 1=(0, y1, 1, 0)
which are normally hyperbolic, the nonzero eigenvalue is −2 for La, 1, and
2 for Lr, 1. The dynamics in the invariant hyperplane e1=0 is governed by

r −1=0

y −1=0

z −1=−1+z2
1+a1z

3
1r1+O(r2

1).

This system has a normally hyperbolic surface Sa, 1 of equilibria emanating
from La, 1 and a surface Sr, 1 of equilibria emanating from Lr, 1. For r1 small
this follows from the implicit function theorem. Along the surface Sa, 1 the
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nonzero eigenvalue is negative and close to −2 for small r1. Along Sr, 1 the
situation is similar, however the nonzero eigenvalue is positive and close to
2 for small r1. Note that Sa, 1 resp. Sr, 1 corresponds to the attracting resp.
repelling branch Sa resp. Sr of the critical manifold. We have gained
normal hyperbolicity at the lines La, 1 and Lr, 1 due to the blow-up. The
dynamics in the invariant hyperplane e1=0 is shown in Fig. 11.

The dynamics in the invariant hyperplane r1=0 is governed by

y −1=e1(a+
1
2 y1(by1+cz1))

z −1=−1+z2
1+

1
2 e1z1(by1+cz1)

e −1=e2
1(by1+cz1).

We recover the lines of equilibria La, 1 and Lr, 1 and one additional zero
eigenvalue due to the third equation. Hence, there exist two-dimensional
center manifolds Ca, 1, Cr, 1 of the lines La, 1, Lr, 1. The flow in e1-direction is
determined by the sign of by1 ±c.

Lemma 4.3. Points on the lines La, 1/r, 1=(0, y1, + 1, 0) with y1 ¥ I … R
are non-hyperbolic equilibria of (27) with triple eigenvalue zero. The nonzero
eigenvalue is given by l= + 2.

FIG. 11. (a) Dynamics in hyperplane e1=0 in chart o1; (b) projection in (r1, z1) plane.
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Proof. The linearization of system (27) at an equilibrium (0, y1, ±1, 0)
is given by

R
0 0 0 0
0 0 0 a+1/2y1(by1 ±c)

±a1 0 ±2 ±1/2(by1 ±c)
0 0 0 0

S .
The eigensystem of this matrix is shown in Table I, where the last vector is
a generalized eigenvector. L

We restrict attention to the set

D1={(r1, y1, z1, e1) : 0 [ r1 [ r, 0 [ e1 [ d, |y1 | [ s}.

Proposition 4.1. For s, r, and d sufficiently small the following asser-
tions hold for system (27):

(1) There exists an attracting three dimensional center manifold Ma, 1

of the line of equilibria La, 1=(0, y1, −1, 0), y1 ¥ I, containing the surface of
equilibria Sa, 1 and the center manifold Ca, 1. In D1 the manifold Ma, 1 is given
as a graph z1=ha(r1, y1, e1). The branch of Ca, 1 in r1=0 is unique for
by1 −c > 0.

(2) There exists a repelling three dimensional center manifold Mr, 1 of
the line of equilibria Lr, 1=(0, y1, 1, 0), y1 ¥ I, containing the surface of
equilibria Sr, 1 and the center manifold Cr, 1. In D1 the manifold Mr, 1 is given
as a graph z1=hr(r1, y1, e1). The branch of Cr, 1 in r1=0 is unique for
by1+c < 0.

(3) There exists a stable invariant foliation Fs with base Ma, 1 and one-
dimensional fibers. For any k > −2 there exists a choice of positive s, r and
d such that the contraction along Fs is stronger than ekt1.

TABLE I

Eigensystem in Chart o1

Eigenvalue Multiplicity Eigenvector Direction

±2 1 (0, 0, 1, 0) z1
0 3 (0, 1, 0, 0) y1

(1, 0, −a1/2, 0) (r1, z1)
(0, 0, by1 ±c, −4) (z1, e1)
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(4) There exists an unstable invariant foliation Fu with base Mr, 1 and
one-dimensional fibers. For any k < 2 there exists a choice of positive s, r

and d such that the expansion along Fu is stronger than ekt1.

Proof. These assertions follow from Lemma 4.3 and from invariant
manifold theory (see, e.g., [HPS77, Fen79]). L

Next we use transformation (21) to rewrite the special solutions (25)
from chart o2 in chart o1. A straightforward calculation shows that

o12(ci(t))=10,
at

`(1/4) l2
i t

2+(1/2) li

,
−(1/2) lit

`(1/4) l2
i t

2+(1/2) li

,

1
(1/4) l2

i t
2+(1/2) li

2 ,

with sufficiently large |t|. In the limit tQ ±. we obtain

P ±
li
= lim

tQ ±.
o12(ci(t))=10, ±

2a
|li |

, + sgn(li), 02,(28)

where sgn(li) denotes the sign of the eigenvalue li. This shows that each of
the special orbits from chart o2 emanates from a point on one of the lines
of equilibria La, 1/r, 1 in chart o1 and approaches a point on the other line in
chart o1. This explains why we need just the two charts o1, o2 for the
analysis of the dynamics close to the special solutions. Keep in mind that
the surfaces of equilibria Sa, 1/r, 1 in chart o1 emanating from La, 1/r, 1

represent the branches of the critical manifold.

Proposition 4.2. For a special solution ci, i=1, 2 corresponding to a
singular canard let T > 0 be sufficiently large. Then the part of ci(t) corre-
sponding to t ¥ (−., −T) is part of the unique branch of the center-manifold
Ca, 1 in r1=0, e1 > 0 in chart o1. The part of ci(t) corresponding to t ¥ (T,.)
is part of the unique branch of the center-manifold Cr, 1 in r1=0, e1 > 0.

Proof. According to Lemma 2.3, li < 0 holds for a singular canard. It
follows that equilibria (28) on the line La, 1 resp. Lr, 1 satisfy the conditions
by1 −c > 0 resp. by1+c < 0 of Proposition 4.1. Thus, the center manifolds
Ca, 1 resp. Cr, 1 are unique at the points P ±

li
for e1 > 0 by Proposition 4.1.

Furthermore, the tangent vectors of ci in chart o1 at the equilibria (28)
given by

lim
tQ ±.

d
dt

o12(ci(t))

> d
dt

o12(ci(t))>
=(0, ±2a, + |li |, −4)
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are tangent to the center manifolds Cr, 1/a, 1 (see Table I). Note that the
generalized eigenvector (0, 0, by1 ±c, −4) of Table I is an eigenvector at the
equilibrium P ±

li
, i=1, 2. This implies the assertion. L

The dynamics in chart o1 near a special solution ci in the hyperplane
r1=0 is illustrated in Fig. 12.

Remark. Similar calculations show that in the case b=0 the family of
special solutions (26) approaches the same point P ±

li
in chart o1 and Pro-

position 4.2 holds too. The only difference arises in the calculation of the
tangent vectors at the equilibria (28). For k=0 we obtain the same vector
as before. All the other special solutions with k ] 0 approach the equilibria
tangent to the vector (0, 1, 0, 0); i.e., they are also tangent to the center
manifolds Cr, 1/a, 1 (see Table I). Note that the special solution with k=0 is
unique in chart o1. In the following we will just focus on this special
solution (25).

The center manifolds Ca, 1 resp. Cr, 1 can be extended along the special
solutions. Thus, the special solutions correspond to the intersection of the

FIG. 12. Dynamics near a special solution in chart o1 in hyperplane r1=0.
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center manifolds C̄a resp. C̄r on the sphere S3. In the next section we want
to obtain a transversality condition for this intersection, which implies the
persistence of the intersection between the center manifolds M̄a and M̄r of
the full blown-up problem (18), i.e., the existence of maximal canards.

4.3. Existence of Canards

For faux canards we obtain a result immediately.

Proposition 4.3. Assume system (8). A singular faux canard implies the
existence of a two parameter family of faux canard solutions for sufficiently
small e.

Proof. The special solution corresponding to a singular faux canard
starts in a repelling domain and ends in an attracting domain, i.e. we are in
a source-sink like scenario. The special solution lies in the non-unique parts
of the center manifolds Cr, 1 and Ca, 1 (see Proposition 4.1). Hence, the cor-
responding center-unstable manifold Wu(Cr, 1) and the center-stable mani-
fold W s(Ca, 1) of the special solution have a full three-dimensional inter-
section. Thus, the intersection of the manifolds Wu(M̄r) and W s(M̄a) is
full. L

For special solutions corresponding to singular canards transversality is
not obvious and we will argue by using the variational equation.

Proposition 4.4. Let ci be a special solution (25) corresponding to a
singular canard. If ċi is (up to a multiplicative constant) the only algebraic
solution of the variational equation of system (24) along ci, then the intersec-
tion of C̄a and C̄r along ci is transversal.

Proof. We have seen that the special solution emanates from the center
manifold Ca, 1 and approaches the center manifold Cr, 1 in the hyperplane
r1=0 of chart o1, where Ca, 1 is strongly attracting while Cr, 1 is strongly
repelling. Thus, solutions of system (24) which are not emanating from Ca, 1

and approaching Cr, 1 are growing exponentially in backward or forward
time. The variational equation along ci acts on the tangent bundles TciR

3.
The only possibility to obtain solutions of the variational equation which
are not growing exponentially are those who are in the intersection of
TciCa, 2 and TciCr, 2 in the subspace r2=0, where Ca, 2 and Cr, 2 are the
extensions of the center manifolds Ca, 1 and Cr, 1 along ci in chart o2. The
solution ċi lies always in the intersection of TciCa, 2 and TciCr, 2 by definition.
If ċi is the only algebraic solution of the variational equation, then the
intersection of TciCa, 2 and TciCr, 2 and hence the intersection of Ca, 2 and Cr, 2

is transversal along the special solution (see Fig. 13). L
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FIG. 13. Extensions of center manifolds Ca, 1, Cr, 1 in chart o2.

In the following we derive conditions for transversality. To obtain a
better geometrical understanding we first rectify the special solution along
the z2-axis. This is done by the coordinate transformation

(x2, y2, z2, r2)W 1x2+z2
2+

li

2
, y2+

2a
li

z2, z2, r2 2 .

Applying this coordinate transformation to system (23) leads to

x̃ −2=2x̃2z2+bỹ2+r2(h̃1+2z2 h̃3)

ỹ −2=
2a
li

x̃2+r2 1 h̃2+
2a
li

h̃3
2

z −2=x̃2 −
li

2
+r2 h̃3

r −2=0.
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The special solution (25) is transformed to

c̃i(t)=10, 0, −
li

2
t, 02 .(29)

The variational equation along l̃i is

uŒ=−litu+bv

vŒ=
2a
li

u

wŒ=u,

(30)

which can be written for b ] 0, li ] 0 as a homogeneous second order
differential equation

uœ+lituŒ+li(1−mi) u=0,(31)

with

mi :=
l1l2

l2
i

.

Proof of Theorem 4.1. Proposition 4.4 implies that the intersection is
transversal, iff all solutions of the homogeneous problem (31) grow
exponentially in forward or backward time.

Recall by Lemma 2.3 that li < 0 for singular canards. Hence, we inves-
tigate the homogeneous problem (31) just for negative eigenvalues. Keeping
this fact in mind, we rescale time by

t== 2
|li |

y(32)

and obtain the Weber equation

ü−2yu̇+2(mi −1) u=0.(33)

If mi is a natural number, i.e., mi=n ¥N, then the polynomial solution u(y)
of (33) is the Hermite polynomial Hn−1(y). This solution has n−1 alternat-
ing zeros in a neighbourhood of y=0. For n−1 < mi < n exist two linearly
independent solution u1(y) and u2(y) with the property that u1(y) (resp.
u2(y)) grows algebraically as y Q. (resp. y Q −.) but grow exponentially
as y Q −. (resp. y Q.). Furthermore, these solutions also posses n−1
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alternating zeros. Properties of the Weber equation are, e.g., covered in
[AS64].

The above calculations and Proposition 4.4 imply that on the sphere S3,
i.e., r̄=0, the center manifolds C̄a and C̄r intersect transversally along ci iff
mi ¨N. Since C̄a and C̄r are two-dimensional submanifolds of the three-
dimensional manifolds M̄a and M̄r, it follows that M̄a and M̄r intersect
transversally in a neighbourhood of ci. By blowing down the same holds
for Ma and Mr. It follows from Proposition 4.1 that the slow manifolds
Sa, e and Sr, e are exponentially close to e-sections of Ma and Mr. Hence, Sa, e

and Sr, e intersect in a maximal canard solution.
In the folded saddle scenario we have l1 < 0 < l2 which implies that

m1=l2/l1 is negative. Thus, in the folded saddle scenario a singular canard
always perturbs to a canard solution for sufficiently small e.

In the folded node scenario we have l1 < l2 < 0 which implies that
0 < m1 < 1 for solutions corresponding to l1 and 1 < m2 for solutions cor-
responding to l2. Hence, in the folded node scenario a canard solution
corresponding to the stronger eigenvalue l1 exists for sufficiently small e.
A canard solution corresponding to the weaker eigenvalue l2 exists, if
l1/l2 ¨N is not a natural number. L

The geometrical meaning of the parameter m2 is described in the
following

Lemma 4.4. Suppose we are in the node scenario and that n−1 < m2 < n
holds for the special solution l2. Then the slow manifolds Sa, e and Sr, e twist
n−1 times around the corresponding maximal canard solution in the
neighbourhood of the fold-curve.

Proof. The solutions (u(t), v(t)) of system (30) correspond to the
transversal directions along c̃2(t) of the tangent bundle Tc̃2 (t) C̄a, 2 resp.
Tc̃2(t) C̄r, 2. Thus, the quotient u(t) v−1(t)=tan j(t) corresponds to the
rotation angle j(t) of the tangent bundles along the special solution. We
substitute

u
v
=

l2

2a
kŒ

k

and rescale time by (32) to obtain again the Weber equation

k̈−2yk̇+2m2k=0.(34)

For n−1 < m2 [ n all nontrivial solutions k(y) of (34) posses n alternating
zeros in the neighbourhood of the origin. Thus, v(t) has n zeros which
correspond to n poles of tan j(t). Hence, the rotation angle j(t) is
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p/2+(n−1) ·p. This corresponds to n−1 twists of each tangent bundle
Tc̃2(t)C̄a, 2 resp. Tc̃2(t)Cr, 2 around the special solution c̃2. The twisting-number
is an invariant geometric property and holds also for Tl2(t)Ca, 2 resp.
Tl2(t)Cr, 2. In the case n−1 < m2 < n the corresponding center manifolds Ca, 2

and Cr, 2 intersect transversally. At a resonance, i.e., m2=n ¥N, the tangent
bundles of the corresponding center manifolds match up, i.e., Tl2(t)Ca, 2=
Tl2(t)Cr, 2 for all t, forming a single band with n twists. In this case the
intersection of the corresponding center manifolds Ca, 2 and Cr, 2 is not
transversal. When m2 is passing through a resonance the number of zeros of
solutions u(t) and v(t) changes by unity and this leads to one more twisting
of the band. For another description of this geometric property we refer to
[Ben90, MKKR94]. L

The next results concern the degenerate scenarios.

Proposition 4.5. In the folded node scenario of system (8) all reso-
nances m2 ¥N can be realized by variation of the parameter b.

Proof. The eigenvalues in the folded node scenario are l1, 2=
((c + `c2−8ab)/2 with 0 < 8ab < c2. A resonance occurs for l1/l2 ¥N.
The limit limbQ 0+ l1/l2=. gives the folded saddle-node scenario for the
zero eigenvalue. The limit limbQ c2/8a− l1/l2=1 gives the folded degenerate
node scenario. Thus, all resonances occur since the term l1/l2 as a function
of b is strictly decreasing for b ¥ (0, c2/8a). L

We have no result in the folded degenerate node scenario of system (8)
since for m=1 transversality is violated. Hence, we do not know if canards
exist in this case.

The derivation of the Weber equation holds only for b ] 0, li ] 0. Thus,
we obtain for m1=0, i.e., in the folded saddle-node case with (a=0, b ] 0),
that the corresponding Weber equation (33) has only solutions with
exponential growth.

Proposition 4.6. In the folded saddle-node scenario of system (8) with
(a=0, b ] 0) a singular canard corresponding to the nonzero eigenvalue
l1=c < 0 of the linearization of the desingularized flow (12) always perturbs
to a canard solution for sufficiently small e.

In the other scenario (a ] 0, b=0) of the folded saddle-node case we see
immediately that the variational equation (30) has a family of bounded
solutions which is due to the existence of the family of special solutions
(26); i.e., the existence of canards cannot be shown by means of transver-
sality for r2=0.
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Remark. Our transversality argument was based on the variational
equation along special solutions in the unperturbed subspace r2=0 in chart
o2; i.e., we did not use the information of the perturbation. Measuring the
distances of the center manifolds M̄a and M̄r along the special solutions in
the whole blown-up system allows to analyse the non-transversal cases.
This is done by a Melnikov-type argument on unbounded domains in chart
o2. The bifurcation analysis of canards in the resonant folded node cases
and in the subcase (a ] 0, b=0) of the folded saddle-node based on these
ideas will be the topic of another publication. We expect that these bifur-
cations are important for the global, dynamics of systems like the forced
van der Pol oscillator (15).
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