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Abstract 

The Proportional-Integral-Derivative (PID) controller uses three parameters to produce the desired output of a system. The 
desired system performances are in terms of overshoot, rise time, settling time and steady state error. This has brought about 
various methods to tune the controller to the desired response. Therefore, the presence of the bat algorithm as part of the system 
will reduce the time and cost of tuning these parameters and improve the overall system performance.  
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1. Introduction 

   A servomotor is basically a rotary actuator that is used with applications that require a motor with precise control 
of the angular velocity, angular position and acceleration. It is paired with a specific encoder. The Proportional-
Integral-Derivative (PID) controller has been used for decades because of its simplicity and efficiency. Around 90% 
of the industrial controllers are built around the PID algorithm1. Figure 1 shows the block diagram of the PID 
controller with feedback also known as the closed-loop PID.  
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 Fig. 1. Bat algorithm implementation. 
  

     Based on the Fig. 1, the PID controller is the center of the system and plays an important role in ensuring an 
optimum output for the system. The PID controller, also dubbed as the “three term” controller, has three main terms 
which consist of the proportional factor (KP), the integral factor (KI) and the derivative factor (KD).  These three 
terms will then determine the stability, steady state error, overshoot, settling time and rise time2. 
 
     A system could produce poor performance or crash if not tuned properly2. It is therefore important that these 
parameters are properly tuned to ensure an optimum output. There are several heuristic methods that are being used 
to tune them. The widely used tuning methods are the Ziegler Nichols (Z-N) and Cohen Coon. These conventional 
PID tuning methods takes a considerable amount of time and cost. It also produces a large overshoot which is not 
desirable3.Therefore new algorithms should be incorporated into the PID tuning as they are more optimized. These 
new algorithms are inspired from natural or man-made process. Seemingly, there is no idea that is too implausible to 
be turned into an algorithm4. Some of the algorithms are the particle swarm optimization1,5, fruit fly algorithm6, ant 
colony algorithm7,8, cuckoo search9,10 and the bat algorithm11,12.  
 
     The Bat Algorithm was introduced by Yang in 2010, which was inspired by the echolocation nature of the bats. It 
is one of the newer additions to the “nature-inspired” algorithms. It uses the theory that a bat emits a sound pulse 
and then listens to it in the form of the echo bouncing back from an object whilst flying. The algorithm then uses the 
frequency and loudness to reach an optimum solution7. 
 
     There is a certain benchmark function to test the effectiveness of these algorithms. One of it is known as the 
Rosenbrock’s function and is well known as a benchmark for numerical optimization problem13,14. If we set the 
initial frequency and rate of emission to 0 and 1 respectively, while having variations of frequency, the bat algorithm 
becomes a standard PSO. According to Yang in11, the Bat algorithm scored 100% while the PSO scored 98% in 
terms of accuracy and efficiency in the Rosenbrock’s function. These functions are generally used to test the 
efficiency and effectiveness of the algorithm15,16. 
 
     Other than the swarm technology, tree search algorithms have five basic algorithms which are the as naïve 
backtracking(BT), backjumping(BJ), conflict-directed backjumping(CBJ), backmarking(BM) and forward 
checking(BC)17. Constraint satisfaction problem(CSP), uses backtracking on the notion of tree-decomposition of the 
restriction networks18 . 
 
     On the other hand, hybrid algorithms also play an important role in solving optimization problems. The hybrid 
differential evolution(DE)19 has three improvements. The first modification replaces random wallk with direct 
exploitation local search using Hooke an Jeeves(HJ) method. The second modification replaces the harmony search 
with particle search optimization. The third modification is done by adding the Hooke and Jeeves method to the 
original cooperative hybrid. It can be seen that the second modification yielded a 15% increase in performance20.  
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2. Problem statement 

     The PID controller is widely used in the industry and has great contributions to the control industry due to its 
simplicity and efficiency. It has laid a robust foundation to be applied in any plant or process. However, current 
conventional methods such as the Zeigler Nichols and Cohen Coon are time consuming and take up a significant 
amount of cost. 
 
     The new algorithm being investigated will focus on how to improve the time taken to compute the optimized 
values for the three parameters as well as safe cost of operating the controller. The study will also test for the 
feasibility of the algorithm in simulation and real application. 

3. Algorithms 

3.1 Particle Swarm Optimization  (PSO) 
 
     PSO was inspired by having a population of candidate solutions which move around in the search space using a 
few pre-defined rules. The movements of these candidates are guided by their best position and the entire swarm’s 
best known position. The movement of the swarm is then guided by improved positions. This process is a 
continuous one, until a reasonable solution is discovered1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Flowchart of PSO implementation. 
 
     The flowchart in Fig.2 shows the implementation of the PSO algorithm. This flowchart was then coded and used 
in the simulation. The parameters were initialized as shown in section 4.1.1. The population that is generated works 
towards optimizing the objective function. 
 
 
3.2 Bat Algorithm (BA) 
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     The BA was introduced by Yang and derived from the echolocation behavior of Bats12. The algorithm was 
simplified by three main rules: 

 Bats use echolocation to approximate distance and can distinguish between prey and obstacles 
 Bats fly randomly with a certain velocity at a certain position, with a constant frequency, changing wavelength 

and loudness to search for their prey. They can manipulate the wavelength and the pulse emission. 
 The loudness has been to assumed to vary from a large (positive) number to a minimum fixed value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Flowchart of the BA. 
 

     Fig.3 illustrates the implementation of the BA. This flowchart was then adapted into coding for simulation 
purposes. The parameters are initialized at the beginning of the algorithm as shown in section 4.2.1. These bats will 
then work together towards the objective function. In the case of this research, it will work towards optimizing the 
controller parameters.  
 

4. Experimental results 

4.1 Parameter Settings 
 
     The PSO and BA have parameters that need to be initialised before running the algorithm to compute the 
controller parameters.  
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4.1.1 PSO 
 
     The PSO parameters were fixed throughout the experiment. The parameter settings are shown in Fig.4. C1 and 
C2 are the learning factors of the algorithm. 
 

Number of Generation: 50 

Population Size: 50 

C1:1.2 

C2: 0.12 

Fig. 4. PSO parameters. 
 

4.2.1 BA 
 
     The BA parameters were also kept constant throughout the experiment. The parameter settings are as shown in 
Fig.5.  

 
Number of Generation: 50 

Population Size: 50 

Amplitude: 100 

Pulse: 0.5 

                                                                  Fig. 5. BA parameters. 
 
4.1.3 Modelling 
 
     A servomotor model was modelled to be used in the simulation with respect to a datasheet of a real motor. This is 
represented by equation (3). Equation (1) and (2) are basic first and second order transfer function to examine the 
behavior of the algorithm. 
 
                                                                                                                                                                                      (1) 
 
                                                                                 
 
                                                                                                                                      (2) 
 
 
 
                                                                        (3) 
 
 
     Equation (1) and (2) will be used in case study one and two respectively while equation (3) will be used in the 
case study three which is the servomotor model case study to observe the behavior of these algorithms in tuning the 
controller. 
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4.1.4 Stopping Criteria 
 
     The stopping criteria used in this research is the Integral of Time Square Error (ITSE) shown in equation (4). It 
was determined that this stopping criteria provided the best system response in comparison with Integral of Absolute 
Error (IAE), Integral of Squared Error (ISE) and Integral of Time Absolute Error ( ITAE).  
 

                  Integral of Time Square Error = 2

0

( )
T

te t dt                                                                                    (4)                    

 
4.2 Simulation results 
 
     Multiple simulations were carried out with different transfer functions. This was to evaluate the performance of 
the Bat Algorithm and Particle Swarm Optimization on different transfer functions.  
 
4.2.1 Case Study 1: 2nd Order System 
 
     The first case study was to observe the behavior of the BA in tuning the controller for a second order system. 
  
4.2.1.1 PSO 
 
     This section shows the response of the PSO to a step input to the system which is of second order. 
 

 
Fig. 6. step response of PSO for a second order system. 

 
     The step response shows a rise time 0.0442 seconds and a settling time of 0.26 seconds. The output of the system 
converges to 1.  
 
4.2.1.2 BA 
 
     This section shows the response of the BA to a step input to the system which is of second order. The parameters 
were recorded for analysis. 
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Fig. 7. Step response of BA for a second order system. 

 
     The step response shows that the BA gives a rise time of 0.0429 and a settling time of 0.199 without overshoot. 
The output of the system does converge to 1. 
 
 
 
 
4.2.2 Case Study 2: 3rd Order System 
 
     This case study is to observe the behavior of the algorithms in tuning the controller for a third order system given 
a step input.  
 
4.2.2.1 PSO 
 
     This section shows the response of the PSO to a step input applied to a system of order three. 
 

 
Fig. 8. Step response of PSO for a third order system. 

 
     Based on the step response, the rise time given by the PSO is 0.119 seconds and the settling time as 1.83 seconds 
with an overshoot of 37.1%. The system does converge to 1.  
 
4.2.2.2 BA 
 
     This section shows the response of the BA to a step input applied to a system of order three. The parameters were 
recorded for analysis.  
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Fig. 9. Step response of BA for a third order system. 

 
    Based on the step response, the rise time given by the BA is 0.1 seconds and the settling time of 1.41 seconds 
with an overshoot of 50.8%. The system does converge to 1. 
 
4.2.3 Case Study 3: Servo Motor Model 
 
     This case study is to observe the algorithm behavior for tuning the controller for a servo motor model given a 
step input. This servo motor transfer function is set at no load.  
 
 
4.2.3.1 PSO 
 
     This section is dedicated to observe the behavior of the PSO in producing optimum controller values for a servo 
motor. The step response is observed and data is recorded for five runs. 
 

 
Fig. 10. Step response of PSO for the servo motor model. 

 
Table 1. Rise time and settling time for Particle Swarm Optimization. 

Run KP KI KD Rise Time(s) Settling Time(s) 

1 11.2911 1.4020 900.5649 6.4e-7 1.14e-6 

2 18.8388 14.9994 630.8263 9.15e-7 1.63e-6 

3 59.7778 161.3995 719.4496 8.45e-7 1.43e-6 

4 21.550 127.0495 672.3569 8.5e-7 1.53e-6 

5 52.1229 10.4161 615.5391 9.37e-7 1.6e-6 

 
     Based on the table, five runs were conducted and the average rise time and settling was obtained. This particular 
algorithm had an average rise time of 8.374e-7 seconds and a settling time of 1.466e-6 seconds with no overshoot. 
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4.2.3.2 BA 
 
     This section is dedicated to observe the behavior of the BA in producing optimum controller values for a servo 
motor. The step response is observed and data is recorded for five runs. 
 

 
Fig. 11. Step response of BA for the servo motor model. 

 
Table 2. Rise time and settling time for BA. 

Run KP KI KD Rise Time(s) Settling Time(s) 

1 5.4465 42.683 829.1195 6.95e-7 1.24e-6 

2 486.23 245.32 1640.33 3.51e-7 6.26e-7 

3 189.89 72.43 2896.54 1.99e-7 3.54e-7 

4 243.43 74.39 2549.34 2.26e-7 4.03e-7 

5 5.7329 39.93 985.33 5.85e-7 1.04e-6 

 
     The same procedure was conducted for the BA as well. The average rise time is 4.112e-7 seconds and the 
average settling time is 7.326e-7 seconds with no overshoot. 
 

 
Fig. 12. Error convergence. 

Fig.12 shows that the controller is performing well as the error converges to zero. This is also observed in the step 
response whereby the output does converge to 1.  
 
4.3 Comparative Analysis 
 
The results obtained in terms of rise time, settling time and overshoot were recorded in Table 3, Table 4 and Table 5. 
The difference in performance were calculated and analyzed.  
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                                     Table 3.  Rise time and settling time from case study one 
Algorithm Rise Time(s) Settling Time(s) 

PSO 0.0442 0.2600 
BA 0.0429 0.1990 

 
                 Table 4. Rise time, settling time and overshoot from case study two 

Algorithm Rise Time(s) Settling Time(s) Overshoot(%) 

PSO 0.119 1.830 37.1 

BA 0.100 0.141 50.8 

 
                                     Table 5. Rise time and settling time from case study three 

Algorithm Rise Time(s) Settling Time(s) 

PSO 8.02e-7 1.43e-6 
BA 3.51e-7 6.26e-7 

  

5. Conclusion 

     Based on the research conducted, it is important that a PID controller be tuned properly to ensure that a given 
system is working at an optimum level. It is already been discovered that previous heuristic algorithms to tune the 
PID controller are costly and takes up time. The “Nature-Inspired” Bat Algorithm developed by Xin-She Yang is a 
comparatively superior algorithm to tackle and solve complex optimization problems. 
     Therefore it is feasible to be considered as an algorithm for the tuning of a PID controller to control the servo 
motor. On a whole, it can be seen that the overall performance of the BA is greater than the PSO which produced a 
better rise time and settling time. However, this is not the single best solution. Future studies can focus on the motor 
on different load conditions as well as hybrid algorithms which can produce far more superior results as compared to 
a stand-alone algorithm.  
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