DISCRETE APPLIED MATHEMATICS

An infinite family of Goethals-Seidel arrays

Mingyuan Xia ${ }^{\text {a, }}$, Tianbing Xia ${ }^{\text {b }}$, Jennifer Seberry ${ }^{\text {b }}$, Jing Wu ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Central China Normal University, Wuhan, Hubei 430079, China
${ }^{\mathrm{b}}$ School of IT and CS, University of Wollongong, Wollongong, NSW 2522, Australia
Received 15 April 2002; received in revised form 27 May 2003; accepted 23 June 2003

Abstract

In this paper we construct an infinite family of Goethals-Seidel arrays and prove the theorem: If $q=4 n-1$ is a prime power $\equiv 3(\bmod 8)$, then there exists an Hadamard matrix of order $4 n$ of Goethals-Seidel type. (C) 2004 Elsevier B.V. All rights reserved.

Keywords: Hadamard matrix; Goethals-Seidel array; Galois fields

1. Introduction

An Hadamard matrix is a square matrix of ones and minus ones whose row (and therefore column) vectors are orthogonal. The order v of such a matrix is necessarily 1,2 or divisible by 4 . It is a long standing unsolved conjecture that an Hadamard matrix exists for $v=4 n, n$ any positive integer. Constructions have been given for particular values of n and even for various infinite classes of values (see $[2,3]$ for background material). Since an Hadamard matrix of order $2 v=2(4 n)$ can be easily constructed from one of order v, the question of the existence for all possible v is reduced to the case where n is odd.

The Goethals-Seidel array is of the form

$$
\left(\begin{array}{rrrr}
A & B R & C R & D R \tag{1}\\
-B R & A & D^{\prime} R & -C^{\prime} R \\
-C R & -D^{\prime} R & A & B^{\prime} R \\
-D R & C^{\prime} R & -B^{\prime} R & A
\end{array}\right),
$$

where R is the back-diagonal identity matrix, A, B, C and D are circulant $(1,-1)$ matrices of order n satisfying

$$
\begin{equation*}
A A^{\prime}+B B^{\prime}+C C^{\prime}+D D^{\prime}=4 n I_{n} \text {. } \tag{2}
\end{equation*}
$$

If A, B, C, and D above are symmetric, then one gets a Williamson array

$$
W=\left(\begin{array}{rrrr}
A & B & C & D \tag{3}\\
-B & A & -D & C \\
-C & D & A & -B \\
-D & -C & B & A
\end{array}\right)
$$

[^0]with
\[

$$
\begin{equation*}
A^{2}+B^{2}+C^{2}+D^{2}=4 n I_{n} . \tag{4}
\end{equation*}
$$

\]

The Goethals-Seidel array is a generalization of Williamson arrays. For detail discussion of more Goethals-Seidel arrays, we recommend Ref. [3,6].
Turyn first found an infinite class of Williamson arrays in [4]. Then Whiteman gave a new proof for Turyn's theorem [5]. Whiteman's method is both elegant and instructive. We will use this method to construct an infinite family of Goethals -Seidel arrays.
The polynomials associated with the matrices A, B, C and D are

$$
\begin{aligned}
\varphi_{1}(\zeta) & =a_{0}+a_{1} \zeta+\cdots+a_{n-1} \zeta^{n-1} \\
\varphi_{2}(\zeta) & =b_{0}+b_{1} \zeta+\cdots+b_{n-1} \zeta^{n-1} \\
\varphi_{3}(\zeta) & =c_{0}+c_{1} \zeta+\cdots+c_{n-1} \zeta^{n-1} \\
\varphi_{4}(\zeta) & =d_{0}+d_{1} \zeta+\cdots+d_{n-1} \zeta^{n-1}
\end{aligned}
$$

where ζ is any nth root of unity. The coefficients a_{i}, b_{i}, c_{i} and $d_{i}, i=0,1, \ldots, n-1$, comprise the first rows of A, B, C and D, respectively. One may also associate a finite Parseval relation with each $\varphi_{i}(\zeta), i=1,2,3,4$. For example, if the coefficients of $\varphi_{1}(\zeta)$ are complex numbers, this relation is given for a fixed integer t by

$$
\begin{equation*}
\sum_{i=0}^{n-1} a_{i} \bar{a}_{i+t}=\frac{1}{n} \sum_{j=0}^{n-1}\left|\varphi_{1}\left(\zeta^{j}\right)\right|^{2} \zeta^{j t}, \tag{5}
\end{equation*}
$$

where \bar{a}_{i+t} is the conjugate of a_{i+t}, and $\zeta=\exp (2 \pi \mathrm{i} / n)$.
If the coefficients $a_{i}, b_{i}, c_{i}, d_{i}(i=0,1, \ldots, n-1)$ are real, then the identity

$$
\begin{aligned}
& \sum_{i=0}^{n-1}\left(a_{i} a_{i+t}+b_{i} b_{i+t}+c_{i} c_{i+t}+d_{i} d_{i+t}\right) \\
& \quad=\frac{1}{n} \sum_{j=0}^{n-1}\left(\left|\varphi_{1}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{2}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{3}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{4}\left(\zeta^{j}\right)\right|^{2}\right) \zeta^{j t}
\end{aligned}
$$

holds for each integer t. It follows that the matrix G in (1) is an Hadamard matrix of order $4 n$ if the elements of A, B, C and D are ± 1, and if the identity

$$
\begin{equation*}
\left|\varphi_{1}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{2}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{3}\left(\zeta^{j}\right)\right|^{2}+\left|\varphi_{4}\left(\zeta^{j}\right)\right|^{2}=4 n, \tag{6}
\end{equation*}
$$

prevails for each nth root of unity ζ including $\zeta=1$. The case $\zeta=1$ of this identity is of particular interest, for it reveals a remarkable connection between Goethals-Seidel array and the representation of $4 n$ as the sum of four squares of integers.

The following construction gives an infinite family of Hadamard matrices of Goethals-Seidel type. It is natural to ask if there is an Hadamard matrix of Goethals-Seidel type corresponding to every representation of integers as sum of squares.

2. Preliminaries on Galois fields

Let $G F(q)$ denote the Galois field of order q, where $q=p^{t}$ and p is an odd prime. Let γ be a non-square element in $G F(q)$. Then the polynomial $P(x)=x^{2}-\gamma$ is irreducible in $G F(q)$, and the polynomials $a x+b(a, b \in G F(q))$ modulo $P(x)$ form a finite field $G F\left(q^{2}\right)$ of order q^{2}. In what follows we will employ this concrete representation of $G F\left(q^{2}\right)$. If g is a generator of the cyclic group of non-zero elements of $G F\left(q^{2}\right)$, then $g^{q+1}=\delta$ is a generator of the cyclic group of non-zero elements of $G F(q)$. For arbitrary $h \in G F\left(q^{2}\right)$ define

$$
\begin{equation*}
\operatorname{tr}(h)=h+h^{q}, \tag{7}
\end{equation*}
$$

so that $\operatorname{tr}(h) \in G F(q)$. It follows from this definition that

$$
\begin{equation*}
\operatorname{tr}\left(g^{k}\right)=g^{(q+1) k} \operatorname{tr}\left(g^{-k}\right) \tag{8}
\end{equation*}
$$

for an arbitrary integer k.

Let $q \equiv 3(\bmod 4)$. For $h \in G F\left(q^{2}\right), h \neq 0$, let $\operatorname{ind}(h)$ be the least non-negative integer t such that $g^{t}=h$. Let β denote a primitive eighth root of unity. Then

$$
\chi(h)= \begin{cases}\beta^{\text {ind }(h)}, & h \neq 0 \tag{9}\\ 0, & h=0\end{cases}
$$

defines an eighth power character χ of $G F\left(q^{2}\right)$. For $a \in G F(q), a \neq 0$, put $\delta^{j}=a$. By (9) we have $\chi(a)=\beta^{(q+1) j}$. Consequently $\chi(a)=(-1)^{j}$ if $q \equiv 3(\bmod 8)$ and $\chi(a)=1$ if $q \equiv 7(\bmod 8)$. In the case $q \equiv 3(\bmod 8)$ this means that $\chi(a)$ reduces to the Legendre symbol in $G F(q)$ defined by $\chi(a)=1,-1$ or 0 according as a is a non-zero square, a non-square or 0 in $G F(q)$. In the sequel we will assume that $q \equiv 3(\bmod 8)$. Accordingly we obtain from (8) that

$$
\begin{equation*}
\chi\left(\operatorname{tr}\left(g^{k}\right)\right) \chi\left(\operatorname{tr}\left(g^{-k}\right)\right)=(-1)^{k}, \quad \operatorname{tr}\left(g^{k}\right) \neq 0 \tag{10}
\end{equation*}
$$

For a fixed $\eta \in G F\left(q^{2}\right)$ put $\eta=c x+d, c, d \in G F(q)$. Then $\eta \in G F(q)$ if $c=0$ and $\eta \notin G F(q)$ if $c \neq 0$. We require the formula

$$
\sum_{\xi} \chi(\operatorname{tr}(\xi)) \chi(\operatorname{tr}(\eta \xi))= \begin{cases}\chi(d) q(q-1), & c=0 \tag{11}\\ 0, & c \neq 0\end{cases}
$$

where the summation is over all $\xi \in G F\left(q^{2}\right)$. Put $\xi=a x+b, a, b \in G F(q)$. By (7) we have $\operatorname{tr}(\xi)=2 b$ and $\operatorname{tr}(\eta \xi)=2(a c \gamma+b d)$. Therefore

$$
\sum_{\xi} \chi(\operatorname{tr}(\xi)) \chi(\operatorname{tr}(\eta \xi))=\sum_{b} \chi(2 b) \sum_{a} \chi(2(a c \gamma+b d))
$$

and (11) follows at once.
For $\eta \neq 0$ we may put $\eta=g^{t}\left(0 \leqslant t \leqslant q^{2}-2\right)$ so that $c=0$ if $q+1 \mid t$ and $c \neq 0$ if $q+1 \nmid t$. If $c=0$, put $t=j(q+1)$ and then $\chi(d)=(-1)^{j}$. The sum in (11) now becomes

$$
\sum_{k=0}^{q^{2}-2} \chi\left(\operatorname{tr}\left(g^{k}\right)\right) \chi\left(\operatorname{tr}\left(g^{k+t}\right)\right)=\sum_{h=0}^{q-2} \sum_{k=h(q+1)}^{h(q+1)+q} \chi\left(\operatorname{tr}\left(g^{k}\right)\right) \chi\left(\operatorname{tr}\left(g^{k+t}\right)\right) .
$$

The double sum on the right has the value 0 if $q+1 \nmid$. Since $\chi\left(\operatorname{tr}\left(g^{k+q+1}\right)\right)=-\chi\left(\operatorname{tr}\left(g^{k}\right)\right)$ the value of the inner sum is the same for each h. For $h=0$ we get, in particular,

$$
\sum_{k=0}^{q} \chi\left(\operatorname{tr}\left(g^{k}\right)\right) \chi\left(\operatorname{tr}\left(g^{k+t}\right)\right)= \begin{cases}(-1)^{j} q, & q+1 \mid t \tag{12}\\ 0, & q+1 \nmid t\end{cases}
$$

where, in the first case, $t=j(q+1)$.

3. Main results

The principal result of this paper is given in the following theorem.
Theorem 1. Let q be a prime power $\equiv 3(\bmod 8)$ and put $n=(q+1) / 4$. Let g be a primitive element of $G F\left(q^{2}\right)$. Put

$$
\begin{equation*}
g^{k}=\alpha_{k} x+\beta_{k}, \quad \alpha_{k}, \beta_{k} \in G F(q) \tag{13}
\end{equation*}
$$

and define

$$
\begin{equation*}
a_{k}=\chi\left(\alpha_{k}\right), \quad b_{k}=\chi\left(\beta_{k}\right) \tag{14}
\end{equation*}
$$

Then the sums

$$
\begin{align*}
& f_{1}(\zeta)=a_{0}+a_{8} \zeta+\cdots+a_{8(n-1)} \zeta^{n-1} \\
& f_{2}(\zeta)=b_{0}+b_{8} \zeta+\cdots+b_{8(n-1) \zeta^{n-1}} \\
& f_{3}(\zeta)=a_{1}+a_{9} \zeta+\cdots+a_{8(n-1)+1} \zeta^{n-1} \\
& f_{4}(\zeta)=b_{1}+b_{9} \zeta+\cdots+b_{8(n-1)+1} \zeta^{n-1} \tag{15}
\end{align*}
$$

satisfy the identity

$$
\begin{equation*}
\left|f_{1}(\zeta)\right|^{2}+\left|f_{2}(\zeta)\right|^{2}+\left|f_{3}(\zeta)\right|^{2}+\left|f_{4}(\zeta)\right|^{2}=q \tag{16}
\end{equation*}
$$

for each nth root of unity ζ including $\zeta=1$. Moreover, the following relations hold:

$$
\begin{array}{ll}
a_{0}=0, & a_{8 i}=-a_{8(n-i)} \\
b_{0}=1, & b_{8 i}=b_{8(n-i)} \tag{17}
\end{array}
$$

Proof. Since g is a primitive element of $G F\left(q^{2}\right)$, the integer $k=(q+1) / 2=2 n$ is the only value of k in the interval $0 \leqslant k \leqslant q$ for which $\operatorname{tr}\left(g^{k}\right)=0$. Put $g^{2 n}=\omega x, \omega \in G F(q)$. The numbers a_{k}, b_{k} in (14) satisfy the relations

$$
\begin{align*}
& b_{k+2 n}=-\chi(\omega) a_{k}, \tag{18}\\
& b_{k+4 n}=-b_{k}, \tag{19}\\
& b_{k+8 n}=b_{k} . \tag{20}
\end{align*}
$$

Moreover, from (13) it follows that

$$
\begin{align*}
-\alpha_{8 i} x+\beta_{8 i} & =\left(g^{8 i}\right)^{q}=g^{8 n(4 i-1)+8(n-i)} \\
& =\delta^{2(4 i-1)}\left(\alpha_{8(n-i)} x+\beta_{8(n-i)}\right), \quad 0 \leqslant i \leqslant n \tag{21}
\end{align*}
$$

hence

$$
\begin{equation*}
\alpha_{8 i}=-\delta^{2(4 i-1)} \alpha_{8(n-i)}, \quad \beta_{8 i}=\delta^{2(4 i-1)} \beta_{8(n-i)}, \quad 0 \leqslant i \leqslant n . \tag{22}
\end{equation*}
$$

Therefore (17) is valid. Note that the periodicity property (20) implies

$$
\begin{equation*}
\sum_{i=0}^{n-1} b_{8 i+t}=\sum_{i=0}^{n-1} b_{8 i+s}, \quad t \equiv s(\bmod 8) \tag{23}
\end{equation*}
$$

If we replace $b^{\prime} s$ by $a^{\prime} s$, then (20) and (23) would also be true.
Denote the sum in (12) by $F(t)$. The assumption $q \equiv 3(\bmod 8)$ implies that $t=0$ is the only value of t in the interval $0 \leqslant t \leqslant n-1$ for which $8 t$ is divisible by $q+1$. Thus it follows from (12) that

$$
F(8 t)=\sum_{k=0}^{q} b_{k} b_{k+8 t}= \begin{cases}q, & t=0 \tag{24}\\ 0, & 1 \leqslant t<n\end{cases}
$$

On the other hand from (18), (19) and (24) we have

$$
\begin{align*}
F(8 t) & =\sum_{k=0}^{3} \sum_{i=0}^{n-1} b_{4 i+k} b_{4 i+k+8 t} \\
& =\sum_{k=0}^{3} \sum_{i=0}^{n-1} b_{8 i+k n} b_{8 i+k n+8 t} \\
& =\sum_{k=0}^{1} \sum_{i=0}^{n-1}\left(a_{8 i+k n} a_{8 i+k n+8 t}+b_{8 i+k n} b_{8 i+k n+8 t}\right) \\
& =\sum_{i=0}^{n-1}\left(a_{8 i} a_{8 i+8 t}+b_{8 i} b_{8 i+8 t}+a_{8 i+1} a_{8 i+1+8 t}+b_{8 i+1} b_{8 i+1+8 t}\right) \tag{25}
\end{align*}
$$

Applying the finite Parseval relation (5) we now obtain

$$
\begin{align*}
& \sum_{i=0}^{n-1}\left(a_{8 i} a_{8 i+8 t}+b_{8 i} b_{8 i+8 t}+a_{8 i+1} a_{8 i+1+8 t}+b_{8 i+1} b_{8 i+1+8 t}\right) \\
& \quad=\frac{1}{n} \sum_{j=0}^{n-1}\left(\left|f_{1}\left(\zeta^{j}\right)\right|^{2}+\left|f_{2}\left(\zeta^{j}\right)\right|^{2}+\left|f_{3}\left(\zeta^{j}\right)\right|^{2}+\left|f_{4}\left(\zeta^{j}\right)\right|^{2}\right) \zeta^{j t} \tag{26}
\end{align*}
$$

where $\zeta=\exp (2 \pi \mathrm{i} / n)$.

Combining (25) and (26) we get

$$
\begin{equation*}
F(8 t)=\frac{1}{n} \sum_{j=0}^{n-1}\left(\left|f_{1}\left(\zeta^{j}\right)\right|^{2}+\left|f_{2}\left(\zeta^{j}\right)\right|^{2}+\left|f_{3}\left(\zeta^{j}\right)\right|^{2}+\left|f_{4}\left(\zeta^{j}\right)\right|^{2}\right) \zeta^{y^{i t}} . \tag{27}
\end{equation*}
$$

The inverted form of (27) is given by

$$
\left|f_{1}\left(\zeta^{j}\right)\right|^{2}+\left|f_{2}\left(\zeta^{j}\right)\right|^{2}+\left|f_{3}\left(\zeta_{j}\right)\right|^{2}+\left|f_{4}\left(\zeta^{j}\right)\right|^{2}=\sum_{t=0}^{n-1} F(8 t) \zeta^{-t j}, \quad j=0,1, \ldots, n-1
$$

By (24) we have $F(0)=q$ and $F(8 t)=0$ for $1 \leqslant t<n$. Hence the last sum reduces to q. This completes the proof of Theorem 1.

Theorem 2. Let q be a prime power $\equiv 3(\bmod 8)$. Then

$$
\begin{equation*}
\left|f_{3}(\zeta)\right|^{2}=\left|f_{4}(\zeta)\right|^{2} \tag{28}
\end{equation*}
$$

for each nth root of unity ζ including $\zeta=1$, where $n=(q+1) / 4, f_{3}(\zeta)$ and $f_{4}(\zeta)$ are the polynomials defined in (15).
Proof. Since

$$
\begin{aligned}
& \left|f_{3}(\zeta)\right|^{2}=\sum_{t=0}^{n-1}\left(\sum_{i=0}^{n-1} a_{8 i+1} a_{8 i+1+8 t}\right) \zeta^{-t} \\
& \left|f_{4}(\zeta)\right|^{2}=\sum_{t=0}^{n-1}\left(\sum_{i=0}^{n-1} b_{8 i+1} b_{8 i+1+8 t}\right) \zeta^{-t}
\end{aligned}
$$

for the proof of Theorem 2 it is sufficient to show that

$$
\begin{equation*}
\sum_{i=0}^{n-1} a_{8 i+1} a_{8 i+1+8 t}=\sum_{i=0}^{n-1} b_{8 i+1} b_{8 i+1+8 t}, \quad 0 \leqslant t<n \tag{29}
\end{equation*}
$$

To do this it is enough to prove that

$$
\sum_{i=0}^{n-1} a_{8 i+n} a_{8 i+n+8 t}=\sum_{i=0}^{n-1} b_{8 i+n} b_{8 i+n+8 t}, \quad 0<=t<n
$$

Put $g^{n}=\lambda(x+\varepsilon), \lambda, \varepsilon \in G F(q)$. Then from

$$
\omega x=\left(g^{n}\right)^{2}=\lambda^{2}\left(2 \varepsilon x+\varepsilon^{2}+\gamma\right)
$$

it follows that

$$
\begin{equation*}
\gamma=-\varepsilon^{2} \quad \text { and } \quad \omega=2 \varepsilon \lambda^{2} . \tag{30}
\end{equation*}
$$

Now

$$
\begin{equation*}
g^{8 i+n}=\lambda\left\{\left(\beta_{8 i}+\varepsilon \alpha_{8 i}\right) x+\varepsilon \beta_{8 i}+\gamma \alpha_{8 i}\right\} \tag{31}
\end{equation*}
$$

Using (13), (14), (31), (22), (30) and (23), we have

$$
\begin{align*}
\sum_{i=0}^{n-1} b_{8 i+n} b_{8 i+n+8 t} & =\sum_{i=0}^{n-1} \chi\left(\varepsilon \beta_{8 i}+\gamma \alpha_{8 i}\right) \chi\left(\varepsilon \beta_{8(i+t)}+\gamma \alpha_{8(i+t)}\right) \\
& =\sum_{i=0}^{n-1} \chi\left(\varepsilon \beta_{8(n-i)}-\gamma \alpha_{8(n-i)}\right) \chi\left(\varepsilon \beta_{8(n-i-t)}-\gamma \alpha_{8(n-i-t)}\right) \\
& =\sum_{i=0}^{n-1} \chi\left(\beta_{8(n-i)}+\varepsilon \alpha_{8(n-i)}\right) \chi\left(\beta_{8(n-i-t)}+\varepsilon \alpha_{8(n-i-t)}\right) \\
& =\sum_{i=0}^{n-1} \chi\left(\beta_{8 i}+\varepsilon \alpha_{8 i}\right) \chi\left(\beta_{8 i-8 t}+\varepsilon \alpha_{8 i-8 t}\right) \\
& =\sum_{i=0}^{n-1} a_{8 i+n} a_{8 i+n+8 t}, \quad 0 \leqslant t<n \tag{32}
\end{align*}
$$

The proof is completed.
Remark 1. From (17) one sees that $\operatorname{Re} f_{1}(\zeta)=0$ and $f_{2}(\zeta)$ is real.
The following corollaries are immediate consequences of Theorems 1 and 2 .
Corollary 1. Let q be a prime power $\equiv 3(\bmod 8)$. Then

$$
\begin{equation*}
q=a^{2}+2 b^{2} \tag{33}
\end{equation*}
$$

for some odd integers a and b.
Remark 2. In general, representation (33) is not unique, and so the values of a and b in (33) are not completely determined by Theorems 1 and 2. In this case there is a problem: Do there exist polynomials $f_{1}(\zeta), f_{2}(\zeta), f_{3}(\zeta), f_{4}(\zeta)$, corresponding to every pair (a, b), satisfying (33), given as in (15), satisfying (16) and (17), such that

$$
f_{1}(1)=0, \quad f_{2}(1)^{2}=a^{2}, \quad f_{3}(1)^{2}=f_{4}(1)^{2}=b^{2},
$$

or not?
Example 1. $q=3^{3}=5^{2}+2 \cdot 1^{2}=3^{2}+2 \cdot 3^{2}$. Take

$$
\begin{aligned}
& f_{1}(\zeta)=\zeta+\zeta^{2}-\zeta^{3}+\zeta^{4}-\zeta^{5}-\zeta^{6}, \\
& f_{2}(\zeta)=1-\zeta-\zeta^{2}-\zeta^{3}-\zeta^{4}-\zeta^{5}-\zeta^{6}, \\
& f_{3}(\zeta)=-1-\zeta-\zeta^{2}+\zeta^{3}-\zeta^{4}+\zeta^{5}+\zeta^{6}, \\
& f_{4}(\zeta)=-1+\zeta+\zeta^{2}-\zeta^{3}+\zeta^{4}-\zeta^{5}-\zeta^{6},
\end{aligned}
$$

Then $f_{1}(\zeta), f_{2}(\zeta), f_{3}(\zeta)$ and $f_{4}(\zeta)$ satisfy (16) and (17), and

$$
f_{1}(1)=0, \quad f_{2}(1)^{2}=5^{2}, \quad f_{3}(1)^{2}=f_{4}(1)^{2}=1 .
$$

Question. Do there exist polynomials $f_{1}(\zeta), f_{2}(\zeta), f_{3}(\zeta)$ and $f_{4}(\zeta)$ in ζ of order 6 , given as in (15), satisfying (16) and (17), such that

$$
f_{1}(1)=0, \quad f_{2}(1)^{2}=f_{3}(1)^{2}=f_{4}(1)^{2}=3^{2} ?
$$

Corollary 2. Let $q=4 n-1$ be a prime power $\equiv 3(\bmod 8)$. Put

$$
\varphi_{1}(\zeta)=1+f_{1}(\zeta), \quad \varphi_{2}(\zeta)=f_{2}(\zeta), \quad \varphi_{3}(\zeta)=\varphi_{4}(\zeta)=f_{3}(\zeta),
$$

where $f_{1}(\zeta), f_{2}(\zeta)$ and $f_{3}(\zeta)$ are the polynomials defined in (15). Then the identity

$$
\left|\varphi_{1}(\zeta)\right|^{2}+\left|\varphi_{2}(\zeta)\right|^{2}+\left|\varphi_{3}(\zeta)\right|^{2}+\left|\varphi_{4}(\zeta)\right|^{2}=4 n
$$

is satisfied for each nth root of unity ζ including $\zeta=1$.
Returning to the Goethals-Seidel matrix in (1) we may now derive the following theorem:
Theorem 3. Let $q=4 n-1$ be a prime power $\equiv 3(\bmod 8)$. Then there exists an Hadamard matrix of order $4 n$ of Goethals-Seidel type in which

$$
(I-A)^{\prime}=-I+A, \quad B^{\prime}=B \text { and } C=D .
$$

Proof. We employ the construction outlined in the introduction. By (14) and (17) we have $a_{0}=0, b_{0}=1,-a_{8 i}=a_{8(n-i)}$, $b_{8 i}=b_{8(n-i)}, 1 \leqslant i<n$. The successive elements in the first row of A are $1, a_{8}, \ldots, a_{8(n-1)}$. The successive elements in the first row of B are $1, b_{8}, \ldots, b_{8(n-1)}$. The successive elements in the first row of C and D are, say, $a_{1}, a_{9}, \ldots, a_{8(n-1)+1}$. The matrices A, B, C and D are circulant. Theorem 3 now follows readily from the last corollary.

Remark 3. In this case the Hadamard matrix of order $4 n$ has the simpler form (the Wallis-Whiteman construction is applicable)

$$
G=\left(\begin{array}{rrrr}
A & B & C R & C \\
-B & A^{\prime} & -C & C R \\
-C R & C^{\prime} & A & -B \\
-C^{\prime} & -C R & B & A^{\prime}
\end{array}\right)
$$

where R is the back-diagonal identity matrix, and G is of skew type.
Remark 4. While there are no Williamson matrices for order 35 by a complete computer search, and no Williamson type matrices are known for the orders

$$
\begin{aligned}
& 35,155,171,203,227,291,323,371,395,467,483,563 \\
& 587,603,635,771,875,915,923,963,1131,1307,1331 \\
& 1355,1467,1523,1595,1643,1691,1715,1803,1923,1971
\end{aligned}
$$

(see $[1,3]$) Theorem 3 shows that Goethals-Seidel matrices do exist for all these orders.
Example 2. Suppose $n=35$. Then $q=4 n-1=139$ is a prime $\equiv 3(\bmod 8)$. Set

$$
\begin{aligned}
& a=(+-++++-+-++-+--++-+--++-+--+-+----+) \\
& b=(++-++-+++-++---++++++---++-+++-++-+) \\
& c=(++---+-+---+++-+----++--++-+-++++++)
\end{aligned}
$$

where a, b and c denote the first row of $n \times n$ circulant matrices A, B and C, respectively. This gives the desired Goethals -Seidel array.

Acknowledgements

The authors are grateful to the referees and Prof. P.L. Hammer and Prof. W.C. Shiu for their helpful comments.

References

[1] D.Z. Djokovic, Williamson matrices of order $4 n$ for $n=33$, 35, 39, Discrete Math. 115 (1993) 267-271.
[2] M. Hall Jr., Combinatorial Theory, 2nd Edition, Wiley, New York, 1986.
[3] J. Seberry, M. Yamada, Hadamard matrices, sequences and block designs, Jeffery H. Dinitz, Douglas R. Stinson (Eds.), in: Contemporary Design Theory: Collection of surveys, Wiley, New York, 1992, pp. 431-560.
[4] R.J. Turyn, An infinite class of Williamson matrices, J. Combin. Theory Ser. A 12 (1972) 319-321.
[5] A.L. Whiteman, An infinite family of Hadamard matrices of Williamson type, J. Combin. Theory Ser. A 14 (1973) 334-340.
[6] M.Y. Xia, Some new families of SDSS and Hadamard matrices, Acta Math. Sci. 16 (1996) 153-161.

[^0]: ${ }^{1}$ The research supported by the NSF of China (No. 10071029).
 E-mail addresses: xiamy@ccnu.edu.cn (M. Xia), txia@uow.edu.au (T. Xia), j.seberry@uow.edu.au (J. Seberry), jw91@uow.edu.au (J. Wu).

