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Abstract

We use QCD sum rules to study the masses of the baryons Ξc and Ξb. We work with a current where the strange and the light quarks
are in a relative spin zero, at leading order in αs . We consider the contributions of condensates up to dimension six. For Ξb we get mΞb

=
(5.75±0.25) GeV, and for Ξc we get mΞc

= (2.5±0.2) GeV, both in excellent agreement with the experimental values. We also make predictions
to the state Ωb(ssb) obtaining mΩb

= (5.82 ± 0.23) GeV.
© 2007 Elsevier B.V.
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The recent observation of the Ξ−
b baryon by DØ and CDF

Collaborations [1,2] with mass in agreement with the predic-
tion in Ref. [3], has stimulated us to use the QCD sum rules
(QCDSR) [4] to evaluate the mass of this state. Previous QCD
sum rule calculations for beauty baryons have been done before
for the Λb , Σb , Σ∗

b and for double beauty baryons [5] but not
for Ξ−

b (dsb). Since in the QCDSR approach, hadronic masses
are related with the vacuum condensates, the use of this method
to evaluate hadronic masses is an important step in the under-
standing of the dynamical nature of these masses.

Here we follow Ref. [3] and assume that the strange and light
(sq) quarks in Ξb are in a relative spin zero state. Therefore, the
most general (low dimension) current which interpolates the Ξb

operator can be constructed from a combination between the
two currents, formed with scalar and pseudoscalar diquarks:

(1)ηQ = εabc

[(
qT
a Cγ5sb

) + t
(
qT
a Csb

)
γ5

]
Qc,

where a, b, c are color indices, C is the charge conjugation ma-
trix, Q denotes the heavy quark and t is the mixing parameter
between the two currents. Of course the above interpolating
field can also be used to study the Ξc(qsc) baryon.
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The QCDSR is constructed from the two-point correlation
function

(2)Π(q) = i

∫
d4x eiq.x〈0|T [

ηQ(x)η̄Q(0)
]|0〉.

Lorentz covariance, parity and time reversal imply that the two-
point correlation function in Eq. (2) has the form

(3)Π(q) = Π1
(
q2) + /qΠ2

(
q2).

A sum rule for each invariant function Π1 and Π2, in Eq. (3)
can be obtained.

The calculation of the phenomenological side at the hadron
level proceeds by writing a dispersion relation to each one of
the invariant functions in Eq. (3):

(4)Π
phen
i

(
q2) = −

∫
ds

ρi(s)

q2 − s + iε
+ · · · ,

where ρi is the spectral density and the dots represent sub-
traction terms. The spectral density is described, as usual, as
a single sharp pole representing the lowest resonance plus a
smooth continuum representing higher mass states:

ρ1(s) = λ2mΞQ
δ
(
s − m2

ΞQ

) + ρcont
1 (s),

(5)ρ2(s) = λ2δ
(
s − m2

ΞQ

) + ρcont
2 (s),
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where λ2 gives the coupling of the current with the low mass
hadron of interest. For simplicity, it is assumed that the con-
tinuum contribution to the spectral density, ρcont

i (s) in Eq. (5),
vanishes bellow a certain continuum threshold s0. Above this
threshold, it is assumed to be given by the result obtained with
the OPE. Therefore, one uses the ansatz [6]

(6)ρcont
i (s) = ρOPE

i (s)Θ(s − s0),

with

(7)ρOPE
i (s) = 1

π
Im

[
ΠOPE

i (s)
]
.

On the OPE side, we work at leading order in αs and con-
sider the contributions of condensates up to dimension six. We
keep the terms which are linear in the strange-quark mass ms .
We use the momentum space expression for the charm quark
propagator, while the light-quark part of the correlation func-
tion is calculated in the coordinate-space. After making a Borel
transform of both sides, and transferring the continuum con-
tribution to the OPE side, the sum rules for ΞQ baryon, up to
dimension-six condensates can be written as:

(8)λ2mΞQ
e
−m2

ΞQ
/M2

=
s0∫

m2
Q

ds e−s/M2
ρOPE

1 (s) + Π1
(
M2),

(9)λ2e
−m2

ΞQ
/M2

=
s0∫

m2
Q

ds e−s/M2
ρOPE

2 (s) + Π2
(
M2),

where

ρOPE
i (s) = ρ

pert
i (s) + ρ

〈q̄q〉
i (s) + ρ

〈G2〉
i (s),

(10)Πi

(
M2) = Π

〈q̄gσ.Gq〉
i

(
M2) + Π

〈q̄q〉2

i

(
M2).

In the structure 1 we get

ρ
pert
1 (s) = (1 − t2)m5

Q

27π4

[
(1 − x)

(
1

x2
+ 10

x
+ 1

)

+ 6

(
1 + 1

x

)
lnx

]
,

ρ
〈q̄q〉
1 (s) = −mQms

23π2
(1 − x)

[(
1 + t2)〈q̄q〉 − (1 − t2)〈s̄s〉

2

]
,

ρ
〈G2〉
1 (s) = (1 − t2)mQ〈g2G2〉

293π4

[
(1 − x)

(
7 + 2

x

)
+ 6 lnx

]
,

Π
〈q̄gσ.Gq〉
1

(
M2)

= mQms

25π2

[
(1 − t2)〈s̄gσ . Gs〉

6
e
−m2

Q/M2

− (
1 + t2)〈q̄gσ . Gq〉

(
e
−m2

Q/M2 −
1∫

0

dα e

−m2
Q

(1−α)M2

)]
,

(11)Π
〈q̄q〉2

1

(
M2) = mQ〈q̄q〉〈s̄s〉

6

(
1 + t2)e−m2

Q/M2
,

where x = m2
Q/s. In the structure /q we get

ρ
pert
2 (s) = (1 + t2)m4

Q

29π4

[(
1 − x2)( 1

x2
− 8

x
+ 1

)
− 12 lnx

]
,

ρ
〈q̄q〉
2 (s) = ms

24π2

(
1 − x2)[−(

1 − t2)〈q̄q〉 + (1 + t2)〈s̄s〉
2

]
,

ρ
〈G2〉
2 (s) = (1 + t2)〈g2G2〉

2103π4
(1 − x)(1 + 5x),

Π
〈q̄gσ.Gq〉
2

(
M2)

= ms

25π2

[
(1 + t2)〈s̄gσ . Gs〉

6
e
−m2

Q/M2

+ (
1 − t2)〈q̄gσ . Gq〉

(
e
−m2

Q/M2

+
1∫

0

dα (1 − α)e

−m2
Q

(1−α)M2

)]
,

(12)Π
〈q̄q〉2

2

(
M2) = 〈q̄q〉〈s̄s〉

6

(
1 − t2)e−m2

Q/M2
.

The contribution of dimension-six condensates 〈g3G3〉 is
neglected, since it is assumed to be suppressed by the loop fac-
tor 1/16π2.

In the numerical analysis of the sum rules, the values used
for the quark masses and condensates are (see, e.g., [4,5]):
ms = (0.10 ± 0.03) GeV, mc(mc) = (1.23 ± 0.05) GeV,
mb(mb) = (4.24 ± 0.06) GeV, 〈q̄q〉 = −(0.23 ± 0.03)3 GeV3,
〈s̄s〉 = 0.8〈q̄q〉, 〈q̄gσ . Gq〉 = m2

0〈q̄q〉 with m2
0 = 0.8 GeV2,

〈g2G2〉 = 0.88 GeV4.
We start with the charmed baryon Ξc . We evaluate the sum

rules in the range 1.5 � M2 � 3.0 GeV2 for s0 in the range:
3.0 � √

s0 � 3.2 GeV. In Fig. 1 we show the contribution of
each term in Eq. (12) to the sum rule in Eq. (9), for t = 1 and

Fig. 1. The OPE convergence for the sum rule Eq. (9) for Ξc , using√
s0 = 3.1 GeV and t = 1. The dotted, long-dashed, dashed and dot-dashed

lines give, respectively, the perturbative, quark condensate, gluon condensate
and mixed condensate contributions. The solid line gives the total OPE contri-
bution to the sum rule.
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√
s0 = 3.1 GeV. We see that we get an excellent OPE conver-

gence. For t = 1 the four-quark condensate contribution to the
sum rule Eq. (9) vanishes. For other values of t , although the
four-quark condensate contribution is bigger than the contri-
bution of the other condensates, it is still much smaller than
the perturbative contribution and, therefore, it does not spoil
the convergence of the sum rule, as can be seen in Fig. 2.
Therefore we conclude that the convergence of the sum rule
in the /q structure in Eq. (9), is good for any value of the mix-
ing parameter t (see Eq. (1)) in the range 0 � t � 1. This is
not the case of the sum rule in Eq. (8) (structure 1), since for
t = 1 the perturbative and gluon condensate contributions van-
ish. As a matter of fact, if we try to obtain the mass of the
Ξc baryon by dividing Eq. (8) by Eq. (9), we only get val-
ues compatible it the experimental mass for t ∼ 0. Therefore,
in this work we will use only the sum rule in Eq. (9). To ob-
tain the mass of the baryon we take the derivative of Eq. (9)
with respect to 1/M2, divide the result by Eq. (9) and ob-
tain:

(13)m2
ΞQ

=
∫ s0

m2
Q

ds e−s/M2
sρOPE

2 (s) − (dΠ2/dM−2)∫ s0

m2
Q

ds e−s/M2
ρOPE

2 (s) + Π2(M2)
.

We get an upper limit constraint for M2 by imposing the rig-
orous constraint that the QCD continuum contribution should
be smaller than the pole contribution. The maximum value
of M2 for which this constraint is satisfied depends on the value
of s0 and t . The comparison between pole and continuum con-
tributions for

√
s0 = 3.1 GeV and t = 1 is shown in Fig. 3.

The same analysis for the other values of the continuum thresh-
old and t = 1 gives M2 � 2.3 GeV2 for

√
s0 = 3.0 GeV and

M2 � 2.65 GeV2 for
√

s0 = 3.2 GeV. We get similar results
for other values of t , for example for

√
s0 = 3.1 GeV and t = 0

we get M2 � 2.6 GeV2.
In Fig. 4, we show the Ξc baryon mass obtained from

Eq. (13), in the relevant sum rules window for different val-
ues of

√
s0 and t . From Fig. 4 we see that the results are more

Fig. 2. Same as Fig. 1 for t = 0. The solid line with dots gives the four-quark
condensate contribution.
stable, as a function of M2, for t = 1 than for t = 0. Therefore,
we will use t = 1 to estimate the mass of the particle. It is very
interesting to notice that the result for the mass obtained with
t = 0 is very similar to the one obtained dividing Eq. (8) by
Eq. (9) using also t = 0.

We found that our results are not very sensitive to the value
of the charm quark mass, neither to the value of the conden-
sates. The most important source of uncertainty is the value of
the continuum threshold and the Borel interval. Using the QCD
parameters given above, the QCDSR result for the Ξc baryon
mass is:

(14)mΞc = (2.5 ± 0.2) GeV,

Fig. 3. The dashed line shows the relative pole contribution (the pole contribu-
tion divided by the total, pole plus continuum, contribution) and the solid line
shows the relative continuum contribution for

√
s0 = 3.1 GeV and t = 1.

Fig. 4. The Ξc baryon mass as a function of the Borel parameter (M2) for
different values of the continuum threshold and the current mixing parameter:
t = 1,

√
s0 = 3.2 GeV (solid line); t = 1,

√
s0 = 3.0 GeV (dotted line); t = 0,√

s0 = 3.1 GeV (dot-dashed line).



F.O. Durães, M. Nielsen / Physics Letters B 658 (2007) 40–44 43
in a very good agreement with the experimental value m
exp
Ξc

=
(2.4710 ± 0.0004) GeV [7].

In the case of the beauty baryon Ξb , using consistently the
perturbative MS-mass mb(mb) = (4.24 ± 0.6) GeV, t = 1 and
the continuum threshold in the range 6.3 � √

s0 � 6.5 GeV, we
find a good OPE convergence for M2 > 4.0 GeV2. We also
find that the pole contribution is bigger than the continuum
contribution for M2 < 5.2 GeV2 for

√
s0 < 6.3 GeV, and for

M2 < 5.7 GeV2 for
√

s0 = 6.5 GeV.
From Fig. 5, where we show the Ξb baryon mass, we see

that the results are very stable as a function of M2 in the al-
lowed Borel region. For completeness we also show, in Fig. 5,
the results obtained using t = 0 and

√
s0 = 6.4 GeV. In this

case the results are very stable for all values of t in the range
0 � t � 1. Therefore, we will also use different values of t to
estimate the uncertainties in the result. Taking into account the
variation of M2 and varying s0, t and mb in the regions indi-
cated above, we arrive at the result:

(15)mΞb
= (5.75 ± 0.25) GeV,

also in a very good agreement with the predictions in Refs. [3]
and [8], and with the experimental results in Ref. [1]: mDØ

Ξb
=

(5.774 ± 0.013) GeV, and in Ref. [2]: mCDF
Ξb

= (5.7929 ±
0.0024) GeV.

We have presented a QCDSR analysis of the two-point func-
tions of the ΞQ(qsQ) baryons. We find that the sum rules
results for the masses of Ξc and Ξb are compatible with the
experimental values and with the predictions in Refs. [3,8], in
the case of Ξb. These results for Ξb are summarized in Table 1.

It is important to notice that while the calculation based
on modeling hyperfine interaction [3,8] needs, as inputs, the
masses of others heavy baryons, in our calculations the masses
are extract using only information about the QCD parameters as
quark masses and condensates. In the case of the heavy baryons

Fig. 5. The Ξb baryon mass as a function of the Borel parameter (M2) for
different values of the continuum threshold and the current mixing parameter:
t = 1,

√
s0 = 6.3 GeV (solid line); t = 1,

√
s0 = 6.5 GeV (dotted line); t = 0,√

s0 = 6.4 GeV (dot-dashed line).
Ξc and Ξb , in particular, their masses are determined basically
by the first term in the sum rules Eqs. (8) and (9) and the con-
densates are not very important.

We have tested two different choices of currents. While the
results for Ξc are sensitive to this choice, in the case of Ξb the
results are very stable for the mixing parameter in the range
0 � t � 1.

It is not possible to generalize directly our results to the
baryons Ωc(ssc) and Ωb(ssb), from the current in Eq. (1), since
one cannot construct an scalar or pseudoscalar diquark in a 3̄
configuration of color, with two strange quarks. Therefore, to
study the baryon ΩQ we can use a proton-like current:

(16)ηΩ = εabc

(
sT
a Cγμsb

)
γ5γ

μQc.

With this current, the OPE contributions to the sum rule in the
structure /q (Eq. (9)) for the ΩQ baryon, up to dimension-six
condensates, are given by:

ρ
pert
2 (s) = m4

Q

26π4

[(
1 − x2)( 1

x2
− 8

x
+ 1

)
− 12 lnx

]
,

ρ
〈q̄q〉
2 (s) = 0,

Π
〈G2〉
2

(
M2) = −m2

Q〈g2G2〉
2163π4

1∫
0

dα
α2

(1 − α)2
e
−m2

Q/M2
,

Π
〈q̄gσ.Gq〉
2

(
M2) = − 7ms

48π2
〈s̄gσ . Gs〉e−m2

Q/M2
,

(17)Π
〈q̄q〉2

2

(
M2) = 2〈s̄s〉2

3
e
−m2

Q/M2
.

We find that the OPE convergence of this sum rule is as good
as the OPE convergence obtained for ΞQ in the same Borel
region: M2 � 1.5 GeV2 for Ωc and M2 � 4.0 GeV2 for Ωb.
In Table 2 we give the maximum value of M2 for which the
continuum contribution is smaller than 50%, for different values
of the continuum threshold.

The results obtained for mΩQ
, from Eq. (13), are also very

stable, as a function of M2, in the allowed Borel window. Con-
sidering the variations in s0 and M2 given in Table 2, and the

Table 1
Results for the Ξb mass

mΞb
(GeV) Ref.

5.774 ± 0.011 ± 0.015 DØ [1]
5.7929 ± 0.0024 ± 0.0017 CDF [2]
5.795 ± 0.005 [3]
5.8057 ± 0.0081 [8]
5.75 ± 0.25 this work

Table 2
Maximum values of the Borel parameter (M2) for different values of s0

State
√

s0 (GeV) M2
max (GeV2)

Ωc 3.2 2.7
Ωc 3.4 3.1
Ωb 6.4 5.5
Ωb 6.7 6.5
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variations in the quark masses and condensates, as discussed
above, we get

(18)mΩc = (2.65 ± 0.25) GeV,

in a very good agreement with the experimental value m
exp
Ωc

=
(2.6975 ± 0.0026) GeV [7]. For Ωb we make the prediction:

(19)mΩb
= (5.82 ± 0.23) GeV.

As a final remark, it is very reassuring to see that the OPE
convergence is so good for heavy baryons, since this is not the
case for tetraquark states [9]. As shown in Ref. [9], it is very
difficult to find a Borel region where the continuum contribu-
tion is bigger than the pole contribution and where the OPE
convergence is acceptable, for tetraquark states with only one
heavy quark. Therefore, from a QCD sum rule point of view, it
is much easier to form a state, separated from the continuum,
with three quarks than with four quarks.
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