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Abstract

In this paper we construct an in nite family of Goethals–Seidel arrays and prove the theorem: If q=4n− 1 is a prime
power ≡ 3 (mod 8), then there exists an Hadamard matrix of order 4n of Goethals–Seidel type.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

An Hadamard matrix is a square matrix of ones and minus ones whose row (and therefore column) vectors are
orthogonal. The order v of such a matrix is necessarily 1, 2 or divisible by 4. It is a long standing unsolved conjecture
that an Hadamard matrix exists for v= 4n, n any positive integer. Constructions have been given for particular values of
n and even for various in nite classes of values (see [2,3] for background material). Since an Hadamard matrix of order
2v = 2(4n) can be easily constructed from one of order v, the question of the existence for all possible v is reduced to
the case where n is odd.
The Goethals–Seidel array is of the form



A BR CR DR

−BR A D′R −C′R

−CR −D′R A B′R

−DR C′R −B′R A


 ; (1)

where R is the back-diagonal identity matrix, A, B, C and D are circulant (1;−1) matrices of order n satisfying

AA′ + BB′ + CC′ + DD′ = 4nIn: (2)

If A, B, C, and D above are symmetric, then one gets a Williamson array

W =




A B C D

−B A −D C

−C D A −B

−D −C B A


 (3)
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with

A2 + B2 + C2 + D2 = 4nIn: (4)

The Goethals–Seidel array is a generalization of Williamson arrays. For detail discussion of more Goethals–Seidel
arrays, we recommend Ref. [3,6].
Turyn  rst found an in nite class of Williamson arrays in [4]. Then Whiteman gave a new proof for Turyn’s theorem

[5]. Whiteman’s method is both elegant and instructive. We will use this method to construct an in nite family of Goethals
–Seidel arrays.
The polynomials associated with the matrices A, B, C and D are

’1(�) = a0 + a1� + · · · + an−1�
n−1;

’2(�) = b0 + b1� + · · · + bn−1�
n−1;

’3(�) = c0 + c1� + · · · + cn−1�
n−1;

’4(�) = d0 + d1� + · · · + dn−1�
n−1;

where � is any nth root of unity. The coeHcients ai, bi, ci and di, i = 0; 1; : : : ; n − 1, comprise the  rst rows of A, B, C
and D, respectively. One may also associate a  nite Parseval relation with each ’i(�), i = 1; 2; 3; 4. For example, if the
coeHcients of ’1(�) are complex numbers, this relation is given for a  xed integer t by

n−1∑
i=0

ai Kai+t =
1
n

n−1∑
j=0

|’1(�
j)|2�jt ; (5)

where Kai+t is the conjugate of ai+t , and � = exp(2�i=n).
If the coeHcients ai, bi, ci, di (i = 0; 1; : : : ; n − 1) are real, then the identity

n−1∑
i=0

(aiai+t + bibi+t + cici+t + didi+t)

=
1
n

n−1∑
j=0

(|’1(�
j)|2 + |’2(�

j)|2 + |’3(�
j)|2 + |’4(�

j)|2)�jt

holds for each integer t. It follows that the matrix G in (1) is an Hadamard matrix of order 4n if the elements of A, B,
C and D are ±1, and if the identity

|’1(�
j)|2 + |’2(�

j)|2 + |’3(�
j)|2 + |’4(�

j)|2 = 4n; (6)

prevails for each nth root of unity � including �=1. The case �=1 of this identity is of particular interest, for it reveals a
remarkable connection between Goethals–Seidel array and the representation of 4n as the sum of four squares of integers.
The following construction gives an in nite family of Hadamard matrices of Goethals–Seidel type. It is natural to ask if

there is an Hadamard matrix of Goethals–Seidel type corresponding to every representation of integers as sum of squares.

2. Preliminaries on Galois �elds

Let GF(q) denote the Galois  eld of order q, where q= pt and p is an odd prime. Let � be a non-square element in
GF(q). Then the polynomial P(x) = x2 − � is irreducible in GF(q), and the polynomials ax + b (a, b∈GF(q)) modulo
P(x) form a  nite  eld GF(q2) of order q2. In what follows we will employ this concrete representation of GF(q2). If
g is a generator of the cyclic group of non-zero elements of GF(q2), then gq+1 =  is a generator of the cyclic group of
non-zero elements of GF(q). For arbitrary h∈GF(q2) de ne

tr(h) = h+ hq; (7)

so that tr(h)∈GF(q). It follows from this de nition that

tr(gk) = g(q+1)k tr(g−k) (8)

for an arbitrary integer k.
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Let q ≡ 3 (mod 4). For h∈GF(q2), h �= 0, let ind(h) be the least non-negative integer t such that gt = h. Let $ denote
a primitive eighth root of unity. Then

%(h) =

{
$ind(h); h �= 0;

0; h= 0;
(9)

de nes an eighth power character % of GF(q2). For a∈GF(q), a �= 0, put  j = a. By (9) we have %(a) = $(q+1) j .
Consequently %(a) = (−1)j if q ≡ 3 (mod 8) and %(a) = 1 if q ≡ 7 (mod 8). In the case q ≡ 3 (mod 8) this means
that %(a) reduces to the Legendre symbol in GF(q) de ned by %(a) = 1, −1 or 0 according as a is a non-zero square, a
non-square or 0 in GF(q). In the sequel we will assume that q ≡ 3 (mod 8). Accordingly we obtain from (8) that

%(tr(gk))%(tr(g−k)) = (−1)k ; tr(gk) �= 0: (10)

For a  xed &∈GF(q2) put &= cx+d, c, d∈GF(q). Then &∈GF(q) if c=0 and & �∈ GF(q) if c �= 0. We require the
formula∑

'

%(tr('))%(tr(&')) =

{
%(d)q(q − 1); c = 0;

0; c �= 0;
(11)

where the summation is over all '∈GF(q2). Put '=ax+b, a; b∈GF(q). By (7) we have tr(')=2b and tr(&')=2(ac�+bd).
Therefore∑

'

%(tr('))%(tr(&')) =
∑
b

%(2b)
∑
a

%(2(ac�+ bd))

and (11) follows at once.
For & �= 0 we may put &= gt (06 t6 q2 − 2) so that c= 0 if q+ 1|t and c �= 0 if q+ 1At. If c= 0, put t = j(q+ 1)

and then %(d) = (−1)j . The sum in (11) now becomes
q2−2∑
k=0

%(tr(gk))%(tr(gk+t)) =
q−2∑
h=0

h(q+1)+q∑
k=h(q+1)

%(tr(gk))%(tr(gk+t)):

The double sum on the right has the value 0 if q + 1At. Since %(tr(gk+q+1)) = −%(tr(gk)) the value of the inner sum is
the same for each h. For h= 0 we get, in particular,

q∑
k=0

%(tr(gk))%(tr(gk+t)) =

{
(−1)jq; q + 1|t;
0; q + 1At;

(12)

where, in the  rst case, t = j(q + 1).

3. Main results

The principal result of this paper is given in the following theorem.

Theorem 1. Let q be a prime power ≡ 3 (mod 8) and put n= (q+ 1)=4. Let g be a primitive element of GF(q2). Put

gk = (kx + $k ; (k ; $k ∈GF(q) (13)

and de8ne

ak = %((k); bk = %($k): (14)

Then the sums

f1(�) = a0 + a8� + · · · + a8(n−1)�
n−1;

f2(�) = b0 + b8� + · · · + b8(n−1)�
n−1;

f3(�) = a1 + a9� + · · · + a8(n−1)+1�
n−1;

f4(�) = b1 + b9� + · · · + b8(n−1)+1�
n−1; (15)

satisfy the identity

|f1(�)|2 + |f2(�)|2 + |f3(�)|2 + |f4(�)|2 = q (16)
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for each nth root of unity � including � = 1. Moreover, the following relations hold:

a0 = 0; a8i = −a8(n−i);

b0 = 1; b8i = b8(n−i);
16 i ¡ n: (17)

Proof. Since g is a primitive element of GF(q2), the integer k = (q + 1)=2 = 2n is the only value of k in the interval
06 k6 q for which tr(gk) = 0. Put g2n = !x, !∈GF(q). The numbers ak , bk in (14) satisfy the relations

bk+2n = −%(!)ak ; (18)

bk+4n = −bk ; (19)

bk+8n = bk : (20)

Moreover, from (13) it follows that

− (8ix + $8i = (g8i)q = g8n(4i−1)+8(n−i)

=  2(4i−1)((8(n−i)x + $8(n−i)); 06 i6 n; (21)

hence

(8i = − 2(4i−1)(8(n−i); $8i =  2(4i−1)$8(n−i); 06 i6 n: (22)

Therefore (17) is valid. Note that the periodicity property (20) implies
n−1∑
i=0

b8i+t =
n−1∑
i=0

b8i+s; t ≡ s(mod 8): (23)

If we replace b′s by a′s, then (20) and (23) would also be true.
Denote the sum in (12) by F(t). The assumption q ≡ 3(mod 8) implies that t=0 is the only value of t in the interval

06 t6 n − 1 for which 8t is divisible by q + 1. Thus it follows from (12) that

F(8t) =
q∑

k=0

bkbk+8t =

{
q; t = 0;

0; 16 t ¡ n:
(24)

On the other hand from (18), (19) and (24) we have

F(8t) =
3∑

k=0

n−1∑
i=0

b4i+kb4i+k+8t

=
3∑

k=0

n−1∑
i=0

b8i+knb8i+kn+8t

=
1∑

k=0

n−1∑
i=0

(a8i+kna8i+kn+8t + b8i+knb8i+kn+8t)

=
n−1∑
i=0

(a8ia8i+8t + b8ib8i+8t + a8i+1a8i+1+8t + b8i+1b8i+1+8t): (25)

Applying the  nite Parseval relation (5) we now obtain
n−1∑
i=0

(a8ia8i+8t + b8ib8i+8t + a8i+1a8i+1+8t + b8i+1b8i+1+8t)

=
1
n

n−1∑
j=0

(|f1(�j)|2 + |f2(�j)|2 + |f3(�j)|2 + |f4(�j)|2)�jt ; (26)

where � = exp(2�i=n).
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Combining (25) and (26) we get

F(8t) =
1
n

n−1∑
j=0

(|f1(�j)|2 + |f2(�j)|2 + |f3(�j)|2 + |f4(�j)|2)�jt : (27)

The inverted form of (27) is given by

|f1(�j)|2 + |f2(�j)|2 + |f3(�j)|2 + |f4(�j)|2 =
n−1∑
t=0

F(8t)�−tj ; j = 0; 1; : : : ; n − 1:

By (24) we have F(0) = q and F(8t) = 0 for 16 t ¡ n. Hence the last sum reduces to q. This completes the proof of
Theorem 1.

Theorem 2. Let q be a prime power ≡ 3(mod 8). Then

|f3(�)|2 = |f4(�)|2 (28)

for each nth root of unity � including �= 1, where n= (q+ 1)=4, f3(�) and f4(�) are the polynomials de8ned in (15).

Proof. Since

|f3(�)|2 =
n−1∑
t=0

(
n−1∑
i=0

a8i+1a8i+1+8t

)
�−t ;

|f4(�)|2 =
n−1∑
t=0

(
n−1∑
i=0

b8i+1b8i+1+8t

)
�−t ;

for the proof of Theorem 2 it is suHcient to show that
n−1∑
i=0

a8i+1a8i+1+8t =
n−1∑
i=0

b8i+1b8i+1+8t ; 06 t ¡ n: (29)

To do this it is enough to prove that
n−1∑
i=0

a8i+na8i+n+8t =
n−1∑
i=0

b8i+nb8i+n+8t ; 0¡= t ¡ n:

Put gn = -(x + .), -, .∈GF(q). Then from

!x = (gn)2 = -2(2.x + .2 + �)

it follows that

�= −.2 and != 2.-2: (30)

Now

g8i+n = -{($8i + .(8i)x + .$8i + �(8i}: (31)

Using (13), (14), (31), (22), (30) and (23), we have
n−1∑
i=0

b8i+nb8i+n+8t =
n−1∑
i=0

%(.$8i + �(8i)%(.$8(i+t) + �(8(i+t))

=
n−1∑
i=0

%(.$8(n−i) − �(8(n−i))%(.$8(n−i−t) − �(8(n−i−t))

=
n−1∑
i=0

%($8(n−i) + .(8(n−i))%($8(n−i−t) + .(8(n−i−t))

=
n−1∑
i=0

%($8i + .(8i)%($8i−8t + .(8i−8t)

=
n−1∑
i=0

a8i+na8i+n+8t ; 06 t ¡ n: (32)
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The proof is completed.

Remark 1. From (17) one sees that Ref1(�) = 0 and f2(�) is real.

The following corollaries are immediate consequences of Theorems 1 and 2.

Corollary 1. Let q be a prime power ≡ 3(mod 8). Then

q = a2 + 2b2 (33)

for some odd integers a and b.

Remark 2. In general, representation (33) is not unique, and so the values of a and b in (33) are not completely determined
by Theorems 1 and 2. In this case there is a problem: Do there exist polynomials f1(�), f2(�), f3(�), f4(�), corresponding
to every pair (a; b), satisfying (33), given as in (15), satisfying (16) and (17), such that

f1(1) = 0; f2(1)
2 = a2; f3(1)

2 = f4(1)
2 = b2;

or not?

Example 1. q = 33 = 52 + 2 · 12 = 32 + 2 · 32. Take
f1(�) = � + �2 − �3 + �4 − �5 − �6;

f2(�) = 1 − � − �2 − �3 − �4 − �5 − �6;

f3(�) = −1 − � − �2 + �3 − �4 + �5 + �6;

f4(�) = −1 + � + �2 − �3 + �4 − �5 − �6;

Then f1(�), f2(�), f3(�) and f4(�) satisfy (16) and (17), and

f1(1) = 0; f2(1)
2 = 52; f3(1)

2 = f4(1)
2 = 1:

Question. Do there exist polynomials f1(�), f2(�), f3(�) and f4(�) in � of order 6, given as in (15), satisfying (16) and
(17), such that

f1(1) = 0; f2(1)
2 = f3(1)

2 = f4(1)
2 = 32?

Corollary 2. Let q = 4n − 1 be a prime power ≡ 3(mod 8). Put

’1(�) = 1 + f1(�); ’2(�) = f2(�); ’3(�) = ’4(�) = f3(�);

where f1(�), f2(�) and f3(�) are the polynomials de8ned in (15). Then the identity

|’1(�)|2 + |’2(�)|2 + |’3(�)|2 + |’4(�)|2 = 4n

is satis8ed for each nth root of unity � including � = 1.

Returning to the Goethals–Seidel matrix in (1) we may now derive the following theorem:

Theorem 3. Let q = 4n − 1 be a prime power ≡ 3(mod 8). Then there exists an Hadamard matrix of order 4n of
Goethals–Seidel type in which

(I − A)′ = −I + A; B′ = B and C = D:

Proof. We employ the construction outlined in the introduction. By (14) and (17) we have a0 = 0, b0 = 1, −a8i = a8(n−i),
b8i = b8(n−i), 16 i ¡ n. The successive elements in the  rst row of A are 1; a8; : : : ; a8(n−1). The successive elements in the
 rst row of B are 1; b8; : : : ; b8(n−1). The successive elements in the  rst row of C and D are, say, a1; a9; : : : ; a8(n−1)+1. The
matrices A, B, C and D are circulant. Theorem 3 now follows readily from the last corollary.
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Remark 3. In this case the Hadamard matrix of order 4n has the simpler form (the Wallis–Whiteman construction is
applicable)

G =




A B CR C

−B A′ −C CR

−CR C′ A −B

−C′ −CR B A′


 ;

where R is the back-diagonal identity matrix, and G is of skew type.

Remark 4. While there are no Williamson matrices for order 35 by a complete computer search, and no Williamson type
matrices are known for the orders

35; 155; 171; 203; 227; 291; 323; 371; 395; 467; 483; 563;

587; 603; 635; 771; 875; 915; 923; 963; 1131; 1307; 1331;

1355; 1467; 1523; 1595; 1643; 1691; 1715; 1803; 1923; 1971

(see [1,3]) Theorem 3 shows that Goethals–Seidel matrices do exist for all these orders.

Example 2. Suppose n= 35. Then q = 4n − 1 = 139 is a prime ≡ 3(mod 8). Set

a= (+ − ++++ − + − ++ − + − − ++ − + − − ++ − + − − + − + − − − − +)

b= (+ + − ++ − +++ − ++ − − − ++++++ − − − ++ − +++ − ++ − +)

c = (+ + − − − + − + − − − +++ − + − − − − ++ − − ++ − + − ++++++)

where a, b and c denote the  rst row of n×n circulant matrices A, B and C, respectively. This gives the desired Goethals
–Seidel array.
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