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Abstract

The dynamic multi-attribute decision making problems with intuitionistic fuzzy information are investigated. The
notions of intuitionistic fuzzy variable and uncertain intuitionistic fuzzy variable are defined, and two new aggregation
operators: dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator and uncertain dynamic intuitionistic fuzzy
weighted averaging (UDIFWA) operator are presented. Some methods, including the basic unit-interval monotonic
(BUM) function based method, normal distribution based method, exponential distribution based method and average
age method, are introduced to determine the weight vectors associated with these operators. A procedure based on the
DIFWA operator is developed to solve the dynamic intuitionistic fuzzy multi-attribute decision making (DIF-MADM)
problems where all the decision information about attribute values takes the form of intuitionistic fuzzy numbers collected
at different periods, and a procedure based on the UDIFWA operator is developed for DIF-MADM under interval uncer-
tainty in which all the decision information about attribute values takes the form of interval-valued intuitionistic fuzzy
numbers collected at different periods. Finally, a practical case is used to illustrate the developed procedures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Intuitionistic fuzzy set (IFS) [1] characterized by a membership function and a non-membership function, is
an extension of Zadeh’s fuzzy set [2] whose basic component is only a membership function. IFS has been
proven to be highly useful to deal with uncertainty and vagueness, and a lot of work has been done to develop
and enrich the IFS theory [3,4]. In many complex decision making problems, the decision information pro-
vided by a decision maker is often imprecise or uncertain [5] due to time pressure, lack of data, or the decision
maker’s limited attention and information processing capabilities. Accordingly, IFS is a very suitable tool to
be used to describe the imprecise or uncertain decision information. Recently, some researchers have shown
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great interest in the IFS theory and applied it to the field of decision making. Gau and Buehrer [6] introduced
the vague set, which is an equivalence of IFS [7]. Later, based on vague sets, Chen and Tan [8], and Hong and
Choi [9] utilized the minimum and maximum operations to develop some approximate technique for handling
multi-attribute decision making problems under fuzzy environment. Szmidt and Kacprzyk [10] proposed some
solution concepts such as the intuitionistic fuzzy core and consensus winner in group decision making with
intuitionistic (individual and social) fuzzy preference relations, and proposed a method to aggregate the indi-
vidual intuitionistic fuzzy preference relations into a social fuzzy preference relation on the basis of fuzzy
majority equated with a fuzzy linguistic quantifier. Atanassov et al. [11] proposed an intuitionistic fuzzy inter-
pretation of multi-person multi-attribute decision making, in which each decision maker is asked to evaluate
at least a part of the alternatives in terms of their performance with respect to each predefined attribute: the
decision maker’s evaluations are expressed in a pair of numeric values, interpreted in the intuitionistic fuzzy
framework: these numbers express a ‘‘positive’’ and a ‘‘negative’’ evaluation, respectively. They also proposed
a method for multi-person multi-attribute decision making, and presented some examples of the proposed
method in the context of public relation and mass communication. Xu and Yager [12] developed some aggre-
gation operators including the intuitionistic fuzzy weighted geometric operator, intuitionistic fuzzy ordered
weighted geometric operator, and intuitionistic fuzzy hybrid geometric operator, which extend the traditional
weighted geometric operator and ordered weighted geometric operator to accommodate the environment
where the given arguments are IFSs. Moreover, we developed an approach, based on the intuitionistic fuzzy
hybrid geometric operator, to multi-attribute decision making based on IFSs. Liu and Wang [13] gave an eval-
uation function for the decision making problem to measure the degrees to which alternatives satisfy and do
not satisfy the decision maker’s requirement. Then, they introduced the intuitionistic fuzzy point operators,
and defined a series of new score functions for the multi-attribute decision making problems based on intui-
tionistic fuzzy point operators and evaluation function. Xu [14] defined some new intuitionistic preference
relations, such as the consistent intuitionistic preference relation, incomplete intuitionistic preference relation
and acceptable intuitionistic preference relation, and studied their properties. We also developed a method for
group decision making based on intuitionistic preference relations and a method for group decision making
based on incomplete intuitionistic preference relations, respectively. All these studies are focused on the deci-
sion making problems where all the original decision information are provided at the same period. However,
in many decision areas, such as multi-period investment decision making, medical diagnosis, personnel
dynamic examination, and military system efficiency dynamic evaluation, etc., the original decision informa-
tion are usually collected at different periods. Thus, it is necessary to develop some approaches to dealing with
these issues. In this paper, we shall study the fuzzy multi-attribute decision making problems where all the
attribute values are expressed in intuitionistic fuzzy numbers collected at different periods (for convenience,
we call this kind of problems dynamic intuitionistic fuzzy multi-attribute decision making (DIF-MADM)
problems). To do that, we first introduce the notion of intuitionistic fuzzy variable and develop an aggregation
operator called dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator. Then, we introduce some
methods such as the basic unit-interval monotonic (BUM) function based method, normal distribution based
method, exponential distribution based method and average age method, to determine the weight vectors asso-
ciated with the operator, and develop a procedure for DIF-MADM. Furthermore, we extend the developed
operator and procedure to deal with the situations where all the attribute values are expressed in interval-val-
ued intuitionistic fuzzy numbers collected at different periods. At last, an illustrative example is given.

2. Preliminaries

Let us first review some basic concepts related to IFSs [1].

Definition 1 [2]. Let a set Z be fixed, a fuzzy set F in Z is given by Zadeh [2] as follows:
F ¼ f< z; lF ðzÞ > jz 2 Zg ð1Þ

where
lF : Z ! ½0; 1�; z 2 Z ! lZðzÞ 2 ½0; 1� ð2Þ

and lF(z) denotes the degree of membership of the element z to the set Z.
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Definition 2 [1]. Let a set Z be fixed, an IFS A in Z is given by Atanassov [1] as an object having the following
form:
A ¼ f< z; lAðzÞ; vAðzÞ > jz 2 Zg ð3Þ

where the functions
lA : Z ! ½0; 1�; z 2 Z ! lAðzÞ 2 ½0; 1� ð4Þ

and
vA : Z ! ½0; 1�; z 2 Z ! vAðzÞ 2 ½0; 1� ð5Þ

with the condition
0 6 lAðzÞ þ vAðzÞ 6 1; 8z 2 Z ð6Þ
lA(z) and vA(z) denote the degree of membership and the degree of non-membership of the element z 2 Z to
the set A, respectively. In addition, for each IFS A in Z, if
pAðzÞ ¼ 1� lAðzÞ � vAðzÞ ð7Þ
then pA(z) is called the degree of indeterminacy of z to A [3], or called the degree of hesitancy of z to A [15].
Especially, if pA(z) = 0, for all z 2 Z, then the IFS A is reduced to a fuzzy set.

Clearly, a prominent characteristic of IFS is that it assigns to each element a membership degree, a non-
membership degree and a hesitation degree, and thus, IFS constitutes an extension of Zadeh’s fuzzy set which
only assigns to each element a membership degree.

For convenience of computation, we call a = (la,va,pa) an intuitionistic fuzzy number (IFN), where
la 2 ½0; 1�; va 2 ½0; 1�; la þ va 6 1; pa ¼ 1� la � va ð8Þ

For an IFN a = (la,va,pa), if the value la gets bigger and the value va gets smaller, then the IFN a gets

greater, and thus from (8), we know that a+ = (1, 0,0) and a� = (0,1,0) are the largest and smallest IFNs,
respectively.

Similar to the normalized Hamming distance between IFSs [15], below we define a distance measure
between two IFNs.

Definition 3. Let a1 ¼ ðla1
; va1

; pa1
Þ and a2 ¼ ðla2

; va2
; pa2
Þ be two IFNs, then
dða1; a2Þ ¼
1

2
ðjla1

� la2
j þ jva1

� va2
j þ jpa1

� pa2
jÞ ð9Þ
is called the distance between a1 and a2.
3. Dynamic intuitionistic fuzzy weighted averaging operator

Information aggregation is an essential process and is also an important research topic in the field of infor-
mation fusion. In [1], Atanassov defined some basic operations and relations over IFSs. De et al. [16] added
some new operations such as concentration, dilation and normalization of IFSs. Xu and Yager [12] developed
some geometric operators to aggregate intuitionistic fuzzy information. All these operations, relations and
operators can only be used to deal with time independent arguments. However, if time is taken into account,
for example, the argument information may be collected at different periods, then the aggregation operators
and their associated weights should not be kept constant. As a result, in the following, based on (8), we first
define the notion of intuitionistic fuzzy variable.

Definition 4. Let t be a time variable, then we call a(t) = (la(t),va(t),pa(t)) an intuitionistic fuzzy variable, where
laðtÞ 2 ½0; 1�; vaðtÞ 2 ½0; 1�; laðtÞ þ vaðtÞ 6 1; paðtÞ ¼ 1� laðtÞ � vaðtÞ ð10Þ
For an intuitionistic fuzzy variable a(t) = (la(t),va(t),pa(t)), if t = t1, t2, . . . , tp, then a(t1), a(t2), . . . ,a(tn) indi-
cate p IFNs collected at p different periods. Below we introduce some operations related to IFNs.
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Definition 5. Let aðt1Þ ¼ ðla1ðt1Þ; va1ðt1Þ; pa1ðt1ÞÞ and aðt2Þ ¼ ðla2ðt2Þ; va2ðt2Þ; pa2ðt2ÞÞ be two IFNs, then

(1) aðt1Þ � aðt2Þ ¼ ðlaðt1Þ þ laðt2Þ � laðt1Þlaðt2Þ; vaðt1Þvaðt2Þ; ð1� laðt1ÞÞð1� laðt2ÞÞ � vaðt1Þvaðt2ÞÞ.
(2) kaðt1Þ ¼ ð1� ð1� laðt1ÞÞ

k
; vk

aðt1Þ; ð1� laðt1ÞÞ
k � vk

aðt1ÞÞ; k > 0.

Definition 6. Let a(t1), a(t2), . . . ,a(tp) be a collection of IFNs collected at p different periods tk(k = 1,2, . . . ,p),
and k(t) = (k(t1),k(t2), . . . ,k(tp))T be the weight vector of the periods tk(k = 1,2, . . . ,p), then we call
DIFWAkðtÞðaðt1Þ; aðt2Þ; . . . ; aðtpÞÞ ¼ kðt1Þaðt1Þ � kðt2Þaðt2Þ � � � � � kðtpÞaðtpÞ ð11Þ
a dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator.

By Definition 5, (11) can be rewritten as follows:
DIFWAkðtÞðaðt1Þ; aðt2Þ; . . . ; aðtpÞÞ ¼ 1�
Yp

k¼1

ð1� laðtkÞÞ
kðtkÞ;

Yp

k¼1

vkðtkÞ
aðtkÞ;

Yp

k¼1

ð1� laðtkÞÞ
kðtkÞ �

Yp

k¼1

vkðtkÞ
aðtkÞ

 !
ð12Þ
where
kðtkÞP 0; k ¼ 1; 2; . . . ; p;
Xp

k¼1

kðtkÞ ¼ 1 ð13Þ
In what follows, we introduce some methods to determine the weight vector k(t) of the periods
tk(k = 1,2, . . . ,p):

(1) BUM function based method [17,18]: Let Q: [0,1]! [0,1] be a function having the following properties:

(i) Q(0) = 0.
(ii) Q(1) = 1.

(iii) Q(x) P Q(y) if x > y.

Then Q is a basic unit-interval monotonic (BUM) function [17,18]. Using a BUM function, we can obtain the
weight vector k(t) as follows:
kðtkÞ ¼ Q
k
p

� �
� Q

k � 1

p

� �
; k ¼ 1; 2; . . . ; p ð14Þ
with the condition (13).
For example, if Q(x) = xr, r > 0, then
kðtkÞ ¼
k
p

� �r

� k � 1

p

� �r

¼ k
p

� �r

� k
p
� 1

p

� �r

; k ¼ 1; 2; . . . ; p ð15Þ
Let
f ðxÞ ¼ xr � x� 1

p

� �r

; x P
1

p
ð16Þ
then
f 0ðxÞ ¼ rxr�1 � r x� 1

p

� �r�1

¼ r xr�1 � x� 1

p

� �r�1
 !

ð17Þ
thus,

(i) If r > 1, then f 0(x) > 0, i.e., f(x) is a strictly monotonic increasing function.
(ii) If r = 1, then f 0(x) = 0, i.e., f(x) is a constant function.

(iii) If r < 1, then f 0(x) < 0, i.e., f(x) is a strictly monotonic decreasing function.
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Therefore, by (14), we have

(i) If r > 1, then k(tk+1) > k(tk), k = 1,2, . . . ,p � 1, i.e., the sequence {k(tk)} is a monotonic increasing
sequence. Especially, if r = 2, then
kðtkþ1Þ � kðtkÞ ¼
k þ 1

p

� �2

� k
p

� �2

� k
p

� �2

þ k � 1

p

� �2

¼ 2

p2
; k ¼ 1; 2; . . . ; p � 1 ð18Þ

i.e., the sequence {k(tk)} is an increasing arithmetic sequence.

(ii) If r = 1, then
kðtkÞ ¼
k
p
� k � 1

p
¼ 1

p
; k ¼ 1; 2; . . . ; p ð19Þ

thus k(t) = (1/p, 1/p, . . . , 1/p)T.

(iii) If r < 1, then k(tk+1) < k(tk), k = 1,2, . . . ,p � 1, i.e., the sequence {k(tk)} is a monotonic decreasing

sequence.

(2) Normal distribution based method [19]: The normal distribution is one of the most commonly observed
and is the starting point for modeling many natural processes. It is usually found in events that are the aggre-
gation of many smaller, but independent random events. Below we first review the concept of normal distri-
bution (or so-called Gaussian distribution).

The normal probability density function of normal distribution for a variable x is defined as follow:
gðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr
p e�

ðx�lÞ2

2r2 ; �1 < x <1 ð20Þ
where l is a mean and r(r > 0) is a standard deviation.
We can utilize the normal distribution based method to determine the weight vector k(t) [19]:
kðtkÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2prp

p e
�ðk�lp Þ2

2r2
p ; k ¼ 1; 2; . . . ; p ð21Þ
where lp is the mean of the collection of 1,2, . . . ,p, and rp(rp > 0) is the standard deviation of the collection of
1,2, . . . ,p. lp and rp are obtained by using the following formulas, respectively:
lp ¼
1

p
pð1þ pÞ

2
¼ 1þ p

2
ð22Þ

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

k¼1

ðk � lpÞ
2

s
ð23Þ
By (13) and (21), we have
kðtkÞ ¼
e
�ðk�lpÞ2

2r2
p

Pp
j¼1

e
�ðj�lp Þ2

2r2
p

; k ¼ 1; 2; . . . ; p ð24Þ
The normal distribution based method has the following properties [19]:

(i) The weights k(tk)(k = 1,2, . . . ,p) are symmetrical, i.e.,
kðtkÞ ¼ kðtpþ1�kÞ; k ¼ 1; 2; . . . ; p ð25Þ

(ii) It assigns the largest weights to the mean period, and the further the period tk departs from the mean

period, the smaller the weight assigned to the period tk.

(3) Exponential distribution based method [20]: The exponential distribution is a memory-less continuous
distribution. The exponential distribution is often used to model the time between random arrivals of events
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that occur at a constant average rate. The normal probability density function of exponential distribution for a
variable x is defined as follows:
hðxÞ ¼ 1

l
e�

x
l; x > 0 ð26Þ
where l is the mean time between failures.
To generate the weight vector k(t) using the normal probability density function of exponential distribution,

(26) can be rewritten as follows:
kðtkÞ ¼
1

lp
e
� k

lp ; k ¼ 1; 2; . . . ; p ð27Þ
where lp is shown as in (22).
By (13) and (27), we have
kðtkÞ ¼
e
� k

lpPp
j¼1

e
� j

lp

; k ¼ 1; 2; . . . ; p ð28Þ
From (28), we know that the sequence {k(tk)} is a monotonic decreasing sequence, that is, the larger k, the
smaller the weight assigned to the period tk.

If we use the inverse form of exponential distribution to determine the weight vector k(t), then
kðtkÞ ¼
1

lp
e

k
lp ; k ¼ 1; 2; . . . ; p ð29Þ
By (13) and (29), we have
kðtkÞ ¼
e

k
lpPp

j¼1

e
j

lp

; k ¼ 1; 2; . . . ; p ð30Þ
where the sequence {k(tk)} is a monotonic increasing sequence, that is, the larger k, the greater the weight as-
signed to the period tk.

Clearly, the weights generated by exponential distribution based method are similar to those generated by
the BUM function based method.

(4) Average age method [21]: We can associate with a set of weights k(tk)(k = 1,2, . . . ,p) a concept of the
average age of the data. Assume k(t1),k(t2), . . . ,k(tp) are the weights with tp being the most recent and t1 being
the earliest. Using this we can calculate
�t ¼
Xp

k¼1

ðp � kÞkðtkÞ ð31Þ
where �t indicates the average age of the data. We note that for the BUM approach the area under Q can be
used to approximate �t:
�t � ðp � 1Þ
Z 1

0

QðxÞdx ð32Þ
More generally, we can obtain the weights by specifying a value for �t and then find a set of weights that
satisfies the following mathematical programming model for the k(tk):
Minimize :
Xp

k¼1

ðkðtkÞÞ2

Subject to :
Xp

k¼1

ðp � kÞkðtkÞ ¼ �t

Xp

k¼1

kðtkÞ ¼ 1; kðtkÞP 0; k ¼ 1; 2; . . . ; p
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To solve this model, we construct the Lagrange function:
LðkðtÞ; g1; g2Þ ¼
Xp

k¼1

ðkðtkÞÞ2 � 2g1

Xp

k¼1

ðp � kÞkðtkÞ ��t

 !
� 2g2

Xp

k¼1

kðtkÞ � 1

 !
ð33Þ
where k(t) = (k(t1),k(t2), . . . ,k(tp))T, g1 and g2 are the Lagrange multipliers.
Differentiating (33) with respect to k(tk)(k = 1,2, . . . ,p), g1 and g2, and setting these partial derivatives equal

to zero, the following set of equations is obtained:
oLðkðtÞ; g1; g2Þ
okðtkÞ

¼ 2kðtkÞ � 2g1ðp � kÞ � 2g2 ¼ 0 ð34Þ

oLðkðtÞ; g1; g2Þ
og1

¼ �2
Xp

k¼1

ðp � kÞkðtkÞ ��t

 !
¼ 0 ð35Þ

oLðkðtÞ; g1; g2Þ
og2

¼ �2
Xp

k¼1

kðtkÞ � 1

 !
¼ 0 ð36Þ
Simplifying (34)–(36), we have
kðtkÞ ¼ ðp � kÞg1 þ g2 ð37ÞXp

k¼1

ðp � kÞkðtkÞ ¼ �t ð38Þ

Xp

k¼1

kðtkÞ ¼ 1 ð39Þ
Combining (37)–(39), it follows that
g1

Xp

k¼1

ðp � kÞ2 þ g2

Xp

k¼1

ðp � kÞ ¼ �t ð40Þ

g1

Xp

k¼1

ðp � kÞ þ g2p ¼ 1 ð41Þ
By solving (40) and (41), we get
g1 ¼
12�t � 6ðp � 1Þ

pðp � 1Þ2
ð42Þ

g2 ¼
4ðp � 1Þ � 6�t

pðp � 1Þ ð43Þ
and thus, by (34), we have
kðtkÞ ¼
ð12�t � 6p þ 6Þðp � kÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ

pðp � 1Þ2
; k ¼ 1; 2; . . . ; p ð44Þ
Since k(tk) P 0, for all k, then
ð12�t � 6p þ 6Þðp � kÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ
pðp � 1Þ2

P 0; k ¼ 1; 2; . . . ; p ð45Þ
i.e,
ð3p � 6k þ 3Þ�t P ðp � 1Þðp � 3k þ 2Þ; k ¼ 1; 2; . . . ; p ð46Þ
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thus,

(i) If (3p � 6k + 3) = 0, i.e., k ¼ pþ1
2

, then (46) holds, for all �t.
(ii) If (3p � 6k + 3) > 0, i.e., k < pþ1

2
, then (46) holds, for �t P p�1

3
.

(iii) If (3p � 6k + 3) < 0, i.e., k > pþ1
2

, then (45) holds, for �t 6 2ðp�1Þ
3

.

Therefore, we can obtain the weights k(tk)(k = 1,2, . . . ,p) by using (44) with the following condition:
p � 1

3
6 �t 6

2ðp � 1Þ
3

ð47Þ
If let
gðxÞ ¼ ð12�t � 6p þ 6Þðp � xÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ
pðp � 1Þ2

ð48Þ
then
g0ðxÞ ¼ � ð12�t � 6p þ 6Þ
pðp � 1Þ2

ð49Þ
thus,

(i) If p�1
3
6 �t < p�1

2
, then g 0(x) > 0, i.e., g(x) is a strictly monotonic increasing function.

(ii) If �t ¼ p�1
2

, then g 0(x) = 0, i.e., g(x) is a constant function.
(iii) If p�1

2
< �t 6 2ðp�1Þ

3
, then g 0(x) < 0, i.e., g(x) is a strictly monotonic decreasing function.

Therefore, by (44), we have

(i) If p�1
3
6 �t < p�1

2
, then k (tk+1) > k(tk), k = 1,2, . . . ,p � 1, i.e., the sequence {k(tk)} is a monotonic increas-

ing sequence. Also since
kðtkþ1Þ � kðtkÞ ¼
ð12�t � 6p þ 6Þðp � ðk þ 1ÞÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ

pðp � 1Þ2

� ð12�t � 6p þ 6Þðp � kÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ
pðp � 1Þ2

¼ �ð12�t � 6p þ 6Þ
pðp � 1Þ2

> 0; k ¼ 1; 2; . . . ; p � 1 ð50Þ

then the sequence {k(tk)} is an increasing arithmetic sequence.

(ii) If �t ¼ p�1

2
, then
kðtkÞ ¼
ð12�t � 6p þ 6Þðp � kÞ þ 4ðp � 1Þ2 � 6�tðp � 1Þ

pðp � 1Þ2
¼ 1

p
; k ¼ 1; 2; . . . ; p ð51Þ

thus k(t) = (1/p, 1/p, . . . , 1/p)T.
(iii) If p�1
2
< �t 6 2ðp�1Þ

3
, then k (tk+1) < k(tk), k = 1,2, . . . ,p � 1, i.e., the sequence {k(tk)} is a monotonic

decreasing sequence. Similar to (50), we have k(tk+1) � k(tk) < 0, k = 1,2, . . . ,p � 1, thus the sequence
{k(tk)} is a decreasing arithmetic sequence.
4. A procedure for DIF-MADM

In this section, we consider the DIF-MADM problems where all the attribute values are expressed in intui-
tionistic fuzzy numbers, which are collected at different periods. The following notations are used to depict the
considered problems:
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• X = {x1,x2, . . . ,xn}: A discrete set of n feasible alternatives.
• G = {G1,G2, . . . ,Gm}: A finite set of attributes, whose weight vector is w = (w1,w2, . . . ,wm)T, where wj P 0,

j = 1,2, . . . ,m,
Pm

j¼1wj ¼ 1.
• There are p periods tk(k = 1,2, . . . ,p), whose weight vector is k(t) = (k(t1),k(t2), . . . ,k(tp))T, where k(tk) P 0,

k = 1,2, . . . ,p,
Pp

k¼1kðtkÞ ¼ 1.
• R(tk) = (rij(tk))n·m: An intuitionistic fuzzy decision matrix of the period tk, where rijðtkÞ ¼
ðlrijðtkÞ; vrijðtkÞ; prijðtkÞÞ is an attribute value, denoted by an IFN, lrijðtkÞ indicates the degree that the alternative
xi should satisfy the attribute Gj at the period tk, vrijðtkÞ indicates the degree that the alternative xi should not
satisfy the attribute Gj at the period tk, and prijðtkÞ indicates the degree of indeterminacy of the alternative xi

to the attribute Gj, such that
lrijðtkÞ 2 ½0; 1�; vrijðtkÞ 2 ½0; 1�; lrijðtkÞ þ vrijðtkÞ 6 1; prijðtkÞ ¼ 1� lrijðtkÞ � vrijðtkÞ;

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m ð52Þ
Based on the above decision information, in what follows, we propose a practical procedure to rank and
select the most desirable alternative(s):

Procedure I

Step 1. Utilize the DIFWA operator:
rij ¼ DIFWAkðtÞðrijðt1Þ; rijðt2Þ; . . . ; rijðtpÞÞ

¼ 1�
Yp

k¼1

ð1� lrijðtkÞÞ
kðtkÞ;

Yp

k¼1

vkðtkÞ
rijðtkÞ;

Yp

k¼1

ð1� lrijðtkÞÞ
kðtkÞ �

Yp

k¼1

vkðtkÞ
rijðtkÞ

 !
ð53Þ
to aggregate all the intuitionistic fuzzy decision matrices R(tk) = (rij(tk))m·n (k = 1,2, . . . ,p) into a complex
intuitionistic fuzzy decision matrix R = (rij)n·m, where rij = (lij,vij,pij), lij ¼ 1�

Qp
k¼1ð1� lrijðtkÞÞ

kðtkÞ;
vij ¼

Qp
k¼1vkðtkÞ

rijðtkÞ; pij ¼
Qp

k¼1ð1� lrijðtkÞÞ
kðtkÞ �

Qp
k¼1vkðtkÞ

rijðtkÞ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m.

Step 2. Define aþ ¼ ðaþ1 ; aþ2 ; . . . ; aþmÞ
T and a� ¼ ða�1 ; a�2 ; . . . ; a�mÞ

T as the intuitionistic fuzzy ideal solution
(IFIS) and the intuitionistic fuzzy negative ideal solution (IFNIS), respectively, where
aþi ¼ ð1; 0; 0Þði ¼ 1; 2; . . . ;mÞ are the m largest IFNs, and a�i ¼ ð0; 1; 0Þði ¼ 1; 2; . . . ;mÞ are the m smallest
IFNs. Furthermore, for convenience of depiction, we denote the alternatives xi(i = 1,2, . . . ,n) by xi = (ri1,
ri2, . . . , rim)T, i = 1,2, . . . ,n.

Step 3. Calculate the distance between the alternative xi and the IFIS a+ and the distance between the alter-
native xi and the IFNIS a�, respectively:
dðxi; a
þÞ ¼

Xm

j¼1

wjdðrij; a
þ
j Þ ¼

1

2

Xm

j¼1

wjðjlij � 1j þ jvij � 0j þ jpij � 0jÞ

¼ 1

2

Xm

j¼1

wjð1� lij þ vij þ pijÞ ¼
1

2

Xm

j¼1

wjð1� lij þ vij þ 1� lij � vijÞ

¼
Xm

j¼1

wjð1� lijÞ ð54Þ

dðxi; a
�Þ ¼

Xm

j¼1

wjdðrij; a
�
j Þ ¼

1

2

Xm

j¼1

wjðjlij � 0j þ jvij � 1j þ jpij � 0jÞ

¼ 1

2

Xm

j¼1

wjð1þ lij � vij þ pijÞ ¼
1

2

Xm

j¼1

wjð1þ lij � vij þ 1� lij � vijÞ

¼ 1

2

Xm

j¼1

wjð1� vijÞ ð55Þ
where rij = (lij,vij,pij), i = 1,2, . . . ,n, j = 1,2, . . . ,m.
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Step 4. Calculate the closeness coefficient of each alternative:
cðxiÞ ¼
dðxi; a�Þ

dðxi; aþÞ þ dðxi; a�Þ
; i ¼ 1; 2; . . . ; n ð56Þ
Since
dðxi; a
þÞ þ dðxi; a

�Þ ¼
Xm

j¼1

wjð1� lijÞ þ
Xm

j¼1

wjð1� vijÞ ¼
Xm

j¼1

wjð2� lij � vijÞ ¼
Xm

j¼1

wjð1þ pijÞ ð57Þ
then, (56) can be rewritten as
cðxiÞ ¼

Pm
j¼1

wjð1� vijÞPm
j¼1

wjð1þ pijÞ
; i ¼ 1; 2; . . . ; n ð58Þ
Step 5. Rank all the alternatives xi(i = 1,2, . . . ,n) according to the closeness coefficients c(xi)(i = 1,2, . . . ,n),
the greater the value c(xi), the better the alternative xi.

Step 6. End.

5. A procedure for DIF-MADM under interval uncertainty

In [22], Atanassov and Gargov generalized IFS and defined the notion of the interval-valued IFS (IVIFS),
which is characterized by a membership function and a non-membership function whose values are intervals
rather than exact numbers.

Definition 7 [22]. Let a set Z be fixed, an IVIFS eA over Z is an object having the form:
eA ¼ f< z; ~leAðzÞ;~veAðzÞ > jz 2 Zg ð59Þ
where ~leAðzÞ ¼ ½~lLeAðzÞ; ~lUeA ðzÞ� � ½0; 1� and ~veAðzÞ ¼ ½~vLeAðzÞ;~vUeA ðzÞ� � ½0; 1� are intervals, ~lLeAðzÞ ¼ inf ~leAðzÞ,
~lUeA ðzÞ ¼ sup ~leAðzÞ, ~vLeAðzÞ ¼ inf ~veAðzÞ, ~vUeA ðzÞ ¼ sup ~veAðzÞ, and for every z 2 Z:
~lUeA ðzÞ þ ~vUeA ðzÞ 6 1 ð60Þ
Let ~peAðzÞ ¼ ½~pLeAðzÞ; ~pUeA ðzÞ�, where
~pLeAðzÞ ¼ 1� ~lUeA ðzÞ � ~vUeA ðzÞ; ~pUeA ðzÞ ¼ 1� ~lLeAðzÞ � ~vLeAðzÞ; for all z 2 Z ð61Þ
Here, we call the triple ð~leAðzÞ;~veAðzÞ; ~peAðzÞÞ an interval-valued intuitionistic fuzzy number (IVIFN). For

convenience, we denote an IVIFN by ~a ¼ ð~l~a;~v~a; ~p~aÞ, where
~l~a ¼ ½~lL
~a ; ~l

U
~a � � ½0; 1�; ~v~a ¼ ½~vL

~a ;~v
U
~a � � ½0; 1�; ~lU

~a þ ~vU
~a 6 1;

~p~a ¼ ½~pL
~a ; ~p

U
~a � ¼ ½1� ~lU

~a � ~vU
~a ; 1� ~lL

~a � ~vL
~a �

ð62Þ
Obviously, by (62), we know that ~aþ ¼ ð½1; 1�; ½0; 0�; ½0; 0�Þ and ~a� ¼ ð½0; 0�; ½1; 1�; ½0; 0�Þ are, respectively, the
largest and smallest IVIFNs.

In what follows, we define a distance measure between IVIFNs.

Definition 8. Let ~a1 ¼ ð½~lL
~a1
; ~lU

~a1
�; ½~vL

~a1
;~vU

~a1
�; ½~pL

~a1
; ~pU

~a1
�Þ and ~a2 ¼ ð½~lL

~a2
; ~lU

~a2
�; ½~vL

~a2
;~vU

~a2
�; ½~pL

~a2
; ~pU

~a2
�Þ be two IVIFNs, then
dð~a1; ~a2Þ ¼
1

4
ðj~lL

~a1
� ~lL

~a2
j þ j~lU

~a1
� ~lU

~a2
j þ j~vL

~a1
� ~vL

~a2
j þ j~vU

~a1
� ~vU

~a2
jÞ þ j~pL

~a1
� ~pL

~a2
j þ j~pU

~a1
� ~pU

~a2
jÞ ð63Þ
is called the distance between ~a1 and ~a2.
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Similar to Definitions 4–6, we have

Definition 9. Let t be a time variable, then we call ~aðtÞ ¼ ð½~lL
~aðtÞ; ~l

U
~aðtÞ�; ½~vL

~aðtÞ;~v
U
~aðtÞ�; ½~pL

~aðtÞ; ~p
U
~aðtÞ�Þ an uncertain

intuitionistic fuzzy variable, where
½~lL
~aðtÞ; ~l

U
~aðtÞ� � ½0; 1�; ½~vL

~aðtÞ;~v
U
~aðtÞ� � ½0; 1�; ~lU

~aðtÞ þ ~vU
~aðtÞ 6 1

½~pL
~aðtÞ; ~p

U
~aðtÞ� ¼ ½1� ~lU

~aðtÞ � ~vU
~aðtÞ; 1� ~lL

~aðtÞ � ~vL
~aðtÞ� ð64Þ
Let ~aðtÞ ¼ ð½~lL
~aðtÞ; ~l

U
~aðtÞ�; ½~vL

~aðtÞ;~v
U
~aðtÞ�; ½~pL

~aðtÞ; ~p
U
~aðtÞ�Þ be an uncertain intuitionistic fuzzy variable, then

~aðt1Þ; ~aðt2Þ; . . . ; ~aðtnÞ denote p IVIFNs collected at p different periods.
Now we introduce the following operations related to IVIFNs:

Definition 10. Let ~aðtkÞ ¼ ð½~lL
~aðtkÞ; ~l

U
~aðtkÞ�; ½~v

L
~aðtkÞ;~v

U
~aðtkÞ�; ½~p

L
~aðtkÞ; ~p

U
~aðtkÞ�Þ ðk ¼ 1; 2Þ be two IVIFNs, then
ð1Þ ~aðt1Þ � ~aðt2Þ ¼ ð½~lL
aðt1Þ þ ~lL

aðt2Þ � ~lL
aðt1Þ~l

L
aðt2Þ; ~l

U
aðt1Þ þ ~lU

aðt2Þ � ~lU
aðt1Þ~l

U
aðt2Þ�; ½~v

L
aðt1Þ~v

L
aðt2Þ;~v

U
aðt1Þv

U
aðt2Þ�;

½ð1� ~lU
aðt1ÞÞð1� ~lU

aðt2ÞÞ � ~vU
aðt1Þ~v

U
aðt2Þ; ð1� ~lL

aðt1ÞÞð1� ~lL
aðt2ÞÞ � ~vL

aðt1Þ~v
L
aðt2Þ�Þ

ð2Þ k~aðt1Þ ¼ ð½1� ð1� ~lL
~aðt1ÞÞ

k
; 1� ð1� ~lU

~aðt1ÞÞ
k�; ½ð~vL

~aðt1ÞÞ
k
; ð~vU

~aðt1ÞÞ
k�;

½ð1� ~lU
~aðt1ÞÞ

k � ð~vU
~aðt1ÞÞ

k
; ð1� ~lL

~aðt1ÞÞ
k � ð~vL

~aðt1ÞÞ
k�Þ; k > 0
Definition 11. Let ~aðt1Þ; ~aðt2Þ; . . . ; ~aðtpÞ be a collection of IVIFNs collected at p different periods
tk(k = 1,2, . . . ,p), and k(t) = (k(t1),k(t2), . . . ,k(tp))T be the weight vector of the periods tk(k = 1,2, . . . ,p), which
can be obtained by the methods proposed in Section 3, then we call
UDIFWAkðtÞð~aðt1Þ; ~aðt2Þ; . . . ; ~aðtpÞÞ ¼ kðt1Þ~aðt1Þ � kðt2Þ~aðt2Þ � � � � � kðtpÞ~aðtpÞ ð65Þ
an uncertain dynamic intuitionistic fuzzy weighted averaging (UDIFWA) operator, which can be rewritten as
follows:
UDIFWAkðtÞð~aðt1Þ;~aðt2Þ; . . . ;~aðtpÞÞ¼ 1�
Yp

k¼1

ð1� ~lL
~aðtkÞÞ

kðtkÞ;1�
Yp

k¼1

ð1� ~lU
~aðtkÞÞ

kðtkÞ

" #
;

 
Yp

k¼1

ð~vL
~aðtkÞÞ

kðtkÞ;
Yp

k¼1

ð~vU
~aðtkÞÞ

kðtkÞ

" #
;
Yp

k¼1

ð1� ~lU
~aðtkÞÞ

kðtkÞ �
Yp

k¼1

ð~vU
~aðtkÞÞ

kðtkÞ;
Yp

k¼1

ð1� ~lL
~aðtkÞÞ

kðtkÞ �
Yp

k¼1

ð~vL
~aðtkÞÞ

kðtkÞ

" #!
ð66Þ
with the condition (13).
Below we consider the DIF-MADM problems under interval uncertainty where all the attribute values are

expressed in IVIFNs, which are collected at different periods. The following notations are used to depict the
considered problems:

Let X, G, w, and k(t) be presented as in Section 4, and let eRðtkÞ ¼ ð~rijðtkÞÞn�m be an uncertain intuitionistic
fuzzy decision matrix of the period tk, where ~rijðtkÞ ¼ ð½~lL

~rijðtkÞ; ~l
U
~rijðtkÞ�; ½~v

L
~rijðtkÞ;~v

U
~rijðtkÞ�; ½~p

L
~rijðtkÞ; ~p

U
~rijðtkÞ�Þ is an

attribute value, denoted by an IVIFN, where ½~lL
~rijðtkÞ; ~l

U
~rijðtkÞ� indicates the uncertain degree that the alternative

xi should satisfy the attribute Gj at the period tk, ½~vL
~rijðtkÞ;~v

U
~rijðtkÞ� indicates the uncertain degree that the

alternative xi should not satisfy the attribute Gj at the period tk, and ½~pL
~rijðtkÞ; ~p

U
~rijðtkÞ� indicates the range of

indeterminacy of the alternative xi to the attribute Gj, such that
½~lL
~rijðtkÞ; ~l

U
~rijðtkÞ� 2 ½0; 1�; ½~vL

~rijðtkÞ;~v
U
~rijðtkÞ� 2 ½0; 1�; ~lU

~rijðtkÞ þ ~vU
~rijðtkÞ 6 1; ½~pL

~rijðtkÞ; ~p
U
~rijðtkÞ�

¼ ½1� ~lU
~rijðtkÞ � ~vU

~rijðtkÞ; 1� ~lL
~rijðtkÞ � ~vL

~rijðtkÞ�; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m ð67Þ
Similar to Section 4, a procedure for solving the above problems can be described as follows:
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Procedure II

Step 1. Utilize the UDIFWA operator:
~rij ¼UDIFWAkðtÞð~rijðt1Þ;~rijðt2Þ; . . . ;~rijðtpÞÞ ¼ 1�
Yp

k¼1

ð1� ~lL
~rijðtkÞÞ

kðtkÞ;1�
Yp

k¼1

ð1� ~lU
~rijðtkÞÞ

kðtkÞ

" #
;

 
Yp

k¼1

ð~vL
~rijðtkÞÞ

kðtkÞ;
Yp

k¼1

ð~vU
~rijðtkÞÞ

kðtkÞ

" #
;
Yp

k¼1

ð1� ~lU
~rijðtkÞÞ

kðtkÞ �
Yp

k¼1

ð~vU
~rijðtkÞÞ

kðtkÞ;
Yp

k¼1

ð1� ~lL
~rijðtkÞÞ

kðtkÞ �
Yp

k¼1

ð~vL
~rijðtkÞÞ

kðtkÞ

" #!
ð68Þ
to aggregate all the uncertain intuitionistic fuzzy decision matrices eRðtkÞ ¼ ð~rijðtkÞÞn�m ðk ¼ 1; 2; . . . ; pÞ into a
complex uncertain intuitionistic fuzzy decision matrix eR ¼ ð~rijÞn�m, where ~rij ¼ ð½~lL

ij; ~l
U
ij �; ½~vL

ij;~v
U
ij �;

½~pL
ij; ~p

U
ij �Þ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m.

Step 2. Define ~aþ ¼ ð~aþ1 ; ~aþ2 ; . . . ; ~aþmÞ
T and ~a� ¼ ð~a�1 ; ~a�2 ; . . . ; ~a�mÞ

T as the uncertain intuitionistic fuzzy ideal
solution (UIFIS) and the uncertain intuitionistic fuzzy negative ideal solution (UIFNIS), respectively, where
~aþi ¼ ð½1; 1�; ½0; 0�; ½0; 0�Þði ¼ 1; 2; . . . ;mÞ are the m largest IVIFNs, and ~a�i ¼ ð½0; 0�; ½1; 1�; ½0; 0�Þði ¼ 1; 2; . . . ;mÞ
are the m smallest IVIFNs. Moreover, we denote the alternatives xi(i = 1,2, . . . ,n) by xi ¼ ð~ri1;~ri2; . . . ;
~rimÞT; i ¼ 1; 2; . . . ; n.

Step 3. Calculate the distance between the alternative xi and the UIFIS ~aþ and the distance between the
alternative xi and the UIFNIS ~a�, respectively:
dðxi; ~a
þÞ ¼

Xm

j¼1

wjdð~rij; ~a
þ
j Þ

¼ 1

4

Xm

j¼1

wjðj~lL
ij � 1j þ j~lU

ij � 1j þ j~vL
ij � 0j þ j~vU

ij � 0j þ j~pL
ij � 0j þ j~pU

ij � 0jÞ

¼ 1

4

Xm

j¼1

wj½2� ð~lL
ij þ ~lU

ij Þ þ ~vL
ij þ ~vU

ij þ ~pL
ij þ ~pU

ij �

¼ 1

4

Xm

j¼1

wj½2� ð~lL
ij þ ~lU

ij Þ þ ~vL
ij þ ~vU

ij þ 1� ~lU
ij � ~vU

ij þ 1� ~lL
ij � ~vL

ij�

¼ 1

4

Xm

j¼1

wj½4� 2ð~lL
ij þ ~lU

ij Þ�

¼ 1

2

Xm

j¼1

wj½2� ð~lL
ij þ ~lU

ij Þ� ð69Þ

dðxi; ~a
�Þ ¼

Xm

j¼1

wjdð~rij; ~a
�
j Þ

¼ 1

4

Xm

j¼1

wjðj~lL
ij � 0j þ j~lU

ij � 0j þ j~vL
ij � 1j þ j~vU

ij � 1j þ j~pL
ij � 0j þ j~pU

ij � 0jÞ

¼ 1

4

Xm

j¼1

wj½2þ ~lL
ij þ ~lU

ij � ð~vL
ij þ ~vU

ij Þ þ 1� ~lU
ij � ~vU

ij þ 1� ~lL
ij � ~vL

ij�

¼ 1

4

Xm

j¼1

wj½4� 2ð~vL
ij þ ~vU

ij Þ� ¼
1

2

Xm

j¼1

wj½2� ð~vL
ij þ ~vU

ij Þ�

¼ 1

2

Xm

j¼1

wj½2� ð~vL
ij þ ~vU

ij Þ� ð70Þ
where ~rij ¼ ð½~lL
ij; ~l

U
ij �; ½~vL

ij;~v
U
ij �; ½~pL

ij; ~p
U
ij �Þ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m.
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Step 4. Calculate the closeness coefficient of each alternative:
cðxiÞ ¼
dðxi; ~a�Þ

dðxi; ~aþÞ þ dðxi; ~a�Þ
; i ¼ 1; 2; . . . ; n ð71Þ
Since
dðxi; ~a
þÞ þ dðxi; ~a

�Þ ¼ 1

2

Xm

j¼1

wj½2� ð~lL
ij þ ~lU

ij Þ� þ
1

2

Xm

j¼1

wj½2� ð~vL
ij þ ~vU

ij Þ�

¼ 1

2

Xm

j¼1

wj½2� ð~lL
ij þ ~lU

ij Þ � ð~vL
ij þ ~vU

ij Þ� ¼
1

2

Xm

j¼1

wj½4� ð~lL
ij þ ~lU

ij Þ � ð~vL
ij þ ~vU

ij Þ�

¼ 1

2

Xm

j¼1

wj½2þ ð~pL
ij þ ~pU

ij Þ� ð72Þ
then, (71) can be rewritten as
cðxiÞ ¼
Pm

j¼1wj½2� ð~vL
ij þ ~vU

ij Þ�Pm
j¼1wj½2þ ð~pL

ij þ ~pU
ij Þ�

; i ¼ 1; 2; . . . ; n ð73Þ
Step 5. Rank all the alternatives xi(i = 1,2, . . . ,n) according to the closeness coefficients c(xi)(i = 1,2, . . . ,n),
the greater the value c(xi), the better the alternative xi.

Step 6. End.

6. Case illustration

The following practical case was adapted from [23]. Located in Central China and the middle reaches of the
Changjiang (Yangtze) River, Hubei Province is distributed in a transitional belt where physical conditions and
landscapes are on the transition from north to south and from east to west. Thus, Hubei Province is well
known as ‘‘a land of rice and fish’’ since the region enjoys some of the favorable physical conditions, with
a diversity of natural resources and the suitability for growing various crops. At the same time, however, there
are also some restrictive factors for developing agriculture such as a tight man–land relation between, a con-
stant degradation of natural resources and a growing population pressure on land resource reserve. Despite
cherishing a burning desire to promote their standard of living, people living in the area are frustrated because
they have no ability to enhance their power to accelerate economic development because of a dramatic decline
in quantity and quality of natural resources and a deteriorating environment. Based on the distinctness and
differences in environment and natural resources, Hubei Province can be roughly divided into seven agroeco-
logical regions: x1 – Wuhan–Ezhou–Huanggang; x2 – Northeast of Hubei; x3 – Southeast of Hubei; x4 – Jian-
ghan region; x5 – North of Hubei; x6 – Northwest of Hubei; x7 – Southwest of Hubei. In order to prioritize
these agroecological regions xi(j = 1,2, . . . , 7) with respect to their comprehensive functions, a committee has
been set up to provide assessment information on xi (i = 1,2, . . . , 7). The attributes which are considered here
in assessment of xi(i = 1,2, . . . , 7) are: (1) G1 is ecological benefit; (2) G2 is economic benefit; and (3) G3 is social
benefit. The committee evaluates the performance of agroecological regions xi (i = 1,2, . . . , 7) in the years
2004–2006 according to the attributes Gj(j = 1,2,3), and constructs, respectively, the intuitionistic fuzzy
decision matrices R(tk)(k = 1,2,3, here, t1 denotes the year ‘‘2004’’, t2 denotes the year ‘‘2005’’, and t3 denotes
the year ‘‘2006’’) as listed in Tables 1–3. Let k(t) = (1/6,2/6,3/6)T be the weight vector of the years
tk(k = 1,2,3), and w = (0.3,0.4,0.3)T be the weight vector of the attributes Gj(j = 1,2,3).

Now we utilize the proposed procedure I to prioritize these agroecological regions:

Step 1. Utilize the DIFWA operator (53) to aggregate all the intuitionistic fuzzy decision matrices R(tk) into
a complex intuitionistic fuzzy decision matrix R (see Table 4).

Step 2. Denote the IFIS a+, IFNIS a�, and the alternatives xi(i = 1,2, . . . , 7) by
aþ ¼ ðð1; 0; 0Þ; ð1; 0; 0Þ; ð1; 0; 0ÞÞT; a� ¼ ðð0; 1; 0Þ; ð0; 1; 0Þ; ð0; 1; 0ÞÞT

x1 ¼ ðð0:806; 0:100; 0:094Þ; ð0:874; 0:126; 0:000Þ; ð0:849; 0:112; 0:039ÞÞT



Table
Intuiti

x1

x2

x3

x4

x5

x6

x7

Table
Intuiti

x1

x2

x3

x4

x5

x6

x7

Table
Compl

x1

x2

x3

x4

x5

x6

x7

Table
Intuiti

x1

x2

x3

x4

x5

x6

x7
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x2 ¼ ðð0:849; 0:151; 0:000Þ; ð0:569; 0:159; 0:272Þ; ð0:594; 0:214; 0:192ÞÞT

x3 ¼ ðð0:452; 0:482; 0:066Þ; ð0:755; 0:151; 0:094Þ; ð0:725; 0:126; 0:149ÞÞT

x4 ¼ ðð0:859; 0:100; 0:041Þ; ð0:792; 0:141; 0:067Þ; ð0:838; 0:162; 0:000ÞÞT

x5 ¼ ðð0:569; 0:218; 0:213Þ; ð0:748; 0:229; 0:023Þ; ð0:640; 0:178; 0:182ÞÞT

x6 ¼ ðð0:289; 0:648; 0:063Þ; ð0:441; 0:200; 0:359Þ; ð0:390; 0:224; 0:386ÞÞT

x7 ¼ ðð0:387; 0:470; 0:143Þ; ð0:601; 0:337; 0:062Þ; ð0:536; 0:464; 0:000ÞÞT
2
onistic fuzzy decision matrix R(t2)

G1 G2 G3

(0.9,0.1,0.0) (0.8,0.2,0.0) (0.8,0.1,0.1)
(0.8,0.2,0.0) (0.5,0.1,0.4) (0.7,0.2,0.1)
(0.5,0.5,0.0) (0.7,0.2,0.1) (0.8,0.2,0.0)
(0.9,0.1,0.0) (0.9,0.1,0.0) (0.7,0.3,0.0)
(0.5,0.2,0.3) (0.6,0.3,0.1) (0.6,0.2,0.2)
(0.4,0.6,0.0) (0.3,0.4,0.3) (0.5,0.5,0.0)
(0.3,0.5,0.2) (0.5,0.3,0.2) (0.6,0.4,0.0)

3
onistic fuzzy decision matrix R(t3)

G1 G2 G3

(0.7,0.1,0.2) (0.9,0.1,0.0) (0.9,0.1,0.0)
(0.9,0.1,0.0) (0.6,0.2,0.2) (0.5,0.2,0.3)
(0.4,0.5,0.1) (0.8,0.1,0.1) (0.7,0.1,0.2)
(0.8,0.1,0.1) (0.7,0.2,0.1) (0.9,0.1,0.0)
(0.6,0.3,0.1) (0.8,0.2,0.0) (0.7,0.2,0.1)
(0.2,0.7,0.1) (0.5,0.1,0.4) (0.3,0.1,0.6)
(0.4,0.6,0.0) (0.7,0.3,0.0) (0.5,0.5,0.0)

4
ex intuitionistic fuzzy decision matrix R

G1 G2 G3

(0.806,0.100,0.094) (0.874,0.126,0.000) (0.849,0.112,0.039)
(0.849,0.151,0.000) (0.569,0.159,0.272) (0.594,0.214,0.192)
(0.452,0.482,0.066) (0.755,0.151,0.094) (0.725,0.126,0.149)
(0.859,0.100,0.041) (0.792,0.141,0.067) (0.838,0.162,0.000)
(0.569,0.218,0.213) (0.748,0.229,0.023) (0.640,0.178,0.182)
(0.289,0.648,0.063) (0.441,0.200,0.359) (0.390,0.224,0.383)
(0.387,0.470,0.143) (0.601,0.337,0.062) (0.536,0.464,0.000)

1
onistic fuzzy decision matrix R(t1)

G1 G2 G3

(0.8,0.1,0.1) (0.9,0.1,0.0) (0.7,0.2,0.1)
(0.7,0.3,0.0) (0.6,0.2,0.2) (0.6,0.3,0.1)
(0.5,0.4,0.1) (0.7,0.3,0.0) (0.6,0.1,0.3)
(0.9,0.1,0.0) (0.7,0.1,0.2) (0.8,0.2,0.0)
(0.6,0.1,0.3) (0.8,0.2,0.0) (0.5,0.1,0.4)
(0.3,0.6,0.1) (0.5,0.4,0.1) (0.4,0.5,0.1)
(0.5,0.2,0.3) (0.4,0.6,0.0) (0.5,0.5,0.0)
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and utilize (58) to calculate the closeness coefficient of each alternative:
Table
Uncer

x1

x2

x3

x4

x5

x6

x7

Table
Uncer

x1

x2

x3

x4

x5

x6

x7

Table
Uncer

x1

x2

x3

x4

x5

x6

x7
cðx1Þ ¼ 0:852; cðx2Þ ¼ 0:709; cðx3Þ ¼ 0:687; cðx4Þ ¼ 0:833; cðx5Þ ¼ 0:700;

cðx6Þ ¼ 0:515; cðx7Þ ¼ 0:548
Step 3. Rank all the alternatives xi(i = 1,2, . . . , 7) according to the closeness coefficients c(xi)(i = 1,2, . . . , 7):
x1 	 x4 	 x2 	 x5 	 x3 	 x7 	 x6
and thus the agroecological region with the most comprehensive functions is Wuhan–Ezhou–Huanggang.
If the committee evaluates the performance of agroecological regions xi(i = 1,2, . . . , 7) in the years 2004–

2006 according to the attributes Gj(j = 1,2,3), and constructs, respectively, the uncertain intuitionistic fuzzy
decision matrices eRðtkÞðk ¼ 1; 2; 3Þ as listed in Tables 5–7.

In such case, we can utilize the proposed procedure II to prioritize these agroecological regions.
To do so, we first utilize the UDIFWA operator (64) to aggregate all the uncertain intuitionistic fuzzy deci-

sion matrices eRðtkÞ into a complex uncertain intuitionistic fuzzy decision matrix eR (see Table 8): and then
denote the UIFIS a+, UIFNIS a�, and the alternatives xi(i = 1,2, . . . , 7) by
5
tain intuitionistic fuzzy decision matrix eRðt1Þ

G1 G2 G3

([0.8,0.9], [0.0,0.1], [0.0,0.2]) ([0.7,0.8], [0.1, 0.2], [0.0,0.2]) ([0.6,0.8], [0.0,0.2], [0.0,0.4])
([0.6,0.7], [0.2,0.3], [0.0,0.2]) ([0.5,0.7], [0.2, 0.3], [0.0,0.3]) ([0.5,0.6], [0.2,0.3], [0.1,0.3])
([0.4,0.5], [0.2,0.4], [0.1,0.4]) ([0.5,0.6], [0.2, 0.3], [0.1,0.3]) ([0.4,0.6], [0.1,0.2], [0.2,0.5])
([0.7,0.8], [0.1,0.2], [0.0,0.2]) ([0.6,0.8], [0.0, 0.1], [0.1,0.4]) ([0.6,0.7], [0.1,0.2], [0.1,0.3])
([0.5,0.7], [0.1,0.3], [0.0,0.4]) ([0.7,0.8], [0.1, 0.2], [0.0,0.2]) ([0.4,0.5], [0.2,0.4], [0.1,0.4])
([0.2,0.3], [0.5,0.6], [0.1,0.3]) ([0.3,0.5], [0.4, 0.5], [0.0,0.3]) ([0.4,0.6], [0.3,0.4], [0.0,0.3])
([0.4,0.5], [0.3,0.4], [0.1,0.3]) ([0.2,0.5], [0.3, 0.5], [0.0,0.5]) ([0.4,0.7], [0.2,0.3], [0.0,0.4])

6
tain intuitionistic fuzzy decision matrix eRðt2Þ

G1 G2 G3

([0.7,0.8], [0.1,0.2], [0.0,0.2]) ([0.8,0.9], [0.0, 0.1], [0.0,0.2]) ([0.7,0.9], [0.0,0.1], [0.0,0.3])
([0.5,0.7], [0.1,0.2], [0.1,0.4]) ([0.6,0.7], [0.1, 0.3], [0.0,0.3]) ([0.4,0.5], [0.2,0.4], [0.1,0.4])
([0.3,0.5], [0.1,0.3], [0.2,0.6]) ([0.4,0.5], [0.1, 0.3], [0.2,0.5]) ([0.3,0.6], [0.3,0.4], [0.0,0.4])
([0.6,0.7], [0.1,0.2], [0.1,0.3]) ([0.7,0.8], [0.1, 0.2], [0.0,0.2]) ([0.5,0.7], [0.1,0.3], [0.0,0.4])
([0.5,0.7], [0.2,0.3], [0.0,0.3]) ([0.5,0.7], [0.1, 0.3], [0.0,0.4]) ([0.4,0.6], [0.2,0.3], [0.1,0.4])
([0.3,0.4], [0.4,0.6], [0.0,0.3]) ([0.2,0.4], [0.5, 0.6], [0.0,0.3]) ([0.4,0.5], [0.4,0.5], [0.0,0.2])
([0.3,0.5], [0.3,0.5], [0.0,0.4]) ([0.4,0.6], [0.3, 0.4], [0.0,0.3]) ([0.4,0.5], [0.2,0.4], [0.1,0.4])

7
tain intuitionistic fuzzy decision matrix eRðt3Þ

G1 G2 G3

([0.6,0.7], [0.1,0.3], [0.0,0.3]) ([0.7,0.9], [0.0, 0.1], [0.0,0.3]) ([0.8,0.9], [0.0,0.1], [0.0,0.2])
([0.4,0.6], [0.1,0.2], [0.2,0.5]) ([0.5,0.7], [0.1, 0.2], [0.1,0.4]) ([0.6,0.7], [0.1,0.3], [0.0,0.3])
([0.2,0.4], [0.2,0.3], [0.3,0.6]) ([0.3,0.6], [0.2, 0.3], [0.1,0.5]) ([0.4,0.6], [0.2,0.4], [0.0,0.4])
([0.7,0.8], [0.0,0.1], [0.1,0.3]) ([0.8,0.9], [0.0, 0.1], [0.0,0.2]) ([0.4,0.7], [0.2,0.3], [0.0,0.4])
([0.5,0.6], [0.2,0.3], [0.1,0.3]) ([0.4,0.5], [0.1, 0.2], [0.3,0.5]) ([0.6,0.7], [0.2,0.3], [0.0,0.2])
([0.2,0.3], [0.5,0.6], [0.1,0.3]) ([0.3,0.5], [0.3, 0.4], [0.1,0.4]) ([0.3,0.6], [0.2,0.4], [0.0,0.5])
([0.5,0.6], [0.3,0.4], [0.0,0.2]) ([0.2,0.3], [0.4, 0.5], [0.2,0.4]) ([0.7,0.8], [0.1,0.2], [0.0,0.2])



Table 8
Complex uncertain intuitionistic fuzzy decision matrix eR

G1 G2 G3

x1 ([0.676,0.782], [0,0.218], [0.000,0.324]) ([0.738,0.888], [0,0.112], [0.000,0.262]) ([0.743,0.888], [0,0.112], [0.000,0.257])
x2 ([0.472,0.654], [0.112,0.214], [0.132,0.416]) ([0.536,0.700], [0.112,0.245], [0.055,0352]) ([0.525,0.627], [0.141,0.330], [0.043,0.334])
x3 ([0.271,0.452], [0.159,0.315], [0.233,0.570]) ([0.371,0.569], [0.159,0.300], [0.131,0.470]) ([0.368,0.600], [0.204,0.356], [0.044,0.428])
x4 ([0.670,0.771], [0,0.141], [0.088,0.330]) ([0.743,0.859], [0,0.126], [0.015,0.257]) ([0.472,0.700], [0.141,0.280], [0.020,0.387])
x5 ([0.500,0.654], [0.178,0.300], [0.046,0.322]) ([0.497,0.638], [0.100,0.229], [0.333,0.403]) ([0.510,0.640], [0.200,0.315], [0.045,0.290])
x6 ([0.235,0.335], [0.464,0.600], [0.065,0.301]) ([0.268,0.469], [0.373,0.475], [0.056,0.359]) ([0.352,0.569], [0.270,0.431], [0.000,0.378])
x7 ([0.423,0.553], [0.300,0.431], [0.016,0.277]) ([0.273,0.450], [0.346,0.464], [0.086,0.381]) ([0.576,0.710], [0.141,0.270], [0.020,0.283])
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~aþ ¼ ðð½1; 1�; ½0; 0�; ½0; 0�Þ; ð½1; 1�; ½0; 0�; ½0; 0�Þ; ð½1; 1�; ½0; 0�; ½0; 0�ÞÞT

~a� ¼ ðð½0; 0�; ½1; 1�; ½0; 0�Þ; ð½0; 0�; ½1; 1�; ½0; 0�Þ; ð½0; 0�; ½1; 1�; ½0; 0�ÞÞT

x1 ¼ ðð½0:676; 0:782�; ½0:000; 0:218�; ½0:000; 0:324�Þ; ð½0:738; 0:888�; ½0:000; 0:112�; ½0:000; 0:262�Þ;

ð½0:743; 0:888�; ½0:000; 0:112�; ½0:000; 0:257�ÞÞT

x2 ¼ ðð½0:472; 0:654�; ½0:112; 0:214�; ½0:132; 0:416�Þ; ð½0:536; 0:700�; ½0:112; 0:245�; ½0:055; 0:352�Þ;

ð½0:525; 0:627�; ½0:141; 0:330�; ½0:043; 0:334�ÞÞT

x3 ¼ ðð½0:271; 0:452�; ½0:159; 0:315�; ½0:233; 0:570�Þ; ð½0:371; 0:569�; ½0:159; 0:300�; ½0:131; 0:470�Þ;

ð½0:368; 0:600�; ½0:204; 0:356�; ½0:044; 0:428�ÞÞT

x4 ¼ ðð½0:670; 0:771�; ½0:000; 0:141�; ½0:088; 0:330�Þ; ð½0:743; 0:859�; ½0:000; 0:126�; ½0:015; 0:257�Þ;

ð½0:472; 0:700�; ½0:141; 0:280�; ½0:020; 0:387�ÞÞT

x5 ¼ ðð½0:500; 0:654�; ½0:178; 0:300�; ½0:046; 0:322�Þ; ð½0:497; 0:638�; ½0:100; 0:229�; ½0:333; 0:403�Þ;

ð½0:510; 0:640�; ½0:200; 0:315�; ½0:045; 0:290�ÞÞT

x6 ¼ ðð½0:235; 0:335�; ½0:464; 0:600�; ½0:065; 0:301�Þ; ð½0:268; 0:469�; ½0:373; 0:475�; ½0:056; 0:359�Þ;

ð½0:352; 0:569�; ½0:270; 0:431�; ½0:000; 0:378�ÞÞT

x7 ¼ ðð½0:423; 0:553�; ½0:300; 0:431�; ½0:016; 0:277�Þ; ð½0:273; 0:450�; ½0:346; 0:464�; ½0:086; 0:381�Þ;

ð½0:576; 0:710�; ½0:141; 0:270�; ½0:020; 0:283�ÞÞT
By (73), we calculate the closeness coefficient of each alternative as follows:
cðx1Þ ¼ 0:814; cðx2Þ ¼ 0:663; cðx3Þ ¼ 0:574; cðx4Þ ¼ 0:794; cðx5Þ ¼ 0:627;

cðx6Þ ¼ 0:474; cðx7Þ ¼ 0:564
and rank all the alternatives xi(i = 1,2, . . . , 7) according to the values c(xi)(i = 1,2, . . . , 7):
x1 	 x4 	 x2 	 x5 	 x3 	 x7 	 x6
thus the best alternative is also x1 (Wuhan–Ezhou–Huanggang).

7. Concluding remarks

In this paper, we have focused on the dynamic intuitionistic fuzzy multi-attribute decision making (DIF-
MADM) problems, which occur in many decision areas, such as multi-period investment decision making,
medical diagnosis, personnel dynamic examination, and military system efficiency dynamic evaluation. Some
aggregation operators such as the dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator
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and uncertain dynamic intuitionistic fuzzy weighted averaging (UDIFWA) operator have been proposed to
aggregate dynamic or uncertain dynamic intuitionistic fuzzy information. We have utilized some well known
functions including the basic unit-interval monotonic (BUM) function, normal distribution function exponen-
tial distribution function, and a mathematical programming model to determine the weights associated with
these two operators. In the process of aggregating information, these operators can avoid losing the original
intuitionistic fuzzy information and thus ensure the veracity and rationality of the aggregated results. More-
over, based on the DIFWA and UDIFWA operators respectively, we have developed two procedures for solv-
ing the DIF-MADM problems where all the attribute values are expressed in intuitionistic fuzzy numbers or
interval-valued intuitionistic fuzzy numbers. In the procedures, we have extended the technique for order per-
formance by similarity to ideal solution (TOPSIS) to intuitionistic fuzzy environment, and used the extended
TOPSIS to rank and select the optimal alternative. To verify the effectiveness and practicality of the developed
procedures, we have applied them to prioritize a set of agroecological regions in Hubei Province, China.
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