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Thrombocytopenia with absent radii (TAR) syndrome is a rare

disorder combining specific skeletal abnormalities with a

reduced platelet count. Rare proximal microdeletions of 1q21.1

are found in the majority of patients but are also found in

unaffected parents. Recently it was shown that TAR syndrome

is caused by the compound inheritance of a low-frequency

noncoding SNP and a rare null allele in RBM8A, a gene

encoding the exon-junction complex subunit member Y14

located in the deleted region. This finding provides new insight

into the complex inheritance pattern and new clues to the

molecular mechanisms underlying TAR syndrome. We discuss

TAR syndrome in the context of abnormal phenotypes

associated with proximal and distal 1q21.1 microdeletion and

microduplications with incomplete penetrance and variable

expressivity.
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Clinical features
Thrombocytopenia with absent radii (TAR) syndrome is

characterized by a reduction in the number of platelets

(the cells that make the blood clot) (generally below

50 � 109 L�1, normal range 150–350 � 109 L�1) and

the absence of one of the bones in the forearm (the

radius) but with preservation of the thumb.

TAR syndrome was first described by Gross et al. [1] and

Shaw and Oliver in 1959 [2], but Judith Hall was the first

to define it as a syndrome in 1969, presenting clinical
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findings in a cohort of 40 patients [3]. The presence of the

thumbs distinguishes TAR from other syndromes that

combine blood abnormalities with absence of the radius,

such as Fanconi anemia [3–5]. The severity of skeletal

abnormalities varies from absence of radii to virtual

absence of upper limbs (phocomelia) with or without

lower limb defects, such as malformations of the hip

and knee [3,5]. TAR cases have low numbers of mega-

karyocytes, the platelet precursor cells that reside in the

bone marrow, and cases frequently present with bleeding

episodes in the first year of life [3,5]. A remarkable feature

of TAR syndrome is that the platelet count can improve

with age and bleeding diminishes [5]. Other symptoms

have been described in a series of 34 TAR patients [6],

with renal anomalies and cardiac anomalies in respect-

ively 23% and 15% of patients, and 47% suffering from

intolerance to cow’s milk.

Genetic mechanism
TAR syndrome has an incidence of approximately 1 in

240 000 births [7] and was thought to be inherited as an

autosomal recessive disease [8] based on finding affected

siblings. There is however no clear evidence of increased

incidence in consanguineous families with only one case

reported [9]. On the other hand, vertical parent-to-child

transmission has been reported [10], as well as the case of

a male patient and maternal uncle [11]. This unusual

inheritance pattern has complicated the application of

classic linkage analysis methods and homozygosity map-

ping approaches. Initial attempts to resolve the genetic

basis of TAR syndrome have therefore consisted mainly

of candidate gene studies [12,13] and identification of

abnormal karyotypes [6]. Stripploi et al. [13] failed to

identify mutations in c-mpl, the receptor for thrombo-

poietin, the principal cytokine regulating platelet pro-

duction. No mutations were identified either in HoxA10,

HoxA11, and Hox12 [12] even though HoxA11 has been

associated with amegakaryocytic thrombocytopenia [14].

In 2007 Klopocki et al. [15��] identified proximal micro-

deletions of 1q21.1 in all of 30 TAR patients tested. The

deletion was inherited paternally in 5 cases and mater-

nally in 12 cases and occurred de novo in a further 5 cases

[15��]. The deletion is rare but segregates in the popu-

lation: it was observed twice in a set of 8329 unaffected

adult controls [16]. The parents of TAR patients who

carried the microdeletion were unaffected. The authors

therefore suggested that the deletion was required but
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Compound inheritance of a low-frequency noncoding SNP and a rare null mutation in RBM8A causes TAR syndrome. The gray box shows the two

noncoding SNPs in respectively the 50UTR (chr1: 145 507 646 G/A, hg19) and the first intron (chr1: 145 507 765 G/C, hg19) of RBM8A that were

identified in a series of 55 TAR cases analyzed by Albers et al. [17��]. The minor allele frequency (MAF) of each SNP is indicated below each variant.

One of these two noncoding SNPs was present with either a rare proximal 1q21.1 deletion (see also Figure 3), or a novel loss-of-function mutation

(frameshift insertion or nonsense mutation) in RBM8A in 53 TAR cases. The four inheritance patterns and the corresponding number of cases that were

observed in Ref. [17��] are shown below the gene.
not sufficient to explain TAR and that a second causative

allele (sometimes described as a modifier) must exist.

They sequenced the protein coding sequence of 10 genes

in the �200 kb region that was deleted in all 30 patients,

but no mutations were identified.

Low-frequency noncoding SNPs in RBM8A
In order to identify the second causative allele, we used

high-throughput sequencing of DNA enriched for

protein-coding genes (exome-sequencing) in five unre-

lated TAR cases with a 1q21.1 deletion [17��]. Assum-

ing autosomal recessive inheritance, we hypothesized

that the second causative allele would most likely be

located in the 200 kb minimal deleted region identified

by Klopocki et al. However, we also could not identify

any rare deleterious protein-coding variants in the same

gene in all five cases. We then considered all low-

frequency variants (<5%) in the minimal deleted

region, regardless of their predicted consequences, as

potentially causative. This allowed us to identify a low-

frequency SNP (allele frequency 3%) in the 50UTR

region of the gene RBM8A in four of the TAR cases

sequenced and a low-frequency SNP (allele frequency
www.sciencedirect.com 
0.4%) in the first intron of the same gene in the last case

(Figure 1). The frequency of the TAR deletion (1/8329,

Ref. [16]) and the frequency of two noncoding SNPs

are roughly consistent with the incidence of 1:240 000

reported in Ref. [7]. In principle, the technique of

exome-sequencing is focused on enriching for exonic

regions. However, due to partial overlaps with the

hybridization probes and capture design to enable

detection of intronic splice site mutations, it is often

possible to call sequence variants within 50 bp of the

targeted regions. This allowed us to identify both the

50UTR SNP and the intronic SNP from the targeted

resequencing of exons.

The findings were confirmed by Sanger sequencing in a

further 48 individuals with TAR and a 1q21.1 deletion,

with co-inheritance of the 50UTR SNP in 35 cases and the

intronic SNP in a further 11. Crucially, an additional two

patients who did not have the deletion but carried the

50UTR SNP were found to carry a loss of function

mutation on the other RBM8A allele (frame shift insertion

and premature termination codon). From these data we

concluded that it is the compound (bi-allelic) inheritance
Current Opinion in Genetics & Development 2013, 23:316–323
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Figure 2
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The noncoding SNPs found in TAR cases are located in regulatory elements in megakaryocytes, the precursor cells of platelets. Sequencing of RNA

from cord-blood-derived megakaryocytes showing that RBM8A is expressed in megakaryocytes. Histone modifications from the ENCODE Project [59]

in seven cell lines (GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, and NHLF) indicate the presence of regulatory elements at the promoter and

first intron of RBM8A. H3K4Me1 is often found near regulatory elements, H3K4Me3 is often found near promoters and H3K27Ac is often found near

active regulatory elements (UCSC Genome Browser). FAIRE marking regions of open chromatin showing that the 50UTR SNP and first intron SNP are

accessible to DNA binding proteins in megakaryocytes. Computational modeling predicted that the 50UTR SNP minor allele creates a binding site for

the transcription factor Evi1, a transcriptional repressor. It was shown that in vitro the minor allele of the 50UTR shows increased binding of Evi1 [17��].

Thus, epigenetic annotation facilitates interpretation of sequence variants in nonprotein-coding sequence.
of a noncoding SNP together with a null mutation in

RBM8A that causes TAR syndrome.

A number of unaffected parents were found to be

homozygous for the 50UTR SNP, demonstrating that

being homozygous for one of the two regulatory var-

iants is not sufficient to cause TAR syndrome. The two

noncoding TAR SNPs are present at low frequency in

European population, but were not detected in African

populations in Phase 1 of the 1000 Genomes Project

[18]. There have been reports of TAR in the Nigerian

population [19], and it would therefore be interesting to

see if the mechanism of inheritance and sequence

variants in RBM8A described above explain TAR in

that population as well.

Reduced expression of Y14, the protein
encoded by RBM8A, in TAR patients
The two noncoding variants are located in regulatory

elements in megakaryocytes, the precursor cell of platelets

(Figure 2) [17��]. The level of Y14, the protein encoded by

RBM8A, was found to be significantly lower in the platelets
Current Opinion in Genetics & Development 2013, 23:316–323 
of TAR patients [17��]. This strongly suggests that the

mechanism by which the compound inheritance of the

noncoding variant and the rare null allele causes TAR

syndrome is by reducing the expression of Y14 below a

critical threshold [17��]. How this happens exactly is not

clear, and the molecular mechanism may be different for

the 50UTR SNP and the intronic SNP. In reporter assays

the minor 50UTR allele and the intronic allele led to

decreased transcription in megakaryocytic cell lines, but

not in a vascular endothelial cell line [17��]. Together with

the noncoding nature of the two SNPs, this strongly

suggests tissue-dependent and possibly developmental

stage-dependent effects of the two noncoding SNPs on

RBM8A expression. The minor allele of the 50UTR SNP

was furthermore shown to result in increased binding of the

transcription factor EVI1 in vitro [17��]. However, it is not

clear at this stage if EVI affects transcription by binding to

the DNA (by acting as a transcriptional repressor in com-

petition with transcription factors binding to the normal

allele), or by inhibiting translation by binding to the RNA.

For the intronic SNP, reduced protein binding to the

mutant DNA sequence was demonstrated in vitro, but
www.sciencedirect.com
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we could not confirm definitively which specific transcrip-

tion factor binds to this particular regulatory region of the

RBM8A gene [17��].

RBM8A/Y14 is a member of the exon-junction
complex
Y14 is a small 174 aa protein with an RNA-binding

domain (Figure 1). Y14 is one of the four components

of the core exon-junction complex (EJC), which is

involved in basic cellular functions such as nuclear export

and subcellular localization of specific transcripts [20,21],

translational enhancement [22] and nonsense-mediated

RNA decay (NMD) [21,23,24]. The EJC is also associated

with splicing. It is deposited 24 nt upstream of exon–exon

junctions following pre-mRNA splicing [25]; in vivo the

majority of exon junctions carry an EJC [26]. It was

suggested that EJCs form ‘super-complexes’ with other

EJCs to promote mRNA packaging and compaction [26].

Knockdown of the Y14 ortholog tsu in Drosophila melano-
gaster results in major defects in abdomen formation [27],

and is lethal in Danio rerio [17��], highlighting the critical

importance of Y14 and the EJC during embryonic de-

velopment [28].

Biological mechanisms implicated in
hematological features of TAR syndrome
What is not clear at this stage is how a deficiency in Y14

exerts its effect at a cellular level and in particular how

it affects the production of megakaryocytes and plate-

lets. Several studies have focused on the characteriz-

ation of the nature of the thrombocytopenia in TAR

patients. There are clearly a low number of megakar-

yocyte progenitors in the bone marrow in TAR patients

[5,29,30] and this also translates in vitro where mega-

karyocyte colony output is virtually absent from

patients’ bone marrow progenitors [29–31]. In contrast,

erythroid and myeloid colony growth from the TAR

infants marrow cells was preserved, which strongly

suggests a lineage specific maturation defect or a differ-

entiation blockage [31]. Several studies have therefore

focused on potential signaling defects in TAR patients

as an explanation for this observation; in particular

downstream of the main cytokine that controls mega-

karyocyte differentiation (thrombopoietin, TPO) [32–
34]. The most recent study showed defects in throm-

bopoietin signal transduction in the platelets of 12/13

pediatric patients [34]. In particular these authors

showed a correlation between the lack of phosphoryl-

ation of the Jak2 kinase (directly downstream of the

thrombopoietin receptor) and the platelet count. Inter-

estingly this defect corrected with age with 10/11 adult

samples showing normal Jak2 phosphorylation in

response to TPO [34]. At this stage, there is no clear

evidence of how a deficiency in the EJC affects mega-

karyocyte maturation and how it would have an influ-

ence on the defective cell signaling described above.
www.sciencedirect.com 
Microdeletions and microduplications in the
1q21.1 region are associated with a variety of
phenotypes
Chromosomal region 1q21.1 is structurally complex: it

contains many segmental duplications (SDs) and the

region still contains several assembly gaps (Figure 3)

[15��,35–43]. Studies of microdeletions and microdupli-

cations of 1q21.1 showed that the break points of these

structural variants tended to co-occur with these SDs

[16,40�,42�], suggesting that the cause of many de novo
microdeletions and microduplications in this region is

nonallelic homologous recombination [36,42�,44,45]. As

an illustration of the likely impact of these repetitive

regions in 1q21.1 on the size of the deletion, the majority

(28/30) of the TAR patients studied by Klopocki et al.
carried a 500 kb deletion, and only one patient carried a

substantially smaller deletion (the ‘minimal deletion’

used to identify the noncoding TAR mutations in Ref.

[17��]). Given the qPCR probes used only variations in

the distal end but not in the proximal coordinates of the

deletion were identified in that study [15��].

Microdeletions and microduplications of 1q21.1 are

associated with a wide range of phenotypes. The

deletions associated with TAR syndrome are located

proximally (Figure 3). Distal 1q21.1 deletions and dupli-

cations are associated with microcephaly or macrocephaly

[40�,41], schizophrenia [38,39], and a spectrum of devel-

opmental delay, neuropsychiatric abnormalities, and dys-

morphic features and congenital anomalies

[16,35,37,40�,42�] but are not associated with a specific

syndrome [42�]. Patients with a deletion or duplication

spanning both the TAR region and the distal region have

been reported ([42�]; the ‘class II’ deletions and ‘class II’

duplications in Ref. [40�]), as well as patients with a

deletion in the TAR region and a duplication in the distal

region [40�]. Weak evidence for proximal 1q21.1 dupli-

cations in the absence of distal duplications being dele-

terious has been reported at P = 0.03 [46�] and P = 0.051

[16]. In a study of 15 767 children with intellectual dis-

ability and various congenital defects, distal deletions

were found to be most strongly associated with disease

of all 1q21.1 rearrangements [16]. Both the proximal and

distal deletions and duplications have been observed in

healthy control cohorts, so all rearrangements of 1q21.1

exhibit incomplete penetrance, although undiagnosed

more subtle phenotypes may be present.

Source of phenotypic variability
TAR syndrome provides an illustration of the challenge

of interpreting rare and large copy number variants. The

genetic heterogeneity underlying TAR syndrome appears

to be limited, yet in addition to the three essential

features of TAR, a wide range of additional phenotypes

can be observed. This begs the question of what accounts

for the phenotypic variability observed in TAR syn-

drome. One possibility is that it is simply variation in
Current Opinion in Genetics & Development 2013, 23:316–323
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Figure 3
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Microdeletions and duplications of 1q21.1 are associated with a wide range of phenotypes. TAR syndrome is associated with proximal deletions of

1q21.1 (see also Figure 1). Distal 1q21.1 deletions and duplications are associated with microcephaly or macrocephaly [40�,41], schizophrenia [38,39],

and a spectrum of developmental delay, neuropsychiatric abnormalities, and dysmorphic features and congenital anomalies [16,35,37,40�,42�] but are

not associated with a specific syndrome [42�]. The approximate breakpoints of the proximal and distal deletions and duplications are indicated by the

gray backgrounds. Segmental duplications (SDs) longer than 1 kb are shown, with SDs with more than 98% sequence similarity shown in orange. The

region contains many SDs and sequence gaps. Note that what was previously known (in build hg18) as the distal 1q21.1 deletion/duplication region

partially overlaps 1q21.2 in the UCSC browser of build hg19. (a) The smallest deletion observed in a TAR patient [46�] includes RBM8A. (b) This

atypical 200 kb TAR deletion was identified in a 2007 study of 30 TAR patients [15��] and was used to identify RBM8A as the gene underlying TAR

syndrome in 2012 [17��]. (c) Typical TAR deletion observed in 28 of 30 TAR patients in the 2007 study [15��]. (d) A range of deletions and duplications

was observed in two 2008 studies of the 1q21.1 region [40�,42�]. The ‘class I’ and ‘class II’ terminology is taken from Ref. [40�]. (e) Recently, proximal

duplications in the TAR region in the absence of distal rearrangements were found to be weakly associated with the development of abnormal

phenotypes [16,46�].
gene expression, which may be further modified by

environmental factors and statistical chance [47] that

accounts for the variability in phenotypes associated with

TAR. Subtle variations in activity of an essential gene of

which a complete knockout is incompatible with devel-

opment may result in a range of malformations. Alterna-

tively, it is possible that further modifier alleles on the

nondeleted chromosome account for the variability, in-

cluding epigenetic alleles. For instance, the cow-milk

allergy and cardiac anomalies frequently observed in

TAR patients have also been observed in individuals

referred for cytogenetic testing found to carry a proximal

1q21.1 deletion but without TAR syndrome [46�]; this

could be a consequence of incomplete penetrance of the

TAR mutations (noncoding variant combined with a null

allele) or of the existence of additional modifier alleles in

the proximal 1q21.1 region in genes other than RBM8A.

Interestingly, a sex-bias has been frequently reported for

TAR with an increased incidence in females (ratios vary
Current Opinion in Genetics & Development 2013, 23:316–323 
from 1:1.5 to 1:3.8, see Ref. [48] for an overview). A

detailed study of how the severity of the TAR phenotype

(skeletal abnormalities and thrombocytopenia) and the

range of additional phenotypes in TAR correlate with the

genotype of each individual patient would be of interest.

TAR shows that even relatively high-frequency variants

can have strongly deleterious effects when combined

with a rare deletion. It cannot be excluded that similar

effects can be identified for other genes in 1q21.1.

Although precedent for a noncoding functional SNP

modifying a deletion phenotype had been reported for

Sotos syndrome and factor XII deficiency [49], modifier

alleles and two locus models, distinct from the Knudson

second hit somatic event model [50], have recently

attracted increasing attention [51–53]. Coding variants

in the COMT gene on the nondeleted allele of individ-

uals carrying a 22q11.2 allele can affect cognitive function

[54,55]. Girirajan et al. demonstrated that a second large
www.sciencedirect.com
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CNV at a distinct genomic locus can contribute to

phenotypic variability in patients with developmental

disorders [56]. At the cystic fibrosis locus, an upstream

di-nucleotide repeat can modulate exon 9-skipping of the

CFTR gene, but only when activated by the T5 allele of

the polymorphic polythymidine tract in the 30 splice site

of exon 9 [57]. This explains the incomplete penetrance

of the T5 polymorphism [58], analogous to noncoding

SNPs explaining the incomplete penetrance of the 1q21.1

deletion in TAR syndrome.

Whole-genome high-throughput sequencing can simul-

taneously detect copy number variation and noncoding/

regulatory small variants that act as modifiers. Although

this will require large sample sizes, it may prove a way

forward to dissect the phenotypic variability associated

with copy number variation in rare disorders. With anno-

tation of noncoding regions [59] becoming increasingly

richer through large collaborative efforts such as the

ENCODE Project [59], and in particular the BLUE-

PRINT Project [60], which focuses on creating a highly

detailed epigenetic annotation of hematological cell

types, interpretation of additional causative alleles that

do not affect protein-coding sequence but instead affect

gene expression has become feasible. The annotation of

gene expression patterns in different cell types and

developmental stages should provide insight into possible

developmental aspects associated with the noncoding

mutations involved in TAR syndrome. Finally, integ-

ration with the data from large genome-wide association

studies of platelet parameters [61] may provide further

insights into downstream effects of Y14 deficiency on

platelet function.

Conclusion
TAR syndrome is caused by the compound (bi-allelic)

inheritance of one of two noncoding single-nucleotide

variants and a rare null allele in RBM8A. The two

noncoding variants, located in the 50UTR and first

intron, explain the incomplete penetrance of the prox-

imal 1q21.1 deletion and this new insight into the

inheritance pattern will benefit diagnostic testing as

well as counseling. The complex inheritance pattern

ultimately results in reduced expression of Y14, the

protein encoded by RBM8A and a core member of the

exon-junction complex (EJC), in platelets. Further

research is needed to explain how Y14 insufficiency,

and presumably subsequent defect of the EJC, explains

the unique skeletal, hematological and additional fea-

tures of TAR syndrome.
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