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1. Introduction

The starting point in the construction of finite type invariants of knots in a 3-dimensional manifold M3 is the con-
struction of corresponding weight systems, i.e., functions on the set of homotopy types of singular knots in M3, satisfying
certain natural conditions, see [5,7]. This paper describes two new constructions of weight systems in 3-manifolds with
π1(M3) �= {1}.

Any weight system in R3 generates a weight system in an arbitrary orientable M3. If π1(M3) is non-trivial, then the
obtained weight system obviously splits into the sum of independent weight systems corresponding to different homotopy
types of loops in M3 defined by these singular knots. This splitting does not help in separating knots. However any of these
summands splits further into a sum of many weight systems that can generate independent knot invariants. In Section 2
such a splitting is described for the simplest (of degree 2) invariant of knots in R3; if rank H1(M3) � 2 then we obtain
infinitely many independent weight systems in this way, in particular infinitely many independent degree 2 invariants of
knots in M2 × R1.

In Section 3 we describe an infinite family of weight systems of arbitrary degrees for knots in 3-manifolds with non-
trivial first homology group. For any k, these systems of degree k are parameterized by unordered collections of k + 1
non-zero elements of the group H1(M3). These weight systems are characterized by taking zero values on all singular knots
whose chord diagrams have crossing chords. For M3 of the form M2 × R1, M2 orientable, the simplest (of degree 1) such
weight systems coincide with the principal parts of Fiedler’s invariants [3], and the family of these our degree 2 weight
systems almost coincides with that of the principal parts of the invariants I K

3 (a,b) from Theorem 2.10 of [4].
In Section 4 we show how the invariants with new weight systems separate knots that cannot be separated by previously

known finite type invariants.
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Fig. 1. Examples of chord diagrams.

1.1. Definitions (see [5,7])

A chord diagram of degree k (or simply a k-chord diagram) is an arbitrary collection of 2k distinct points in S1 matched
in pairs. For examples of such diagrams, see Fig. 1, where the matched points of the circle are connected by thin chords.
A smooth map f : S1 → M3 respects some chord diagram if it joins the points of any of its pairs. Two k-chord diagrams
are equivalent if they can be transformed into one another by orientation-preserving diffeomorphisms of S1. Given an
equivalence class A of k-chord diagrams, two maps f1, f2 : S1 → M3 belong to one and the same A-route of degree k,
if they both respect some k-chord diagrams Ā1, Ā2 of class A, and can be reduced to one another by the composition
of (1) a homotopy in the class of maps S1 → M3 respecting Ā1, and (2) an orientation-preserving diffeomorphism of
S1 transforming Ā1 to Ā2. Thus, the A-routes in M3 are the equivalence classes of singular maps S1 → M3 under this
equivalence relation.

A degree k weight system in M3 is a numerical function on the set of all A-routes of degree k in M3, satisfying some two
sets of restrictions.

One, the simplest restriction, called 1T-relation, claims that this function should take zero value on any A-route of degree
k such that:

(1) any chord diagram of class A contains a pair of points xi , yi not separated in S1 by points of other pairs of this
diagram (i.e., one of the segments [xi, yi] or [yi, xi] in S1 does not contain points x j or y j , i �= j, as, e.g., in diagrams 11,
21, 31, 32, 33 of Fig. 1), and

(2) the loop f : [xi, yi] → M3 or f : [yi, xi] → M3, defined by the image of this segment under a map f from our A-route,
is contractible in M3.

The second series of restrictions (1), called 4T-relations, is more complicated; it can be derived from the study of singular
maps with k − 2 double points and one triple point. Let us consider any such generic map, i.e., a map f : S1 → M3 with
exactly k − 2 generic self-intersections and one triple self-intersection point such that three derivatives of f at this triple
point are linearly independent in the tangent space of M3. Then the triple point can be partially resolved in six different
ways, transforming it into two double self-intersection points, see Fig. 2, so that f splits in six different ways into singular
knots with exactly k self-intersections.

Let I be a degree k weight system, and I(m), m = 1, . . . ,6, be its value on the singular knot obtained from f by a local
move indicated in Fig. 2 in the sector labelled by m. Then 4T-relation claims that

I(1) − I(4) = I(2) − I(5) = I(3) − I(6). (1)

The importance of 1T- and 4T-relations is determined by the fact that the residues of finite type knot invariants should
satisfy these conditions; let us recall this notion. A self-intersection point f (x) = f (y), x �= y, of a smooth map f : S1 → M3

is called transverse if the derivatives of f at x and y are not collinear in T f (x)M3. Any transverse self-intersection of a
map f : S1 → M3 can be resolved in two essentially different ways by small local moves of f , see Fig. 3. These two local
resolutions cannot be connected by a short local path in the space of embeddings S1 → M3 since they are separated in
a neighborhood of f in this space by a piece of the discriminant variety consisting of maps with self-intersections as in
the middle picture in Fig. 3. This variety is a singular hypersurface in C∞(S1, M3); its regular points are exactly the maps
with unique transverse self-intersection. If M3 is oriented, then there is an invariant way to call one of these resolutions as
positive, and the other as negative; for the canonical orientation in R3 this discrimination is indicated by indices + and −
in Fig. 3. Indeed, if we fix an affine chart in M3 close to the self-intersection point f (x) = f (y) and a parameterization in
S1, then the determinant of the triplet of vectors { f ′(x), f ′(y), f (y) − f (x)} is a well-defined function in a neighborhood of
the point f in the space C∞(S1, M3). The derivative of this function defines a transversal orientation of the discriminant
variety at the point f , and hence the desired difference between two possible resolutions of f .

Given a numerical invariant I of knots in M3 (i.e., of smooth embeddings S1 → M3) and an arbitrary map f : S1 → M3

with k transverse self-intersection points f (xi) = f (yi), f ′(xi) not parallel to f ′(yi), i = 1, . . . ,k, which does not have any
other self-intersections or singular points, we can resolve all these singularities in 2k different ways, replacing any self-
intersection point as it is shown in the left- or right-hand part of Fig. 3. The residue of the invariant I at the singular knot f
is defined as the alternated sum of values of I at all these 2k non-singular knots obtained from f ; the value of invariant I
at such a desingularization should be taken with the coefficient 1 or −1 depending on the parity of the number of negative
local resolutions defining the desingularization.

By definition, a knot invariant is of degree � k if its residue at any singular knot with more than k transverse self-
intersections is equal to 0.
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Fig. 2. Resolutions of a triple point.

Fig. 3. Possible resolutions of a transverse self-intersection.

It is easy to see that the residue of any degree k invariant of knots in orientable M3 is a weight system, i.e., it satisfies
1T- and 4T-relations.

In general, these necessary conditions are not sufficient. For example, there exists a degree 1 weight system in S2 × S1

that does not correspond to any knot invariant, see [7]. For M3 of the form M2 × R1 the situation is much better.

Proposition 1. (See [2,1].) Suppose that M3 = M2 × R1 , where M2 is an orientable surface (maybe with boundary), and Ik is a
non-zero R-valued weight system of degree k in M3 . Then there exists an R-valued degree k invariant of knots in M3 , whose residue
coincides with this function Ik.

2. Degree 2 invariants with the chord diagram ⊕

Any weight system I in R3 defines also a weight system (of the same degree) in any orientable 3-manifold M . Indeed,
for any chord diagram A there exists only one A-route in R3. Thus, any degree k weight system in R3 is just a function on
the set of equivalence classes of k-chord diagrams. We can define the desired weight system in M3 as the function whose
value on an A-route is equal to the value of I on the chord diagram A. The obtained function obviously satisfies the 1T- and
4T-relations, since the original weight system does.

If π(M2) �= 0 then weight systems of this origin can be split into sums of more specific independent systems. Consider
for example the unique degree 2 weight system in R3 taking value 1 on the crossing 2-chord diagram ⊕ and value 0 on the
non-crossing diagram. We denote by I⊕(M3) the corresponding degree 2 weight system in M3. This system splits into many
independent summands, corresponding to the splitting of the set of ⊕-routes in M3 into equivalence classes generated by
the following equivalence condition: two ⊕-routes are equivalent if one can obtain one and the same singular knot with a
generic triple point (see Fig. 2) by following both of these ⊕-routes. Let us describe these equivalence classes algebraically.

In Fig. 2 the singular knots with crossed 2-chord diagram are shown in sectors 1, 2 and 3. Contracting one of four
segments of such a knot, bounded by two self-intersection points, we obtain a singular knot with a triple point. Let a, b and
c be three elements of the group π1(M3) defined by three loops of this singular knot, taken in the cyclic order defined by
the orientation of the knot.



1760 S.A. Grishanov, V.A. Vassiliev / Topology and its Applications 155 (2008) 1757–1765
Definition 1. Given a group π , the related trefoil structure (π) is the set of equivalence classes of cyclically ordered triplets
of non-unit elements of π , with equivalence relation generated by the following basic equivalences:

(0) definition of the circular ordering: (a,b, c) ∼ (b, c,a) ∼ (c,a,b);
(1) simultaneous conjugation by an element of π : (a,b, c) is equivalent to (g−1ag, g−1bg, g−1cg) for any g ∈ π ;
(2) (a,b, c) is equivalent to the following six triplets: (a,ba,a−1c), (a,ba−1,ac), (ac−1, cb, c), (ac, c−1b, c), (b−1a,b, cb), and

(ba,b, cb−1).

The last six expressions have the following sense. Given a singular knot with a triple point as in Fig. 2, we choose (1)
one of its three partial desingularizations having the crossed chord diagram as in pictures 1, 2 or 3 of this figure, and
(2) an endpoint of the “short” segment in the corresponding singular knot, joining its two self-intersection points; this
in total gives six possibilities. Then we expand this segment by moving the chosen self-intersection point until it meets
another self-intersection point. The homotopy classes in π1(M3) of three loops of the resulting curve with a triple point are
expressed through the similar classes of the initial (central in Fig. 2) singular knot in one of six ways indicated in item (2)
of Definition 1.

Definition 2. A singular knot in M3 with exactly two transverse self-intersections respects the element τ of the trefoil
structure (π1(M3)), if

(1) the chord diagram, represented by this singular knot, is crossed, and
(2) contracting an arbitrary segment of this knot, joining its two singular points, we obtain a singular knot with a triple

point, whose three loops (cyclically ordered by the orientation of the knot) define a triplet of elements of π1(M3) (with
the basepoint at the triple point of f ) belonging to τ .

Proposition 2. A. The last definition is correct, i.e., the class of the obtained triplet in the trefoil structure does not depend on the choice
of one of four segments to be contracted.

B. All singular knots of one and the same ⊕-route in M3 define one and the same element of (π1(M3)).

This proposition follows immediately from the definition.

Proposition 3. Let M3 be an orientable 3-manifold, and τ an element of the trefoil structure (π1(M3)). Then the function on degree
2 routes in M3 which takes value 1 on all singular knots in M3 respecting τ , and value 0 on all other singular knots with two transverse
self-intersections, is a weight system.

Proof. Only the ⊕-routes, representing one and the same element of the trefoil structure, can meet in one and the same
4T-relation. Therefore for any element τ the described function satisfies 1T- and 4T-relations. �

There is an Abelian version of this notion which generally defines a smaller number of independent weight systems, but
is simpler. Let us describe it.

If the group H is Abelian, then the related trefoil structure (H) is the set of equivalence classes of cyclically ordered
triplets of non-zero elements of H , with equivalence relation generated by elementary equivalences as follow:

(a,b, c) ∼ (a,b + a, c − a) ∼ (a,b − a, c + a) ∼ (a − c,b + c, c)

∼ (a + c,b − c, c) ∼ (a − b,b, c + b) ∼ (a + b,b, c − b). (2)

Definition 3. A singular knot in M3 with exactly two transverse self-intersections respects element Θ of the structure
(H1(M3)), if

(1) the chord diagram of this singular knot is crossed, and
(2) the contraction of an arbitrary segment of this knot, joining its two singular points, gives a singular knot with a triple

point, such that three loops of this knot (taken in the cyclic order defined by its orientation) define a triplet of elements
of H1(M3) belonging to the element Θ .

According to (2), contracting a different segment of the singular knot we obtain the same element of (H1(M3)).

Proposition 4. Let M3 be an orientable 3-manifold. Given an element Θ of the trefoil structure (H1(M3)), there exists a weight
system in M3 taking value 1 on all singular knots in M3 respecting Θ and value 0 on all other singular knots with two transverse
self-intersections.
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An obvious invariant of elements of trefoil structures is the subgroup in π generated by elements a, b and c. However,
there are many other invariants. For instance, if π ≡ Zk , k � 2, and a + b + c = 0 in Zk , then the integer area of the oriented
triangle with vertices a, b, c is the same for all triplets (a,b, c) defining one and the same element of (π).

3. Invariants defined by non-crossed chord diagrams

Every unordered collection of k + 1 non-zero elements of the group H1(M3) (M3 orientable) defines well a degree k
weight system in M3.

Given such a collection Γ of elements γ0, . . . , γk ∈ H1(M3)\0, the corresponding function IΓ on the space of all A-routes
of degree k is defined as follows. If the chord diagram A has at least one pair of crossing chords (i.e., chords whose four
endpoints alternate in S1, as, e.g., in diagrams 22, 33, 34, 35 of Fig. 1), then the value of IΓ on any A-route is equal to 0.
If A has no such crossing chords, then for any generic immersion f : S1 → M3, respecting this chord diagram and having
no other self-intersections, the variety f (S1) defines naturally k + 1 elements of H1(M3); to obtain these elements, we

smooth any self-intersection of f (S1) by the rule ⇒ and take the classes of k + 1 separate circles, into which this

smoothing splits our curve. The value of the desired function IΓ on an A-route is equal to 1 (respectively, to 0) if the
obtained unordered collection of elements of H1(M3) coincides (respectively, does not coincide) with the given collection
(γ0, . . . , γk).

Theorem 1. For any collection Γ of non-zero elements γ0, . . . , γk of H1(M3), this function IΓ on the space of A-routes satisfies the
1T- and 4T-relations.

Proof. Consider a generic singular knot f : S1 → M3 with one triple point and k − 2 double points, see Fig. 2. If one of its
six decompositions into singular knots with k double points defines a chord diagram without crossing chords, then exactly
two other decompositions also have chord diagrams with this property; in Fig. 2 they are decompositions 4, 5 and 6. The
collections of k + 1 homology classes, corresponding to these three decompositions, also coincide, therefore our function
satisfies the 4T-relations; the 1T-relation follows now from the condition that none of the elements γi is trivial. �
Remark 1. If M3 has the form M2 × R1, then the initial (of degree 1) weight systems of this series coincide with the
residues of Fiedler’s invariants of [3], and a majority of our degree 2 weight systems coincide with residues of certain
invariants I K

3 (a,b) from Theorem 2.10 of [4]. Namely, for any fixed homology class [K ] of considered knots, [K ] ∈ H1(M2),
any our weight system I(γ0,γ1,γ2) with γ0 �= γ1 �= γ2 �= γ0 and γ0 + γ1 + γ2 = [K ] coincides (maybe up to a sign) with
principal parts of six Fiedler’s invariants: I K

3 (γ1 + γ0, γ0), I K
3 (γ2 + γ0, γ0), I K

3 (γ0 + γ1, γ1), I K
3 (γ2 + γ1, γ1), I K

3 (γ0 + γ2, γ2),
and I K

3 (γ1 + γ2, γ2), which, therefore, can be reduced to one another by adding invariants of degree 1 (at least in the case
of orientable M2).

If however some two of our classes γi coincide (say, γ0 = γ2 �= γ1), then the corresponding weight system I(γ0,γ1,γ2)

coincides with the principal parts of only two Fiedler’s invariants I K
3 (γ1 + γ0, γ0) and I K

3 (γ1 + γ2, γ2). Thus the only our
degree 2 weight systems I(γ0,γ1,γ2) not covered by the Fiedler’s invariants correspond to a quite useless case γ0 = γ1 = γ2 �=
0 (implying that [K ] is divisible by 3).

It is worth noting also that the Fiedler’s invariants I K
3 (a,b) are applicable to knots in non-orientable manifolds of the

form M2 × R1, in contrast to the above-defined weight systems IΓ .
Finally, notice a minor omission in the list of restrictions in Theorem 2.10 of [4]: in the beginning of its line 4 the

inequality a �= 0 should be replaced by a �= [K ] (which follows immediately from the 1-term relation). Also, in line 2 of the
same theorem the condition a �= 0 should be completed with the condition a �= [K ].

3.1. Non-Abelian version

As in the previous section, we can consider also the non-Abelian version of these weight systems, replacing homology
types of loops by their homotopy types. Let us describe explicitly the corresponding weight systems of degree 1 and 2.

Proposition 5. Let M3 be a connected orientable manifold. Then

(A) (see [7]) degree 1 weight systems in M3 are in the natural one-to-one correspondence with the functions on the set of unordered
pairs of non-unit elements of π(M3) considered up to the simultaneous conjugation: a pair (b, c) of such elements is considered
equal to (g−1bg, g−1cg) for any g ∈ π1(M3).

(B) degree 2 weight systems in M3 , taking zero value on all ⊕-routes, are in the natural one-to-one correspondence with the functions
on the set of cyclically ordered triplets of non-unit elements π1(M3) taking equal values on triplets related by the following
elementary equivalence relations:
(a) definition of the cyclic ordering: (b, c,d) ∼ (c,d,b) ∼ (d,b, c);
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(b) simultaneous conjugations: the triplet (b, c,d) of such elements is equivalent to the triplet (g−1bg, g−1cg, g−1dg) for any
g ∈ π1(M3);

(c) the relation (b, c,d) ∼ (b, cdc−1, c).

Proof. A. The irreducible components of the discriminant variety in C∞(S1, M3) (i.e., the 11-routes) are in the one-to-one
correspondence with such equivalence classes of pairs (b, c) of (maybe unit) elements of π1(M3). 4T-relation is void in this
case, and 1T-relation coincides with the restriction b �= 1 �= c.

B. Let A be the class of non-crossed two-chord diagrams. Any A-route in M3 consists of parameterized singular knots

mapped somehow into M3. Contracting the image of one of two segments connecting the self-intersection

points of this singular knot, we obtain a singular knot with a triple point in M3. We can assume that this triple point is the
basepoint in M3, then three loops of our knot define three cyclically ordered elements of π1(M3). Exactly three of six partial
resolutions of this triple self-intersection (see Fig. 2) correspond to singular knots respecting non-crossed 2-chord diagrams.
According to the 4T-relation our weight system should take equal values on all such singular knots, and hence determines
a function on the set of cyclically ordered triplets of elements of π1(M3) defined by either of them. Traveling inside the
stratum of singular knots, we can arbitrarily move the common basepoint of our three loops; this implies restriction (b) in
Proposition 5(B). If we contract a different segment between two self-intersection points, then we arrive at a similar stratum
characterized by the triplet (b′, c′,d′) with b′ = b, c′ = cdc−1, d′ = c, which implies restriction (c) in our proposition. It is
easy to see that this set of restrictions is complete. �
4. Examples of practical calculations

A wealth of non-trivial knots in T2 × R1,T2 = S1 × S1, is provided by the textile structures. These structures define 1-
dimensional submanifolds in R3 invariant under a lattice of parallel shifts Z2, and hence knots or links in the quotient space
R3/Z2 ∼ T2 × R1.

For example, the single jersey structure [6] can the depicted in the standard rectangular chart of T2 by

the picture . We shall assume that this knot is oriented so that its homology class coincides with that of the (un)knot
represented by a horizontal segment directed from the left to the right. To distinguish these two knots, we join them by a
generic path in the space C∞(S1,T2 × R1):

. (3)

This path crosses the discriminant variety twice. These crossing points belong to irreducible components of the discriminant,
characterized (in accordance with Proposition 5(A) by two pairs of homotopy classes

(
(0,1)(1,−1)

)
and

(
(0,−1)(1,1)

); (4)

here (1,−1) denotes the class in the Abelian group π1(T2) equal to the difference of the horizontal generator of this group
oriented “to the right” in our picture and the vertical generator oriented “to the top of the page”. Any of these components
defines a dual weight system of degree one. Therefore any of the two degree one invariants, corresponding by Proposition 1
to these weight systems, separates the single jersey from the trivial structure.

Remark 2. Adding a constant function to a degree k knot invariant, k � 1, we obtain an invariant of the same degree and the
same weight system, therefore we can and will assume that all our invariants take zero value on the trivial knot indicated
in the right-hand part of (3).

The next example is more complicated. The 1 + 1 rib structure [6] is the connected sum of the single jersey

structure with its “mirror image”. To separate the 1 + 1 rib from the trivial structure, we join them by the generic path

. (5)

There are four surgeries in this path; they belong to components of the discriminant characterized by pairs
(
(0,−1)(1,1)

)
,

(
(0,1)(1,−1)

)
,

(
(0,1)(1,−1)

)
, and

(
(0,−1)(1,1)

)
, (6)

respectively. It is easy to calculate that at these four points our path crosses the discriminant respectively in the positive,
positive, negative and negative directions. Thus, this path crosses exactly two different irreducible components of the dis-
criminant; each of these components is crossed twice in different directions. Therefore the first and the last structure in the
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sequence (5) are not separated by first degree invariants. Let us try to separate them by second degree invariants. According
to the general theory (see [7]), the same sequence (5) can be used for this, however, different surgeries of this sequence
should be taken not only with their signs, but also with certain weights defined by these second degree invariants. More-
over, for our calculation the exact values of these weights are not necessary since it is sufficient to know the differences of
such weights for surgeries within one and the same component of the discriminant.

To calculate these differences, we join the first and the fourth surgery in (5) by a generic path inside the discriminant:

(7)

and then the second and the third surgery:

. (8)

The first and the last surgeries in (7) have non-crossed chord diagrams. Their characteristic triplets of elements of H1(T2)

(see Theorem 1) are equal to ((0,−1)(1,0)(0,1)), but their signs are opposite (and equal to + and −, respectively). The
second surgery also has a non-crossed chord diagram; its characteristic triplet is equal to ((0,−1)(1,2)(0,−1)), and the
sign is equal to −. The third surgery has a crossed chord diagram and sign +, the corresponding element of the trefoil
structure (π1(T2)) is represented by the triplet

(
(0,−1)(0,−1)(1,2)

)
. (9)

The first surgery of (8) has the non-crossed chord diagram, its characteristic triplet is equal to ((0,1)(1,−2)(0,1)), and its
sign is −. The second surgery has the crossed chord diagram and sign +; the corresponding trefoil element is defined by
the triplet

(
(0,1)(0,1)(1,−2)

)
. (10)

Thus, in total we have in (7) and (8) six crossings of the set of singular knots with two self-intersections. Considering all
these surgeries, we arrive at the following statement.

Proposition 6. Both degree two invariants defined by non-crossed chord diagrams and characteristic triplets ((0,1)(1,−2)(0,1)) and
((0,−1)(1,2)(0,−1)) take on the 1 + 1 rib knot values equal to −1. All other basic invariants with non-crossed 2-chord diagrams
take zero value on this knot. The cumulative degree 2 knot invariant defined by the crossed 2-chord diagram ⊕ takes value +2 on the
same knot. In particular, any of these three invariants separates the 1 + 1 rib knot from the trivial knot.

Further, consider the fake weaver’s knot in T2 × R1 given by the picture

. (11)

It can be reduced to the trivial knot by the sequence of two surgeries

. (12)

Characteristic pairs of these surgeries are both equal to ((0,−1)(1,1)), their signs are equal to − and +, respectively.
Therefore the initial knot (11) cannot be separated from the trivial knot by invariants of degree one. Now, let us try to
separate these knots by degree two invariants. To do this, we connect two singular knots, occurring in (12) at surgery
points, by a generic path inside the discriminant variety:

. (13)

The first and the last surgeries in this path have crossed chord diagrams corresponding to the trefoil element
((0,−1)(0,0)(1,1)); the signs of both of these surgeries are equal to −. Two other surgeries have non-crossed chord dia-
grams, both with characteristic triplets equal to ((0,−1)(0,0)(1,1)), are useless for the calculation of degree two invariants.
In the same way as in the previous subsection, this implies the following statement.
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Proposition 7. The second degree invariant defined by the crossed chord diagram and element ((0,−1)(0,0)(1,1)) of the structure
(π1(T2)) takes value +2 on the knot (11). All second degree invariants corresponding to other trefoil elements or to non-crossed

chord diagrams take zero value on the same knot.

It is easy to calculate that this triplet ((0,−1)(0,0)(1,1)) defines the same element of the trefoil structure (π1(T2)) as
(9) and (10). Thus, comparing Propositions 6 and 7 we obtain the following statement.

Corollary 1. (1) The 1 + 1 rib knot and the fake weaver’s knot (11) are separated by the second degree invariants IΓ defined by
non-crossed chord diagrams and characteristic triplets ((0,1)(1,−2)(0,1)) and ((0,−1)(1,2)(0,−1)).

(2) These two knots are not separated by any other basic second degree invariants IΓ or second degree invariants defined by the
crossed chord diagram and any elements of the trefoil structure (π1(T2)).

Now we consider a more complicated knot in T2 × R1 obtained from (11) by the following operation. We cut our knot
(11) at both of its points placed over the top/bottom margin of the quadrilateral chart in T2 × R1, and replace these cutting
points by loops such that (1) their projections to T2 are (almost) vertical segments in our picture, and (2) all crossing points
of these vertical segments with the initial knot diagram are undercrosses only, see (14).

. (14)

We can calculate the first and second degree invariants of this knot in exactly the same way as for the knot (11). The
inserted strings do not participate in the surgeries; their only contribution is that all second coordinates in the formulae for
characteristic triplets and trefoil elements become multiplied by two. Therefore we obtain the following statement.

Proposition 8. The second degree invariant defined by the crossed chord diagram and the element ((0,−2)(0,0)(1,2)) of the trefoil
structure (π1(T2)) takes value +2 on the knot (14). All second degree invariants corresponding to other trefoil elements or to non-
crossed chord diagrams take zero value on the same knot.

Corollary 2. Knots (11) and (14) are separated by second degree invariants corresponding to different elements of the trefoil structure
(π1(T2)), although they are not separated by degree 2 invariants corresponding to non-crossed chord diagrams, as well as by the

cumulative invariant corresponding to the Casson invariant.

Proof. Comparing Propositions 7 and 8, it remains to show that the triplets ((0,−1)(0,0)(1,1)) and ((0,−2)(0,0)(1,2))

belong to different elements of the trefoil structure (π1(T2)). But the subgroup in Z generated by the second coordinates
of vectors a, b and c ∈ Z2 obviously is an invariant of the trefoil structure. �

In the next proposition we show that the entire system of invariants of all degrees in T2 × R1, whose weight systems
are induced from weight systems in R3, cannot separate the knots (11) and (14). We need to be careful with the statement,
because any weight system of degree k determines an invariant only up to adding the invariants of lower degrees, some of
which can distinguish our knots.

Proposition 9. For any weight system W in R3 there exists an invariant of knots in T2 × R1 , whose weight system is induced from W
as described in the first paragraph of Section 2, but which takes equal values on the knots (11) and (14).

Proof. Let I be an arbitrary invariant of knots in R3 (or, equivalently, in S3) with the weight system W ; such an invariant
I exists according to Kontsevich’s theorem. The manifold T2 × R1 can be identified with the complement of the Hopf link
(i.e., two unknotted linked circles) C1 � C2 ⊂ S3 in such a way that

(1) any line x × R1, x ∈ T2, tends to C1 (respectively, to C2) when the parameter in R1 tends to +∞, i.e., “to the reader”
in our pictures (respectively, to −∞);

(2) the horizontal (respectively, vertical) generator of H1(T2) ∼ Z2 in our pictures generates the kernel of the induced
homomorphism H1(T2) → H1(S3\C2) (respectively, H1(T2) → H1(S3\C1)).

The images of our knots (11) and (14) under this embedding T2 × R1 → S3 are isotopic in S3 (and even in S3\C1),
therefore they cannot be separated by the invariant induced from I by this embedding. �
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