
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 167, 299-304 (1992) 

Sensitivity Analysis of Generalized 
Variational Inequalities 

R.N. MUKHERJEE AND H. L. VERMA 

Department of Applied Mathematics, Institute of Technology, 
Banaras Hindu Unioersiiy, Varanasi-221 005, India 

Submitted by E. Stanley Lee 

Received May 29, 1990 

Dafermos studied the sensitivity properties of the solutions of a variational 
inequality with regard to continuity and differentiability of such solutions with 
respect to a parameter 1. In the present paper we extend this analysis for a 
generalized variational inequality of the type introduced by Noor of which the 
variational inequality of Dafermos is a particular case. Our results are such that 
they automatically extend the regularity properties of solutions with respect to a 
parameter 1 when the variational inequality is treated on a Hilbert space. CI 1992 

Academic Press, Inc. 

1. INTRODUCTION 

Dafermos [l] studied the sensitivity property of solutions, of a par- 
ticular kind of variational inequality, on a parameter which takes values on 
an open subset of Euclidean space Rk. Noor [4] has investigated a most 
general class of nonlinear variational inequalities with regard to the 
existence of their solutions. The type of variational inequalities treated by 
Noor occurs frequently in a framework for studying many unrelated free 
and moving boundary value problems arising in contact problems in 
elastostatics, fluid flow through porous media, and lubrication problems. 
The purpose of our present paper is to analyze the sensitivity property of 
solutions of the type of variational inequalities just mentioned on a 
parameter. A special feature which is more pronounced in our treatment is 
that our analysis carries through in a setting which can be described as well 
in an infinite dimensional space (in particular on a Hilbert space). 

We now introduce the parametric form of the variational inequality [4] 
as follows. Let n be an open subset of Rk in which the parameter 11 takes 
values and assume 

{~,:nEA} 

is a family of closed convex subsets of R”. 
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We now introduce the parametric form of the variational inequality [4] 
as follows. Find 

x E x; : a(u, i, Z’- u) + b(u, v) - b(u, u) 

3 (A(u, i.), v - u), 

tlv E A?;, , (1.2) 

where, a( ., A, .) is a coercive continuous bilinear form on R”; that is, there 
exist constants c( > 0 and b > 0 such that 

a(v, 4 v)34bl12, for all u E R” (1.3) 

and 

4% A 0) 6 ml4 II4 for all U, u E R”, (1.4) 

where both CI and p are independent of 1. Also let b(u, u): R” x R” + R 
satisfy the following properties: 

(i) b( .,.) is linear in the first variable. 

(ii) b( .,.) is bounded; that is, there exists constant y > 0 such that 

I&u, ~11 G ~ll4 llvll, for all u, u E R”. (1.5) 

(iii) b( .,.) is either convex or linear in the second argument. 

(iv) For every U, v, o E R” 

Ib(u, v)-b(u, o)l <b(u, u-w) (1.6) 

b(u, u f co) d b(u, u) + b(u, 0). (1.7) 

A(&.) is antimonotone, i.e., for all U, 0 E Xi., 

(A(%,u)-A(%,v),u-u)<O 

and A(& .) is Lipschitz continuous, i.e., 

(1.8) 

IIAV, u) - 44 v)lI G rllu - VII, (1.9) 

for all U, u E Xj., and [ is independent of 2. 
The sensitivity problem connected with (1.2) can be summarised in the 

following terms. Assuming for some XE A, (1.2) admits a solution X, one 
would like to investigate conditions under which, for each 1 in a 
neighbourhood of 1, (1.2) has a unique solution x(n) near X and the 
function x(%) is continuous, Lipschitz continuous, or differentiable. 
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Remark. To keep the treatment more simple we have restricted the 
above formulation on a finite dimensional space. As hinted earlier, and 
more so because of the results of [4], such formulations are more general 
in nature and carry over to a base space which happens to be a Hilbert 
space. 

2. LOCAL UNIQUENESS AND CONTINUITY 

Consider the family of variational inequalities (1.2), where A takes values 
in an open neighbourhood A of 1 in Rk, and X2 is a closed convex set in 
R”. We assume a(u, A, U) is defined on Xx /i x X, where X is the closure of 
a ball in R” centerd at X and satisfies the coerciveness condition (1.3) and 
boundedness condition (1.4), and b(u, V) satisfies the properties (1.5)-( 1.7). 
A(&.) is antimonotone and Lipschitz continuous as depicted in (1.8) 
and (1.9). We have the following lemmas which can be proved by the 
techniques of Noor [4]. 

LEMMA 2.1. Let p be a number such that O<p < 2(a- y- t)/ 
(/?‘- (y + 5)2) and p < l/(y + 0. Then there exists a 8 with 0 -C 13 < 1 such 
that 

lli(~,~,)-~(~,~2)~~II~1-~2II 

for all ul, u2 E X, where ~5 is defined as, given u E X, 

(42, u), v>=(u, v)-pa(u, 4 v)-pb(u> 0) 

+p(A(A, u), 0) for all VEX. 

/? is the boundedness constant of the bilinear form a(u, v). 

LEMMA 2.2. We define a map G(u, A) = PXiz5(n, u), where P, is the 
projection for the closed convex set Xi, for each A E A. Then a point 
u E X2 is a solution of the variational inequality (1.2) tf and only tf u is a 
fixed point of the map G(u, A), u E -X,, A E A. 

We define G*(u, I) = P,,, &A, u), for (X, 1) E Xx A, because we are 
interested in solutions of (1.2) that lie in the interior of X. G(u, 1) is a 
contraction with respect to u, uniformly in AE /i, which follows as a 
consequence of Lemma 2.2 since P,, n X is a nonexpansive map. 

LEMMA 2.3. 

IIG*(u, A)- G*(v, A)ll Q Ollu- 011, forall u,v~X,~~A,0~0<1. 

(2.1) 
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From the Banach fixed point theorem it is now apparent that for every L E A. 
G*(u, n) has a unique,fixed point u(A). 

We now show the following: (i) ~(1”) depends continuously upon A, (ii) 
for 2 near 2, u(A) is in fact a fixed point of G(x, i), i.e., a solution of the 
variational inequality ( 1.2). 

LEMMA 2.4. Assume that a(& jb, v) is continuous (or Lipschitz continuous 
in J. at 1 for each v E X, A(A, ii) is continuous in i at ;i, and for ,fixed V E X, 
the map 

is continuous (or Lipschitz continuous) in i at 1, then u(l) is continuous (or 
Lipschitz continuous) at 2 = 1. 

Proof: Fix 2 E /1, then using triangle inequality and (2.1) 

llu(A) - @)I1 = IlG*(u(i), J-1 - G*(@), ~)ll 

G llG*(4~), i) - G*(@), ~111 

+ llG*(4x), 2) - G*(@h ~111 
< f3llu(A)- u@)ll + IlG*(u(;T), A)- G*(u@), x)11. (2.2) 

Also using the nonexpansiveness of the projection map we have the 
inequalities 

(2.3) 

Combining (2.2) and (2.3) and putting u(x) = ii we get 

ll4) - 4 G (l/l - WCJW, U) - $a a1 

+ (l/l - WlP,,,,4@9 4- px,,,a aI. (2.4) 

Now because of assumptions on a(& 2, .) and A(& 17) it is easy to see that 
IIW, fa - 4G 411 + 0 as A+ ;I; also since %-+ P,,,#(I, u(X)) is con- 
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tinuous by assumption, the second norm in the r.h.s. of (2.3) goes to zero 
as i -+ X and hence the proof is complete. 

The following results follow by similar arguments as given in Lemma 2.4. 

LEMMA 2.5, Under the assumptions of Lemma 2.4, there exists a neigh- 
bourhood 9’ c A of 1 such that for ,I E 9, u(1) is the unique solution of the 
parametric variational inequality (1.2) in the interior of X. 

THEOREM 2.1. Consider the parametric variational inequality (1.2) which 
admits a solution U at 1. Assume the conditions (1.2) to (1.9). Assume also 
that the conditions of Lemma 2.4 also hold at 1= 2. Then there exists a 
neighbourhood 9 c A of 1 such that for every 1 E 9, the variational 
inequality (1.2) admits a unique solution u(J) in the interior of X, u(x) = ii, 
and u(n) is continuous (or Lipschitz continuous) at A= 1. 

Remark 2.1. The situation as discussed in [l] is analogous in the 
present case with regard to the sufficient condition [l, Proposition 2.11 
which guarantees the continuity of the map A-+ P,,,, x F, for fixed FE X. 
Also as a potential application, Remark 2.2 of [l] remains valid for the 
feasible set -X, defined locally by 

X,={xEXJg,(x,A)=O, i=1,2 ,..., s,gj(x,A)>O,j=s+l ,..., m>. 

We state the following theorem which gives an extension of the differen- 
tiability property of u(n) as solution of (1.2). The proof follows as in [l], 
by applying Lemma 2.3 and implicit function theorem. 

THEOREM 2.2. Consider the parametric variational inequality (1.2). 
Assume that the conditions (1.2) to (1.9) are satisfied. Suppose &I, u) is 
continuously differentiable on Xx A. Assume that the map 

is continuously differentiable on some neighborhood of the point (6, I), where 
I?=@, 17). Then’ the function u(I), as defined through Theorem 2.1, is 
continuously differentiable in some neighbourhood 9’ of X 

Remark 2.2. The gradient formula (implicit) for u(n) can be given as 

V,u(n) = [I-V,G*] -’ V,G*, 

where G* is defined as in Lemma 2.1. Also we observe that in case a(u, 2, v) 
is continuously differentiable on Xx /i x X and A(& u) is weakly con- 
tinuously differentiable on /1 x X then it would imply that &A, u) is weakly 
continuously differentiable on /i xX. Since our treatment is on finite 
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dimensional space this would be sufficient for the strongly continuous 
differentiability of q5(& U) on A x X, and this specific assumption would be 
satisfied in Theorem 2.2. 
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