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Igor Škrjanc1 and Dejan Dovžan2
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Abstract
This paper presents an idea of evolving Gustafson-Kessel possibilistic c-means clustering
(eGKPCM). This approach is extension of well known possiblilistic c-means clustering (PCM)
which was proposed to address the drawbacks associated with the constrained membership
functions used in fuzzy c-means algorithms (FCM). The idea of possiblistic clustering is ap-
pealing when the data samples are highly noisy. The extension to Gustafson-Kessel possibilistic
clustering enables us to deal with the clusters of different shapes and the evolving structure
enables us to cope with the data structures which vary during the time. The evolving nature
of the algorithm makes it also appropriate for dealing with big-data problems. The proposed
approach is shown on a simple classification problem of unlabelled data.
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1 Introduction

The fuzzy c-means clustering (FCM) proposed by Dunn [9] and generalized by Bezdek [5] fails in
dealing with strongly noisy data. The reason for that is the concept of membership values which
are normalized distances between the current samples and the prototypes/clusters. Meaning
that the outliers will also have a membership degree to the closest cluster that is rather high. To
avoid this the membership degrees in [15] are interpreted as a relative typicality. The samples
which are far from all of the prototypes and could therefore be outliers are accordingly weighted.
This means that the membership values for such data samples are low and do not contribute
as much as the good data to the prototypes’ means and covariance matrices.

To overcome this disadvantage of FCM the possibilistic c-means (PCM) clustering algorithm
was introduced by Krishnapuram and Keller [11]. The basic idea is in relaxation of the restric-
tion which is given by the relative typicality (membership degrees) proposed in FCM algorithm.
The disadvantages of the algorithm is the sensitivity to the initial values of its parameters and
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the possible coincidence of several prototypes/clusters in the same location. The solution which
avoids the prototypes at the same position is presented in [17]. A hybrid algorithm where both
algorithms, FCM and PCM are combined in possiblistic fuzzy c-means clustering (PFCM) is
proposed in [15]. This is an attempt to combine both algorithms to estimate the prototypes of
data sets as a function of the internal resemblance and external dissimilarity. These algorithms
are all based on Euclidian distance and therefore the identified clusters are of hyper-spherical
shapes. More flexibility in the sense of shape is given by introducing the Mahalanobis distance
into the algorithm as proposed in [14]. This allows detection of the hyper-ellipsoidal form of
clusters.

In recent years there has been an increased interest to the on-line nonlinear model identifi-
cation that combine different approaches from fuzzy logic. The main difference between them
is in their clustering algorithms. Most of the on-line clustering algorithms are derived from the
off-line clustering algorithms. For example in [10] and in [7] on-line Gustafson-Kessel clustering
algorithm is derived, in [4] an on-line version of subtractive clustering technique [6] is derived,
in [16] the recursive method based on Gath-Geva clustering algorithm is given and in [13] re-
cursive possibilistic fuzzy modeling approach is given. Most of the on-line clustering algorithms
are based on the Euclidian distance [3], [1] making the identified clusters of a hyper-spherical
shapes [2]. A step forward was introducing the recursive calculation of fuzzy covariance matrix
its inverse and determinant [7], [10], allowing the use of Mahanalobis distance in the recursive
and evolving fuzzy model identification and clustering [8]. More on evolving approaches and
on-line clustering can be found in [12].

Following the requirements to have the algorithm which could deal with different cluster
shape, volume and also with a big-data problems in an on-line manner, the evolving Gustafson-
Kessel Possibilistic Fuzzy c-means clustering algorithm (eGKPFCM) is given in our paper.
The proposed approach tries to deal with a common issue of the on-line and evolving fuzzy
model identification and clustering. Most of the currently available methods are more or less
prone to outliers. During the research it was found out that it is almost impossible to do on-
line clustering with absolute typicalities without a buffer. Therefore the proposed method, in
contrast with above mentioned methods, employs a buffer for atypical samples. New prototypes
are then identified from the buffered data.

The paper is organized as follows: after the introduction the Gustafson-Kessel Possibilistic
c-Means Clustering algorithm is given. In the next section the Evolving Gustafson-Kessel
Possibilistic c-means clustering is presented with and demonstrated on two generic examples.
At the end some conclusions are made.

2 Gustafson-Kessel Possibilistic c-Means Clustering algo-
rithm

The main objective in clustering is to find the internal structure of data set to partition this set
into c different clusters. The members of these clusters are among each other more similar than
in comparison with the elements from the other clusters. The similarity is given by different
measures.

The possibilistic clustering aims at minimizing the criterion function

IPCM =

c∑
j=1

n∑
k=1

μη
jkd

2
jk +

c∑
j=1

ν2j

n∑
k=1

(1− μjk)
η

(1)

where c stands for the number of clusters, n is the numbers of data samples, d2jk is the distance
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measure from the j − th cluster prototype to the k − th observed sample, μjk is the typicality
of the k− th sample regarding the j− th cluster prototype and νj stands for the fuzzy variance
of the j − th cluster.

By solving the optimization problem using Picard iteration and assuming Euclid distance
similarity measure the cluster prototype, with the dimension 1×m, is defined as follows:

vj =

∑n
k=1 μ

η
jkzk∑n

k=1 μ
η
jk

(2)

where zk stands for data sample and μjk stands for the typicality which is calculated as follows

μjk =

⎛
⎝1 +

(
d2jk
ν2j

) 1
η−1

⎞
⎠
−1

, ν2jk =

∑n
k=1 μ

η
jkd

2
jk∑n

k=1 μ
η
jk

(3)

where η denotes the fuzziness parameter. The Mahalanobis distance which is further used in
the calculation of the typicality is defined as

d2jk = (zk − vj)Aj(zk − vj)
T , Aj = (ρj | Fj |)

1
m F−1

j (4)

where the variable ρj =| Ai | and Fi is the fuzzy covariance matrix of dimension m×m defined
as follows

Fj =

∑n
k=1 μ

η
jk (zk − vj)

T
(zk − vj)∑n

k=1 μ
η
jk

(5)

In our case the typicality variable νjk (Eq. 3) was fixed to value δ. The δ is in our case a tuning
parameter which depends on the expected form of clusters, i.e., if we expect the clusters along
the line, or with very big ratio between the maximal and the minimal eigenvalue of the cluster
covariance matrix, this factor should be small.

This kind of clustering algorithm may overcome the problems of clustering a noisy data sets,
what can happen when using FCM clustering algorithm. Also different shapes of clusters can
be detected in the data. GKPCM is on the other side very sensitive to good initialization and
it results very often in coincident clusters. This can be an advantage, because we can initialize
the algorithm to a larger number of clusters, bigger than the possible number of clusters, and
than we can extract the real clusters from that obtained set, where also some degenerated and
coincident clusters appears. This idea was used in our approach in the evolving algorithm.

2.1 Problems of cluster number in GKPCM

The problems connected to the cluster number in GKPCM will be discussed next. If we assume
the number of clusters in the observed set as c and the number of assumed maximal number of
clusters defined as cmax, where cmax > c, than we will get cmax − c cluster centers with very
special characteristics. Either they will coincide with the centers of the real clusters or they
will be the centers of degenerated clusters which appear due to the noise in data set.

To show this problem an example with the data set with two explicit clusters in heavily
noisy data space will be used. The data set is generated by two different processes. The first
one has N1 = 25 samples (x11, x12) second one has also N2 = 25 (x21, x22):

x11 = N (10, 0.75) , x12 = x11 +N (10, 0.25) , x21 = N (−4, 0.50) , x22 = N (4, 0.25) (6)
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Figure 1: Example of GKPCM clustering
without elimination of coincident and degen-
erated clusters.

Figure 2: Example of GKPCM clustering
with elimination of coincident and degener-
ated clusters.

The data set is corrupted by strong noise which consists of 50 samples and is described as

xN1 = N (5, 8.00) , xN2 = N (10, 8) (7)

All these data samples are put into the data matrix Z = [z1 z2] of dimension 100 × 2, where

z1 =
[
xT
11 xT

21 xT
N1

]T
and z2 =

[
xT
12 xT

22 xT
N2

]T
. The pre-assumed maximal number of clusters

is equal to cmax = 6, the fuzziness parameter is equal η = 1.5, the maximal allowed trace of the
cluster covariance matrix is defined as tmax = 1.25 and the cluster shape parameter is equal
δ = 1. By using the GKPCM algorithm we get the solution on Fig. 1. The solution is due
to the stochastic nature of the algorithm not always the same. In this case 2 cluster centers
are obtained at the real clusters positions, v11 = 9.8061; v12 = 19.8345 and the second one
at v21 = −4.0829; v22 = 3.9328. The rest four clusters are in this case degenerated, due to
the noisy samples and outliers. In this case the false clusters are detected by the trace of the
covariance matrices which are far bigger than the traces of the covariance matrices for the real
two clusters. The false clusters can be also detected observing the form of the clusters, which
is given by the ratio between the eigenvalues of the covariance matrices or by the number of
the data samples in the cluster nj which should be bigger than pre-defined minimal allowed
number nmin. In the observed case the differences in trace are significant and are therefore
used to detect the unacceptable clusters. The unacceptable clusters are then removed. Fig. 2
shows the two remaining clusters.

The pseudo-code of the GKPCM clustering algorithm is given in Algorithm 1.

3 Evolving Gustafson-Kessel Possibilistic c-means clus-
tering

When dealing with the data stream in identification or in classification problem then the data
should be processed in an on-line manner. This means that the centers of prototypes and the
covariance matrices of the clusters are updated concurrently by taking into account the current
data sample. This data sample can be similar to one of the previous cluster prototypes or it can
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194



Algorithm 1 Pseudo-code of the GKPCM clustering algorithm.

Definition of the maximal number of prototypes cmax, the fuzziness parameter η, the termination
criteria ε, the parameters of the cluster shape δ, the parameters of the accepted maximal trace of
the cluster covariance matrix tmax, the accepted maximal ratio between the biggest and the smallest
eigenvalue γmax and the minimal allowed number of data samples in the cluster nmin.
Initialization of the membership degrees for cmax clusters by using FCM algorithm and definition of
the cluster volume ρj .
repeat

Computation of the cluster centers using Eq. 2,
Computation of the covariance matrices and the inner distance norm using Eq. 5,
Computation of the distances using Eq. 4,
Computation of the absolute typicality using Eq. 3 and ( νjk = δ),

until ‖ΔU‖∞ < ε, where U is matrix of all typicalities
Elimination of the cluster centers which have:

trace (Fj) > tmax or
λjmax

λjmin

> γmax or nj < nmin, j = 1, ..., cmax.

be different from all of them. If it is different, than it could be a sample from a new cluster or
it could be a noisy data which does not belong to any of the clusters. This implies the solution
where the on-line clustering is combined with a batch clustering approach. If the data samples
does not belong to any of the clusters, it goes to the buffer and when the buffer is full, the
batch version of GKPCM is used to find out if there is any new cluster inside the buffer. If it is,
the initial center and initial covariance matrix are added to the previous centers and covariance
matrices set. When dealing with strongly noisy environment and having a lot of outliers this
can be a good and possible the only robust solution for on-line clustering.

At the beginning of the algorithm the following parameters should be defined: the number
of samples in the buffer nbuf , the minimal typicality of the data sample μmin, the fuzziness
parameter η, the termination criteria ε, the parameters of the cluster shape δ, the parameters
of the accepted maximal trace of the cluster covariance matrix tmax and the accepted maximal
ratio between the biggest and the smallest eigenvalue γmax,cmax is the maximal possible number
of cluster centers in the data buffer and the forgetting factor is defined as γ.

In the initialization also the first nbuf data samples are used to calculate the initial cluster
centers using GKPCM algorithm.

When a new data sample is obtained, the typicalities of the sample to the current set of
cluster prototypes are calculated (Eq. 3). If the maximal typicality is bigger than μmin than
the sample belongs to the cluster with the biggest typicality. The maximal typicality of the
current data sample is defined as μpk = maxj μjk, where index p defines the cluster with the
maximal typicality. If μpk > μmin than the cluster with the index p will be adapted:

vpk = vp,k−1+
1

np
(zk − vp,k−1) , Fpk =

1

np
Cpk, Cpk = γCp,k−1+(zk − vp,k−1)

T
(zk − vpk) (8)

where np stands for the current number of samples in p− th cluster, vpk and Fpk for the center
and covariance matrix of p− th cluster.

If the maximal typicality is lower than the threshold value (maxj μjk < μmin), the data
sample is put into the buffer. When the data buffer is full (nbuf ), new clusters are identified
by using GKPCM algorithm on the buffer data.

The pseudo-code of the Evolving Gustafson-Kessel Possibilistic c-means clustering algorithm
is given in Algorithm 2.
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Algorithm 2 Pseudo-code of the eGKPCM clustering algorithm.

1: Definition of the maximal number of prototypes cmax, the fuzziness parameter η, the termination
criteria ε, the parameter of the cluster shape δ, the parameter of the accepted maximal trace of
the cluster covariance matrix tmax and the accepted maximal ration between the biggest and the
smallest eigenvalue γmax, the minimal typicality of the data sample μmin, the number of required
samples in the cluster nmin, the number of data samples in the buffer nbuf and the forgetting factor
is defined as λ.

2: Detection of the cluster centers from the first nbuf data samples using GKPCM and detection of
the number of the data samples in each new clusters nj .

3: k → nbuf + 1
4: repeat
5: Computation of the absolute typicalities for a new data samples to all cluster.
6: if the maximal typicality ≥ μmin then
7: adapt the current cluster centers and the covariance matrices
8: else
9: put the data sample into the buffer

10: end if
11: if the number of elements in buffer ≥ nbuf then
12: Calculate new cluster centers by GKPCM algorithm and empty the buffer
13: end if
14: Increment of current sample k → k + 1
15: until k > N (the end of the data set)

3.1 An example of eGKPCM clustering algorithm

The evolving algorithm is shown on the data set generated by four processes. The data of
these processes form clusters in two dimensional space of different shape, orientation and with
the different number of samples. The environment is heavily noisy. At the beginning first two
processes are in function and they produce data stream randomly. This means that the data
in the stream comes randomly from these two processes and from the noise generator. After
sample 300 two more processes start generating the data. The first process (x11, x12) generates
N1 = 450, the second process (x21, x22) generates N2 = 125 samples as:

x11 = N (3, 0.75) , x12 = x11 +N (3, 0.25) , x21 = N (−4, 0.50) , x22 = N (4, 0.25) (9)

The third process (x31, x32) generates N3 = 75 and the fourth process (x41, x42) generates
N4 = 50 samples as:

x31 = N (0, 0.75) , x32 = N (0, 0.75) , x41 = N (−4, 0.75) , x42 = −x41 +N (10, 1) (10)

The data are corrupted with strong noise which consists of NN = 100 samples and is described
as

xN = N (0, 12.00) , xN = N (0, 18.00) (11)

The stream is formed randomly.
The pre-assumed maximal number of clusters is equal to cmax = 2, the fuzziness parameter is

equal η = 1.5, the maximal allowed trace is defined as tmax = 1.00, the cluster shape parameter
δ = 2, the minimal typicality μmin = 0.02, the forgetting factor γ = 0.996 and the data buffer
is equal to nbuf = 20. The number of minimal samples in a cluster was set as nmin = 8. The
solution obtained with the GKPCM is shown in Fig. 3 and Fig. 4. In Fig. 3 the results of
the initial phase are shown. Figure shows the starting cluster after initialization. The outside
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Figure 3: Example of eGKPCM clusters and
centers in the initial phase.

Figure 4: Example of eGKPCM clusters and
centers in the final phase.

Figure 5: Example of eGKPCM cluster cen-
ters evaluation during the learning.

Figure 6: Example of the covariance matrices
determinants and traces evaluation during the
learning.

contour shows the typicality of 0.01. In Fig. 4 the end result is shown. The adaptation of
cluster centers is shown on Fig. 5. The adaptation of the fuzzy covariance matrix is shown
on Fig. 6 trough the representation of the determinant and trace. In Fig. 4 the final shape,
orientation and position of the clusters is shown and in Fig. 5 the evaluation of cluster centers
in both coordinates is presented.

4 Conclusion

In this paper we presented a novel idea for on-line clustering algorithm that is resistant to
outliers, noise and can deal with the clusters of different shape, volume, size and can also cope
with the big-data problems. The functioning was presented on a generic data example, with a
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lot of present noise. The obtained results are very encouraging. Even with a lot of present noise
the cluster centers were identified perfectly. We believe that the proposed approach can be very
effective for big-data problems and on-line fuzzy model identification. The only disadvantage
at the current stage is that algorithm still a few parameters, that should be defined by the
user. In further investigation the effects of these parameters on the clustering results will
be investigated. We hope to improve degenerative cluster elimination procedure in the sense
of making it automatic without user defined thresholds or parameters. The future work will
include the testing of the algorithm on real big-data problems and try to see how does the
method cope with high dimensionality problems.
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