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a b s t r a c t

GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping
for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the
uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types
of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis.
We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new
spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties
associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted
Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights
are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the
uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo
Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database
and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques
with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide
susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that
further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated
uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is
decomposed and attributed to model0s criteria weights.

& 2014 The Authors. Published by Elsevier Ltd.

1. Introduction

GIS based multicriteria decision analysis (MCDA) is primarily
concerned with combining the information from several criteria to
form a single index of evaluation (Chen et al., 2010a). The GIS-
MCDA methods provide a framework for handling different views
and compositions of the elements of a complex decision problem,
and for organizing them into a hierarchical structure, as well as
studying the relationships among the components of the problem
(Malczewski, 2006). MCDA procedures utilizing geographical data
consider the user0s preferences, manipulate the data, and combine
preferences with the data according to specified decision rules

(Malczewski, 2004; Rahman et al., 2012). MCDA involves techni-
ques, which have received increased interest for their capabilities
of solving spatial decision problems and supporting analysts in
addressing complex problems involving conflicting criteria (Kordi
and Brandt, 2012). The integration of MCDA techniques with GIS
has considerably advanced the traditional data combination
approaches for Landslide Susceptibility Mapping (LSM). In analyz-
ing natural hazards with GIS-MCDA, the LSM is considered to be
one of the important application in domains (Feizizadeh and
Blaschke, 2013a). A number of direct and indirect models have
been developed in order to assess landslide susceptibility, and
these maps were produced by using deterministic and non-
deterministic (probabilistic) models (Yilmaz, 2010). In creating a
susceptibility map, the direct mapping method involves identify-
ing regions susceptible to slope failure, by comparing detailed
geological and geomorphological properties with those of land-
slide sites. The indirect mapping method integrates many factors
and weighs the importance of different variables using subjective
decision-making rules, based on the experience of the geoscientists
involved (Lei and Jing-feng, 2006; Feizizadeh and Blaschke, 2013a).
Among the proposed methods, GIS-MCDA provides a rich collection
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of techniques and procedures for structuring decision problems
and designing, evaluating and prioritizing alternative decisions
for LSM. Thus, GIS-MCDA methods are increasingly being used in
LSM for the prediction of future hazards, decision making, as well
as hazard mitigation plans (Feizizadeh and Blaschke, 2013a).
However, due to the multiple approach nature of natural hazard
modeling (e.g LSM) the problems related to natural hazards cannot
usually be handled without considering inherent uncertainty
(Nefeslioglu et al., 2013). Such uncertainties may have significant
impacts on the results, which may sometimes lead to inaccu-
rate outcomes and undesirable consequences (Feizizadeh and
Blaschke, 2013b).

GIS-MCDA based LSM methods are often applied without any
indication of error or confidence in the results (Feizizadeh and
Blaschke, 2012; Feizizadeh et al., 2012; Feizizadeh and Blaschke,
2013a). The uncertainties associated with MCDA techniques
applied to LSM are due to incomplete and inaccurate data on
landslide contributing factors, rules governing how the input data
are combined into landslide susceptibility values and parameters
used in the combination rules (Ascough et al., 2008). In the context
of GIS-MCDA uncertainty, there is a strong relationship between
data uncertainty and parameter uncertainty, since model para-
meters are obtained directly from measured data, or indirectly by
calibration (Ascough et al., 2008). Due to a potentially large
number of parameters and the heterogeneity of data sources, the
uncertainty of the results is difficult to quantify. Even small
changes in data and parameter values may have a significant
impact on the distribution of landslide susceptibility values.

Therefore, MCDA techniques in general, and in the domain of hazard
mapping in particular, should be thoroughly evaluated to ensure
their robustness under a wide range of possible conditions, where
robustness is defined as a minimal response of model outcome to
changing inputs (Ligmann-Zielinska and Jankowski, 2012).

In an effort to address the uncertainty associated with data and
parameters of GIS-MCDA we use a unified approach to uncertainty
and sensitivity analysis, in which uncertainty analysis quantifies
outcome variability, given model input uncertainties, followed by
sensitivity analysis that subdivides this variability and apportions
it to the uncertain inputs. Conceptually, uncertainty and sensitivity
analysis represent two different, albeit complementary approaches
to quantify the uncertainty of the model (Tenerelli and Carver,
2012). Uncertainty analysis: (a) helps to reduce uncertainties in
how a MCDA method operates, and (b) parameterizes the stability
of its outputs. This is typically achieved by introducing small
changes to specific input parameters and evaluating the outcomes
(Crosetto et al., 2000; Eastman, 2003). This process provides the
possibility of measuring the level of confidence in decision making
and in the decision maker (Chen et al., 2011). Uncertainty analysis
aims to identify and quantify confidence intervals for a model
output by assessing the response to uncertainties in the model
inputs (Crosetto et al., 2000). Meanwhile sensitivity analysis
technically explores the relationships between the inputs and
the output of a modeling application (Chen et al., 2010b). Sensi-
tivity analysis is the study of how the variation in the output of a
model (numerical or otherwise) can be apportioned, qualitatively
or quantitatively, to different sources of variation, and how the

Fig. 1. Urmia lake basin (right).
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model depends upon the information fed into it (Saltelli et al.,
2000). Sensitivity and uncertainty analyses together contribute to
understanding the influence of the assumptions and input para-
meters on the model of evaluation (Crosetto et al., 2000). They are
crucial to the validation and calibration of MCDA (Chen et al.,
2010b). Hereby, handling errors and uncertainty in GIS-MCDA
plays a considerable role in decision-making when it is important
to base decisions on probabilistic ranges rather than deterministic
results (Tenerelli and Carver, 2012). In the context of applying GIS-
MCDA to LSM we already compared different MCDA methods and
their capabilities (see Feizizadeh et al., 2012, 2013; Feizizadeh and
Blaschke, 2013a, 2013b). Building on this earlier work, in the
remainder of this paper, we carry out a GIS-MCDA study for LSM
with emphasis on the uncertainty and sensitivity analysis in order
to improve the accuracies of the results by means of identifying
and minimizing the uncertainties associated with the respective
MCDA methods.

2. Study area and data

The study area is the Tabriz basin which is a sub-basin of the
Urmia Lake basin in Northwest Iran (Fig. 1). The study area
encompasses 5378 km2 and has about 2 million inhabitants. It is
important for the East Azerbaijan province in terms of housing,
industrial and agricultural activities. In the Tabriz basin the
elevation increases from 1260 m in the lowest part at the Urmia
Lake, to 3680 m above sea level in the Sahand Mountains
(Feizizadeh and Blaschke, 2013a). Landslides are common in the
Urmia lake basin and the complexity of the geological structure in

the associated lithological units, comprised of several formations,
causes volcanic hazards, earthquakes, and landslides (Feizizadeh
and Blaschke, 2012). A landslide inventory database for the East
Azerbaijan Province lists 132 known landslide events (Feizizadeh
and Blaschke, 2013a). The geophysical setting makes the slopes of
this area potentially vulnerable to mass movements such as rock
fall, creeps, flows, topples and landslides (Feizizadeh and Blaschke,
2013a). In addition, the geotechnical setting and its impacts in the
form of earthquakes as well as volcanic activities in the Sahand
Mountains affect many human activities. Such hazards are some-
times limiting factors in respect to land use intensity in the Tabriz
basin. As already indicated in the introduction section, in the
remainder of this paper we focus on the sensitivity and uncer-
tainty analysis for GIS-MCDA. For more detailed information
regarding the physical properties and the geological setting of
the study area the reader is referred to Feizizadeh and Blaschke
(2011, 2013b, 2013a) and Feizizadeh et al. (2012).

In order to develop a landslide susceptibility map of the area,
we used nine factors (evaluation criteria) contributing to landslide
vulnerability. They include topographic, geological, climatic, and
socioeconomic characteristics, which were selected based on our
previous studies in this area (see Feizizadeh et al., 2012, 2013;
Feizizadeh and Blaschke, 2013a for criteria selection and justifica-
tion). In the data preparation phase, topographic maps at the scale
of 1:25,000 were used to extract road and drainage layers. The
topographic maps were also used to generate a digital elevation
model (DEM), as well as slope and aspect terrain derivatives. The
lithology and fault maps were derived from geological maps at the
scale of 1:100,000. A precipitation map was created through the
interpolation of data gathered by meteorological stations in East

Fig. 2. Methodology scheme and workflow.
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Azerbaijan province over the time period of 30-years. A detailed
land use/land cover map was derived from SPOT satellite images
with 10 m spatial resolution using image processing techniques.
In addition, a landslide inventory database including 112 landslide
events was used for the validation of the results. In the final data
pre-processing step, all vector layers were converted into raster
format layers with 5 m spatial resolution.

3. Methods

The research methodology is designed to evaluate the sensi-
tivity and uncertainty of GIS-MCDA for LSM through the GIS-based
spatially explicit uncertainty analysis method (GISPEX) and Demp-
ster–Schafer Theory (DST) methods in order to: (a) compare two
MCDM techniques: Analytical Hierarchy Process (AHP) and
Ordered Weighted Averaging (OWA) in terms of the uncertainty
of generated landslide susceptibility maps and (b) demonstrate
how a unified approach to uncertainty and sensitivity analysis can
be used to help interpret the results of landslide susceptibility
mapping. In order to achieve these objectives, the methodology is
composed of following steps:

(1) Compute landslide susceptibility maps using AHP and OWA.
(2) Compute measures of uncertainty for both maps with Monte

Carlo Simulation (MCS).
(3) Run Global Sensitivity Analysis (GSA).
(4) Access the uncertainty of LSM maps in light of MCS and

Average Shift in Ranks (ASR) results.
(5) Assess the robustness of weights in both MCDM techniques in

light of GSA results.
(6) Validate the landslide susceptibility maps without and with

uncertainty metrics using the DST technique.

Fig. 2 depicts the three phases comprising this methodology. The
first phase applies the AHP and OWA methods for producing the
landslide susceptibility maps without accounting for uncertainty of
criteria weights. This phase, called the “Conventional approach”, is
based on a Spatial Multiple Criteria Evaluation (S-MCE) which
assesses the landslide susceptibility by considering nine causal and
diagnostic criteria. S-MCE methods allow multiple and often con-
flicting criteria to be taken into account and weights to be applied to
input criteria depending on the level of importance ascribed to these
by the user (Carver, 1991; Tenerelli and Carver, 2012). The second
phase involves the uncertainty analysis using the GISPEX to simulate
the error propagation. In this phase we employ the MCS to assess the
uncertainty weight space, where weights are expressed using prob-
ability density functions. Within this phase we aim to produce the
landslide susceptibility maps of the ‘Novel approach’, based on the
outcome of sensitivity analysis and the revised weights. The third
and last phase includes the validation of results using the landslide
inventory database and applying the DST for calculating the certainty
of the results. In this phase we aim to compare the accuracy of the
two approaches in LSM.

3.1. Training data and standardization

As the basis for the GISPEX approach we generated a set of
random points serving as input training data. Specifically, we
generated 300 random locations within the study area (Arc GIS
10.1; Create Random function). Within each of these 300 locations
we generated multiple points resulting in a total of 6714 random
points distributed across 300 random locations. These training
data were assigned the attribute data and spatial characteristics of
the nine criteria used in the GISPEX approach through standard
GIS overlay techniques. In our LSM decision model each criterion is

represented by a map. This includes categorical data maps (e.g.
land use or geology), as well as ratio-level data maps (e.g. slope or
elevation). Hence, for the purpose of decision analysis, the values
and classes need to be converted into a common scale to overcome
the incommensurability of data (Azizur Rahman et al., 2012). Such
conversion is called standardization (Sharifi and Retsios, 2004;
Azizur Rahman et al., 2012). The standardization transforms and
rescales the original raster cell values into the [0–1] value range,
and thus enables combining various raster layers regardless of
their original measurement scales (Gorsevski et al., 2012). The
function is chosen in such a way that cells in a rasterized map that
are highly suitable in terms of achieving the analysis objective
obtain high standardized values and less suitable cells obtain low
values (Azizur Rahman et al., 2012). Accordingly the standardiza-
tion was performed based on the benefit or cost contribution of
each criterion to landslide susceptibility.

3.2. Criteria weights and AHP

One of the most widely used methods in spatial multicriteria
decision analysis is the AHP, introduced and developed by Saaty
(1977). As a multicriteria decision-making method, the AHP has
been applied for solving a wide variety of problems that involve
complex criteria across different levels, where the interaction
among criteria is common (Tiwari et al., 1999; Nekhay et al.,
2008; Feizizadeh et al., 2012). Since in any MCDA the weights are
reflective of the relative importance of each criterion, they need to
be carefully selected. In this regard, the AHP (Saaty, 1977) can be
applied to help decision-makers make pairwise comparisons
between the criteria and thus reduce the cognitive burden of
evaluating the relative importance of many criteria at once.
It derives the weights by comparing pairwise the relative impor-
tance of criteria, taken two at a time. Through a pairwise
comparison matrix, the AHP calculates the weighting for each
criterion (wi) by taking the eigenvector corresponding to the
largest eigenvalue of the matrix, and then normalizing the sum
of the components to unity as:

∑
n

i ¼ 1
wi¼ 1 ð1Þ

The overall importance of each of the individual criteria is then
calculated. An importance scale is proposed for these comparisons
through of AHP approach from 1 to 9 (see Table 1). The basic input
is the pairwise comparison matrix, A, of n criteria, established on
the basis of Saaty0s scaling ratios, which is of the order (n�n) as
defined in Eq. (2) below (Chen et al., 2010a; Feizizadeh and
Blaschke, 2013c):

A¼ ½aij�; i; j¼ 1; 2; 3; …; n ð2Þ

in which A is a matrix with elements aij. The matrix generally has
the property of reciprocity, expressed mathematically as:

aij¼ 1=aji ð3Þ

Table 1
Scales for pairwise AHP comparisons (Saaty and Vargas, 1991).

Intensity of importance Description

1 Equal importance
3 Moderate importance
5 Strong or essential importance
7 Very strong or demonstrated importance
9 Extreme importance
2,4,6,8 Intermediate values
Reciprocals Values for inverse comparison
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After generating this matrix it is then normalized as a matrix B:

B¼ ½bij�; i; j¼ 1; 2; 3; …; n ð4Þ

in which B is the normalized matrix of A, with elements bij defined
as:

bij¼ aij= ∑
n

i ¼ 1
aij¼ 1; 2; 3;…; n ð5Þ

Each weight value wi is computed as:

wi¼
∑n

j ¼ 1bij

∑n
i ¼ 1∑

n
j ¼ 1bij

; i; j¼ 1; 2; 3; :::; n ð6Þ

Eqs. (7)–(9) represent the relationships between the largest
Eigenvalue (λmax) and corresponding Eigenvector (W) of the
matrix B (Xu, 2002; Chen et al., 2010a; Feizizadeh and Blaschke,
2013c):

BW ¼ λmaxW ð7Þ

In AHP application it is important that the weights derived
from pairwise comparison matrix be consistent, therefore one of
the strengths of AHP is that it allows for inconsistent relationships
while, at the same time, providing a Consistency Ratio (CR) as an
indicator of the degree of consistency or inconsistency (Feizizadeh
and Blaschke 2013c; Chen et al., 2010a). CR is used to indicate the
likelihood that the matrix judgments were generated randomly
(Saaty, 1977; Park et al., 2011).

CR¼ CI
RI

ð8Þ

where the random index (RI) is the average of the resulting
consistency index depending on the order of the matrix given by
Saaty (1977), and the consistency index (CI) can be expressed as:

CI¼ ðλmax � nÞ
n�1

ð9Þ

where λmax is the largest or principal eigenvalue of the matrix, and
n is the order of the matrix. A CR on the order of 0.10 or less is a
reasonable level of consistency (Saaty, 1977; Park et al., 2011). The
determination of CR value is critical. It is computed in order to
check the consistency of the conducted comparisons (Gorsevski
et al., 2006). Based on (Saaty, 1977), if the CRo0.10 then the
pairwise comparison matrix has an acceptable consistency and
the weight values are valid and can be utilized. Otherwise, if the
CRZ0.10 then the pairwise comparisons are lacking consistency
and the matrix needs to be adjusted and the element values
should be modified (Feizizadeh and Blaschke, 2013c). In our study
the CR value for pairwise matrix was 0.053 (see Table 2 for weights
of criteria and Table 4 for weights of sub-criteria).

3.3. Sensitivity and uncertainty in AHP weights

The uncertainty of weights lies in the subjective expert or
stakeholder judgement of the relative importance of different
attributes, given the range of their impacts (Chen et al., 2011). As
we discussed in Section 3.2, the AHP0s pairwise comparison is the
most widely used technique for criteria weighting in MCDA
processes. However, since the pairwise comparison of criteria is
based on expert opinions, it is open to subjectivity in making the
comparison judgements. As a result, any incorrect perception on
the role of the different land-failure criteria can be easily conveyed
from the expert0s opinion into the weight assignment (Kritikos and
Davies, 2011; Feizizadeh and Blaschke, 2013a). This expert sub-
jectivity, particularly in pairwise comparisons, constitutes the
main drawback of the AHP technique (Nefeslioglu et al., 2013).
Furthermore, the AHP is coarse in finalizing the rankings of
competing candidates when used to identify major contributors
to the particular problems in question. The main difficulty asso-
ciated with AHP application is centred on the decision regarding
the priorities of all alternatives involved in the decision-making
process (Hus and Pan, 2009). Traditionally, Eigen values from the
AHP computation have been used as the basis for ranking, yet the
absence of the probability of individual alternatives tends to
confuse decision-makers, particularly for the alternatives that are
similar (Hus and Pan, 2009). In an effort to deal with subjectivity
in criterion weights contributing to potential uncertainty of model
outcomes previous studies (e.g. Hus and Pan, 2009; Benke and
Pelizaro, 2010; Feizizadeh and Blaschke 2013a) have suggested
integrating the Monte Carlo Simulation (MCS) with conventional
AHP in order to enhance the screening capability when there is a
need to identify a reliable decision alternative (model outcome)
(Hus and Pan, 2009).

The AHP-MCS approach takes the probabilistic characterization
of the pairwise comparisons into account (Bemmaor and Wagner,
2000; Hahn, 2003). This approach is based on the associate with
probability distributions which is sufficient to confirm that one
alternative is preferred to another (in the sense of maximizing
expected utility) provided that certain constraints on the under-
lying utility function are satisfied (Durbach and Stewart, 2012).
Consider the pairwise comparison ratio (Cij) where ia j, that has
resulted from the pairwise comparison of two and only two
alternatives Oi and Oj with weights wi and wj. For the moment,
take wiZwj, so that Cij¼{1, 2, …, 9}. Then Cij expresses the amount
by which Oi is preferred to Oj. Specifically, for every outcome of
preference for Oj, there are Cij outcomes of preference for Oi.
We assume this to be the ratio of successful outcomes and failure
outcomes in a binomial process. As such, the pairwise comparison
ratios can be used to obtain the components of a binomial process
in which wi successes have been observed in (wiþwj) trials subject
to an unobserved preference parameter, pi. With no loss of
generality, we can divide the numerator and the denominator of
Cij by the sum of the weights to obtain (Hahn, 2003).

Cij ¼
Wi

Wj
¼Wi=ðWi þWj Þ

Wj=ðWi þWÞ ¼ Pi

1�Pi
ð10Þ

where pi/(1�pi) is the ratio of preferences and constitutes the
stochastically derived priority. The priority pi is such that 0opio1
in the present context, since by definition the act of pairwise
comparison requires the presence of non-zero weights wi and wj

associated with Oi and Oj respectively. Again, we assume thatwi has a
binomial distribution with parameters wiþwj and pi, which we write
as wi�Binomial (wiþwj, pi). Note that in the cases where wiowj, it
remains true that wi�Binomial (wiþwj, pi) (Hahn, 2003).

Many times a decision maker will be faced with more than two
alternatives. In this case, the underlying process is multinomial by
extension. If there are K alternatives O1, O2,…, OK with weights w1,

Table 2
Pairwise comparison matrix for dataset layers of landslide analysis.

Factors 1 2 3 4 5 6 7 8 9 Eigen
values

(1) Aspect 1 0.025
(2) Distance to road 1/5 1 0.036
(3) Elevation 1/2 1/3 1 0.02
(4) Distance to stream 1/3 1/3 1/3 1 0.112
(5) Distance to fault 1/3 1/5 1/5 1/3 1 0.124
(6) Slope 7 1/5 9 1/3 1/4 1 0.141
(7) Land use 8 6 1/5 1/5 1/3 1/3 1 0.16
(8) Precipitation 8 6 7 7 4 3 1/5 1 0.172
(9) lithology 9 7 1/3 8 7 4 1/5 8 1 0.21

Consistency ratio: 0.053
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w2, …, wK, then the ith row of the pairwise comparison matrix has
a multinomial distribution. That is,

ðwi1; wi2;…; wiK Þ �Multinomialðwi1þwi2þ…þwiK ; piÞ ð11Þ
where pi is a vector of preference parameters or priorities as
following:

∑
k

k ¼ 1
pik ¼ 1 ð12Þ

since all K alternatives are present by definition, it must be true
that 0opiko1. With K alternatives, the matrix of pairwise
comparisons will contain K multinomial trials. Thus, the matrix
of pairwise comparisons is square with K columns, each one
corresponding to an alternative, and K rows, each one correspond-
ing to a different trial. Having supplied a probabilistic character-
ization of the pairwise comparison process and the resulting
matrix of pairwise comparisons, it is possible to specify statistical
models for the prediction of outcomes. Of primary interest is p, the
vector of marginal priorities for the alternatives. A natural model
for the problem of interest is the multinomial logit model (e.g.,
McFadden, 1973). Using this general model, a Bayesian perspective
will be adopted for inference on p, and estimation will be
conducted using a MCS method (Hahn, 2003).

3.4. Implementation of AHP-Monte Carlo simulation

Simulation is one of the most appropriate approaches to
analyze the uncertainty propagation of a GIS model, without
knowing the functional form of the errors (Eastman, 2003;
Tenerelli and Carver, 2012). The MCS technique is the most widely
used statistical sampling method in the uncertainty analysis of a
decision making system. It can be applied to complex systems,
where it is allowed to vary possible variables jointly, and to check
their synthetic effect through sampling input values repeatedly
from their respective probability distributions (Chen et al., 2011).
Sample-based uncertainty analysis, via MCS approaches, plays a
central role in this characterization and quantification of uncer-
tainty (Helton, 2004; Janssen, 2013), since the uncertainty of
attribute values and weights can be represented as a probability
distribution or a confidence interval (Chen et al., 2011). In our
research we use the statistical analysis capability of MCS to carry
out the uncertainty analysis associated with AHP weights. For this
to happen, our research methodology makes use of the concept of
AHP-MCS, where we take into account the criteria weights derived
from the AHP pairwise matrix for the uncertainty analysis using
MCS. In the context of AHP-MCS it should be notated that the
traditional AHP approach lacks probability values to distinguish
adjacent alternatives in the final ordering. In response to this
specific problem, Rosenbloom (1997) suggested that, in the dis-
tribution of 1/9 and 9, where aj,i¼1/ai,j and ai,i¼1, the pairwise
values could be viewed as random variables ai,j. This means that
every paired matrix will be symmetrically complementary. The
value of a random variable aj,i will be the reciprocal of ai,j.
Therefore, it is reasonable to assume that {ai,j|i4 j} is independent,
and the final scores S1, S2,…, Sn will be stochastic as well. In the
case of Si4Sj, alternative i is superior to alterative j at a certain
level of error (a). To obtain the probability information for ai,j in
the context of multiple decision-makers, we assume that the
probability of evaluations made by all experts regarding ai,j are
equal. This will convert every ai,j into a discrete random variable. In
the case of one decision-maker, on the other hand, the judgment
made regarding each paired uncertainty will become a continuous
random variable (Rosenbloom, 1997; Hus and Pan, 2009).

The AHP-MCS approach in our research is based on sampling
the vector of the input parameters in a random sequence in order
to get a corresponding statistical sample of the vector of the

output variables, and then estimate the characteristics of these
output variables using the output samples. This approach makes
use of the MCS method by estimating distributions of the output
variables (Espinosa-Paredes et al., 2012). We performed AHP-MCS
to model the error propagation from the input data to the model
output (the landslide susceptibility surface) according to the
following steps:

(I) Generating a random uniformly distributed dataset using a
random function as training data for calculating the uncer-
tainty analysis.

(II) Using the AHP based criteria weights as reference weights of
MCS (see Table 2).

(III) Running the simulation N times: practically the number of
simulations (N) vary from 100 to 10,000 according to the
computational load, the complexity of the model, and the
desired accuracy.

(IV) Analyzing the results, producing statistics and mapping the
spatial distribution of the computed errors including: the
minimum rank (Fig. 3a), maximum rank (Fig. 3b), average
rank (Fig. 3c), and standard deviation rank (Fig. 3d).

3.5. Variance-based global sensitivity analysis

Global Sensitivity Analysis (GSA) subdivides the variability and
apportions it to the uncertain inputs (Ha et al., 2012). GSA is based
on perturbations of the entire parameter space, where input
factors are examined both individually and in combination
(Ligmann-Zielinska, 2013). This algorithm has been developed
for solving the real-value numerical optimization problems
(Civicioglu, 2012). So far only a few methods have been proposed
to use the capability of GSA for spatial decision making and
modeling (Ligmann-Zielinska, 2013). In this regard, Lilburne and
Tarantola (2009) categorized the methods based on their model
dependence, computational efficiency, and algorithmic complex-
ity. Ligmann-Zielinska (2013) also proposed a model-independent
variance-based GSA, which obviates the assumptions of model
linearity and offers an acceptable compromise in computational
efficiency. Variance based GSA has been used in sensitivity analysis
and this approach is identified as one of the most appropriate
techniques for GSA (Saltelli et al., 2000; Saisana et al., 2005). The
goal of variance-based GSA is to quantitatively determine the
weights that have the most influence on model output, in this
instance on the landslide susceptibility value computed for each
cell of a landslide susceptibility layer. With this method we aim to
generate two sensitivity measures: first order (S) and total effect
(ST) sensitivity index. The importance of a given input factor Xi can
be measured via the so-called sensitivity index, which is defined as
the fractional contribution to the model output variance due to the
uncertainty in Xi. For k independent input factors, the sensitivity
indices can be computed by using the following decomposition
formula for the total output variance V (Y) of the output Y (Saisana
et al., 2005):

VðYÞ ¼∑
i
V iþ∑

i
∑
j4 i

V ijþ …þV12…k ð13Þ

Vi ¼ VXifEX� i ðY jXiÞg; ð14Þ

Vij ¼ VXi Xj fEX� ij ðY jXi;XjÞg� VXifEX� i ðY jXiÞg� VXjfEX� j ðY jXjÞg
ð15Þ

and so on. In computing VXi{EX� i(Y|Xi)}, the expectation EX� i

would call for an integral over X� i, i.e. over all factors except Xi,
including the marginal distributions for these factors, whereas the
variance Vxi would imply a further integral over Xi and its marginal
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distribution. A first measure of the fraction of the unconditional
output variance V(Y) that is accounted for by the uncertainty in Xi

is the first-order sensitivity index for the factor Xi defined as
(Saisana et al., 2005):

Si ¼ Vi=V ð16Þ
Eq. (16) is the first term in Eq. (13) and is known as interactions.

A model without interactions among its input factors is considered
as additive. In this case, ∑k

i ¼ 1S¼ 1, and the first-order conditional
variances of Eq. (14) are necessary in order to decompose the
model output variance (Saisana et al., 2005). For a non-additive
model, higher order sensitivity indices, which are responsible for
interaction effects among sets of input factors, must be computed.
However, higher order sensitivity indices are usually not esti-
mated, as in a model with k factors the total number of indices
(including the Sis) that should be estimated is as high as 2k�1.
For this reason, a more compact sensitivity measure is used. This is
the total effect sensitivity index, which concentrates all the inter-
actions involving a given factor Xi in one single term. For example,
for a model of k¼3 independent factors, the three total sensitivity
indices would be as follows (Saisana et al., 2005):

ST1 ¼
VðYÞ� VX2X3 fEX1 ðY jX2;X3Þg

VðYÞ ¼ S1þS12þS13þS123 ð17Þ

Analogously:

ST2 ¼ S2þS12þS23þS123
ST3 ¼ S3þS13þS23þS123: ð18Þ

In other words, the conditional variance in Eq. (17) can be
generally written as VX� ifEX � iðYjX� iÞg (Homma and Saltelli, 1996). It
expresses the total contribution to the variance of Y due to non-Xi,
i.e. to the k�1 remaining factors, hence V(Y)�VX� i{EX� i(Y|X� i)}
includes all terms, i.e. a first-order term as well as interactions in
Eq. (13), which involve factor Xi. In general, ∑k

i ¼ 1STiZ1, with
equality if there are no interactions. For a given factor Xi a notable
difference between STi and Si flags an important role of interac-
tions for that factor in Y. Highlighting interactions between input
factors helps us to improve our understanding of the model
structure (Saisana et al., 2005). In the context of variance-based
GSA we continued the analysis by calculating the importance of
spatial bias in determining option rank order by means of Average
Shift in Ranks (ASR) as follows (Saisana et al., 2005; Ligmann-
Zielinska and Jankowski, 2012):

ASR¼ 1
n

∑
n

a ¼ 1
ja� rankref –a� rankj ð19Þ

where ASR is the average shift in ranks, a_rankref is the rank
of option A in the reference ranking (e.g. equal weight case),

Fig. 3. Results of MCS: (a) minimum rank, (b), maximum rank, (c) average rank and (d) standard deviation rank.
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and a_rank is the current rank of option A. ASR captures the
relative shift in the position of the entire set of options and
quantifies it as the sum of absolute differences between the
current option rank (a_rank) and the reference rank (a_rankref),
divided by the number of all options (Ligmann-Zielinska and
Jankowski, 2012). In the first step of the analysis, we selected
the AHP weight to arrive at the reference ranking (See column a in
the Table 3). We also used maximumweights for the criteria which
are assessed based on the importance of each criterion in the AHP
pairwise matrix (see column b in Table 3). The results of GSA are
presented in Table 3, columns c–f.

3.6. Dempster–Shafer theory

The DST, based on evidence proposed by Shafer (1976), has
been regarded as an effective spatial data integration model. The
DST is a well-known evidence theory and provides a mathematical
framework for information representation and combination
(Carranza, 2009; Althuwaynee et al., 2012; Feizizadeh et al.,
2012). The DST is considered to be correct for the representation
of the epistemic uncertainty affecting the expert knowledge of the
probability P (Ml) that the alternative model Ml, l¼1,…,n. In the
DST framework, a lower and an upper bound are introduced for
representing the uncertainty associated with P (Ml). The lower
bound, called belief, Bel (Ml), represents the amount of belief that
directly supports Ml at least in part, whereas the upper bound,
called plausibility, Pl (Ml), measures the fact that Ml could be the
correct model ‘up to that value’ because there is only so much
evidence that contradicts it. From a general point of view, contrary
to the probability theory, which assigns the probability mass to
individual elementary events, the theory of evidence makes basic
probability assignments (bpa) m (A) on sets A (the focal sets) of the
power set P(Z) of the event space Z, i.e., on sets of outcomes rather
than on single elementary events. In more detail, M(A) express the
degree of belief that a specific element x belongs to the set A only,
and not to any subset of A. the bpa satisfies the following
requirements (Baraldi and Zio, 2010):

m : PðZÞ-½0;1�; mð0Þ ¼ 0; ∑
AA ðZÞ

mðAÞ ¼ 1 ð20Þ

The belief function denotes the lower bound for an (unknown)
probability function, whereas the plausibility function denotes the
upper bound for an (unknown) probability function. The differ-
ence between the plausibility (Pls) and the belief (Bel) function
represents a measure of uncertainty. The belief function measures
the amount of belief in the hypothesis on the basis of observed
evidence. It represents the total support for the hypothesis that is
drawn from the BPAs for all subsets of that hypothesis (i.e. belief
in [A, B] will be calculated as the sum of the BPAs for [A, B], [A],

and [B]) and it is defined as (Gorsevski and Jankowski, 2005):

BelðAÞ ¼ ∑
BDA

mðBÞ ð21Þ

The plausibility represents the maximum level of belief possi-
ble, or the degree to which a hypothesis cannot be disbelieved,
given the amount of evidence negating the hypothesis. Specifically,
the plausibility is obtained by subtracting the BPAs associated with
all subsets of the complement of the hypothesis (A) (Gorsevski and
Jankowski, 2005). Plausibility is the sum of the probability masses
assigned to all sets whose intersection with the proposition is not
empty (Baraldi and Zio, 2010). The plausibility function is defined
as follows (Gorsevski and Jankowski, 2005):

PlsðAÞ ¼ ∑
B\A ¼ ∅

mðBÞ ð22Þ

when two masses m1 and m2 for Θ are obtained as a result of two
pieces of independent information, they can be combined using
Dempster0s rule of combination in order to yield new BPAs
(m1�m2). This combination of m1 and m2 is defined as:

ðm1 � m2ÞðAÞ ¼
∑

B\C ¼ A
m1ðBÞm2ðCÞ

1� ∑
B\C ¼ ϕ

m1ðBÞm2ðCÞ
ð23Þ

where the combination operator “�” is called “orthogonal sum-
mation”, Aa∅, and the denominator, which represents a normal-
ization factor (one minus the BPAs associated with empty
intersection), is determined by summing the products of the BPAs
of all sets where the intersection is null. When the normalization
factor equals 0, the two items of evidence are not combinable. The
order of applying the orthogonal summation does not affect the
final results since Dempster0s rule of combination is commutative
and associative (Gorsevski and Jankowski, 2005). Since DST is able
to unravel certainties of results we applied it in a spatially explicit
manner to visualize the resulting certainties of the different
approaches as discussed in Section 4.2.

4. Results

4.1. Initial results of the landslide susceptibility mapping

In order to assess the efficacy of the methods presented in
Section 3, we employed a twofold analysis. First, the LSM criteria
and sub-criteria are ranked based on the AHP pairwise matrix (see
Tables 2 and 4 for criteria and sub-criteria, respectively).

In the next step these criteria were combined and landslide
susceptibility maps were produced (see Fig. 4a and b for the results
of OWA and AHP, respectively). The conventional approach is based
on the application of the S-MCE standard methodology for producing
MCDA base maps and comparing them to the results of the new
GISPEX approach for evaluating whether the accuracies are improved
after applying GSA. Hence, in the following computation of two
baseline landslide susceptibility maps, an alternative pair of landslide
susceptibility maps is computed by using revised weights obtained
from GSA (see Table 3 columns c–e). In doing so, the criteria and
revised weights were combined and the landslide susceptibility
maps were produced using OWA and AHP (See Fig. 4c and d). Finally
in order to validate the results, all four landslide susceptibility maps
derived from both of the approaches were classified into four groups,
namely high, moderate, low and no susceptibility to landslides, using
the natural breaks classification method in ArcGIS (see Table 5).

4.2. DST for representation the certainty of result

The belief function in the IDRISI software was used to carry out
the spatial distribution of the S-MCE and GISPEX approaches

Table 3
Results of GSA.

Factor (a) Reference
weights

(b) Maximum
weights

(c) S (d) ST (e) S
%

(f) ST
%

Aspect 0.025 0.2 0.172 0.183 17.2 14.8
Distance to road 0.036 0.5 0.001 0.006 0.1 0.5
Elevation 0.02 0.55 0 0.01 0 0.8
Distance to
stream

0.112 0.6 0.091 0.238 9.1 19.3

Distance to fault 0.124 0.7 0.176 0.286 17.6 23.2
Slope 0.141 0.75 0.012 0.058 1.2 4.7
Land use 0.16 0. 65 0.048 0.083 4.8 6.8
Precipitation 0.172 0.6 0.002 0.001 0.2 0.1
lithology 0.21 0.95 0.286 0.368 28.6 29.8
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certainties. Three decision support indicators including plausibility,
belief interval and belief were generated (see Figs. 5–7). Fig. 7 shows
the resulting certainties for both of the S-MCE and GISPEX
approaches based on the belief function. Based on the DST (belief)
approach, the ignorance value can be used to represent the lack of
evidence (complete ignorance is represented by 0). Thus, the belief
and plausibility function values all lie between 0 and 1 (Althuwaynee
et al., 2012; Feizizadeh et al., 2012). In our application of OWA

(S-MCE approach), the belief function reveals certainty ranges
between 0.46 and 0.81, however, it significantly increases to 0.71–
0.96 when OWA is employed in conjunction with GSA-derived
criterion weights in the second approach (GISPEX approach). For
the AHP method, results show certainty ranges of 0.21–0.66 for the
conventional approach and an increased range of 0.63–0.90 when
integrating the AHP with GSA (novel approach). Detailed results of
DST based uncertainty representation are listed in the Table 6.

Table 4
Pairwise comparison matrix, factor weights and consistency ratio of the data layers used.

Factors 1 2 3 4 5 Eigen values (H) observed landslide (I)0 area of landslides M2

Lithology
(1) Altered zone 1 0.09
(2) Metamorphic-Plutonic 1 1 0.12
(3) Plutonic 3 3 1 0.18 31 47,321
(4) Volcanic 6 5 7 1 0.27 43 107,568
(5) Metamorphic-volcanic 6 5 4 4 1 0.34 38 70,011

Consistency ratio: 0.061

Precipitation (mm)
(1) 2504 1 0.17
(2) 251–300 3 1 0.32 111 223,664
(3) 301–350 4 3 1 0.51 1 1236

Consistency ratio: 0.075

Land use/cover
(1) Settlement 1 0.053
(2) Orchard and croplands 3 1 0.067
(3) Dry-Farming & pasture lands 8 7 1 0.235 1 983
(4) Bare soil 9 8 3 1 0.325 111 223,917
(5) Rock bodies 9 8 3 3 1 0.32

Consistency ratio: 0.054

Slope (%)
(1) 0–10 1 0.09 33 37,873
(2) 10.1–20 3 1 0.18 15 18,345
(3) 20.1–30 4 3 1 0.47 25 29,876
(4) 30.1–40 3 3 1/3 1 0.15 18 110,242
(5) 40.1o 1/3 1/4 1/6 1/4 1 0.11 21 28,564

Consistency ratio: 0.083

Distance to fault (m)
(1) 0–1000 1 0.515 102 203,560
(2) 1001–2000 1/3 1 0.224 8 6762
(3) 2001–3000 1/5 1/3 1 0.126
(4) 3001–4000 1/7 1/5 1/2 1 0.085
(5) 4000o 1/5 1/2 2 3 1 0.05 2 14,578

Consistency ratio: 0.024

Distance to stream (m)
(1) 0–50 1 0.51 19 43,412
(2) 51–100 1/3 1 0.21 16 29,543
(3) 101–150 1/5 1/3 1 0.11 20 44,152
(4) 151–200 1/7 1/5 1/2 1 0.091 15 20,928
(5) 200o 1/5 1/2 1/6 1/4 1 0.079 42 86,865

Consistency ratio: 0.024

Distance to roads (m)
(1) 0–25 1 0.269
(2) 26–50 4 1 0.255
(3) 51–75 4 2 1 0.249 1 751
(4) 76–100 4 2 1 1 0.135 2 1569
(5) 100o 3 2 1 1 1 0.092 109 222,580

Consistency ratio: 0.002

Aspect
(1) Flat 1 0.046 19 56,345
(2) North 9 1 0.059 16 33,654
(3) East 1 1/8 1 0.109 10 16,789
(4) West 4 1/7 3 1 0.269 52 93,514
(5) South 9 7 7 7 1 0.517 15 24,598

Consistency ratio: 0.061

Elevation (m)
(1) 1260–1400 1 0.076 1 512
(2) 1401–1800 9 1 0.239 43 82,456
(3) 1801–2500 9 8 1 0.393 68 141,932
(4) 2501–3000 8 7 7 1 0.173
(5) 3001–3680 7 1/7 1/6 1/5 1 0.119

Consistency ratio: 0.072
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4.3. Validation of results

Validation is a fundamental step in the development of a
susceptibility map and determination of its prediction ability

(Pourghasemi et al., 2012). The purpose of the validation algorithm
is to statistically evaluate the accuracy of the results (Sousa et al.,
2004). The prediction capability of LSM and its resulting output is
usually estimated by using independent information (i.e. landslide

Fig. 4. Results of LSM: Landslide susceptibility maps derived from S-MCE approach including (a) OWA, (b) AHP, and landslide susceptibility maps derived from GISPEX
approach including: (c) GSA-OWA and (d) GSA-AHP.

Table 5
Results of LSM.

MCDA Susceptibility category An Bn Cn (M2) Dn (M2)

OWA High susceptibility 1,079,741 12,342,873 3 1245 5 1675
Moderate susceptibility 74,620,238 69,459,118 33 74,100 53 127,925
Low susceptibility 118,844,521 105,535,783 76 149,555 54 95,300
No susceptibility 16,223,918 23,430,644
Sum 210,768,418 210,768,418 112 224,900 112 224,900

AHP High susceptibility 1,706,322 6,005,410 20 44,825 25 57,200
Moderate susceptibility 112,532,591 85,215,611 81 169,475 87 167,700
Low susceptibility 91,194,144 102,953,641 11 10,600
No susceptibility 5,335,361 16,593,756
Sum 210,768,418 210,768,418 112 224,900 112 224,900

An¼Number of pixels in the landslide susceptibility maps derived from the S-MEC approach (classical approach).
Bn¼Number of pixels in the landslide susceptibility maps derived from the GISPEX approach (alternative approach).
Cn¼Number of observed landslides and validation of the results for the S-MEC approach by comparing LSM results with the landslide inventory dataset and delimited
landslides from OBIA.
Dn¼Number of observed landslides and validation of the results for the GISPEX approach by comparing LSM results with the landslide inventory dataset and delimited
landslides from OBIA.
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inventory map). In our research the accuracy of the obtained
landslide susceptibility maps was evaluated by calculating
Relative Operating Characteristics (ROC) (Fawcett, 2006; Nandi
and Shakoor, 2009), and numbers of known landslides were
observed in various categories of the landslide susceptibility maps.
The ROC curve is a plot of the probability of having a true positive
(correctly predicted event response) versus the probability of a
false positive (falsely predicted event response) as the cut-off
probability varies (Gorsevski et al., 2006).

A landslide inventory database was used to perform a valida-
tion of results. This database includes the occurrences of 112
landslide events for the Tabriz basin study area. This landslide
inventory data consists of point data, which were collected in field
surveys using GPS. We also use the results of delineated landslides
from IRS-ID satellite images (with 5.8 m spatial resolution)
through the Object Based Image Analysis (OBIA) method, which
we determined in one of our previous researches in this area
(Blaschke et al., in preparation). Respectively, these landslide areas
(22.49 ha) were used to assess the accuracy of results through the
ROC curve. In the ROC curve the ideal model shows a value close to
1.0 (Fawcett, 2006; Nandi and Shakoor, 2009). The results of the
ROC method for four landslide susceptibility maps are shown in
Fig. 8 and Table 5. In addition columns H and I in Table 3 shows the

number and area of observed landslides in sub-criteria of our
S-MEC and GISPEX models for LSM.

5. Discussion

We started with the hypothesis that uncertainty is associated
with GIS-MCDA, and that applying uncertainty and sensitivity
analysis using the GISPEX approach leads to an improved accuracy
of the results. Results of this research indicated that the integra-
tion of spatially explicit analysis and MCDA supports to improve
accuracy of the results significantly. As the validation of the results
using ROC curves shows, increasing the accuracy from 0.1563 to
0.456 in the OWA method, and respectively from 0.754 to 0.906 in
the AHP method, clearly offers the possibility of improving the
accuracy of MCDA by means of taking into account the results of
variance decomposition in GSA. In this regard we may emphasis
that the GISPEX approach introduces the spatial heterogeneity of
preferences in calculating the attractiveness and the subsequent
ranking of decision options. Within this approach the decision-
makers not only place a particular importance on a given criterion,
but also pay attention to how an option is situated with respect to
this criterion (Ligmann-Zielinska and Jankowski, 2012).

Fig. 5. Results of spatial distribution of the plausibility for the landslide susceptibility maps derived from S-MCE approach including: (a) OWA, (b) AHP and the landslide
susceptibility maps derived from GISPEX approach including: (c) GSA-OWA and (d) GSA-AHP.
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When comparing the accuracies of GIS-MCDA methods, the
results indicate that the AHP method outperformes the OWA
method. However, a cross-comparison of the uncertainty assess-
ment using the DST shows that OWA yields the greatest certainty
range. We should note that the differing accuracies are due to
different decision rules of the respective MCDA operators. Natu-
rally, different decision rules will result in various accuracies
(Feizizadeh and Blaschke, 2013b). When using GIS-MCDA meth-
ods, it is evident that each method has its advantages and inherent
limitations, which must be fully understood and accepted by the
decision-maker before applying it (Kritikos and Davies, 2011;
Feizizadeh and Blaschke, 2013b).

Obviously, MCDA is based on a number of pivotal evaluation
criteria, defined according to the conditions of the problem being
considered. In most decision-making problems, the management
team already has a well-defined goal. In order to reach this goal, it
is necessary to choose from a number of options or alternatives.
The potential alternatives have different attributes and character-
istics. The decision-makers try to choose the best among them by
considering the effects these alternatives have on the quality of the
final result. Such relative importances depend on different criteria.
Decision-makers rank these criteria over each other in order to
determine a weight for each criterion (Kordi and Brandt, 2012).

In the traditional MCDA approach preferences relate to criteria
rather than options themselves. Typically, weights are assumed to
be homogeneous over the geographical space and no attention is
given to how they might vary spatially. This homogeneous treat-
ment of criterion preferences across a geographical decision space
may result in solutions that only partially reflect the decision
maker0s preferences. Further, this approach leads to a loss of
information, which may be critical in solving spatially explicit
problems and may result in a choice of recommendations that are
subsequently rejected due to their incongruence with the pre-
ference structure of the decision-maker (Ligmann-Zielinska and
Jankowski, 2012).

In terms of using AHP as method of criteria weighting, the
results pointed out this technique is not free of criticisms and it
has limitations. It may suffer from sensitivity in decision making.
In this regard the main potential problems associated with this
technique include rank consistency and the time it takes to make
judgments in a complex decision problem especially in cases when
the number of decision alternatives to be addressed is large
(Mamat and Daniel, 2007). Technically, AHP is used to evaluate
complex multi-attribute alternatives among one or more decision
makers. It imposes a hierarchical structure on any complex multi-
criterion problem (Carmone et al., 1997). However, a major

Fig. 6. Results of spatial distribution of the belief interval for landslide susceptibility maps derived from S-MCE approach including: (a) OWA, (b) AHP and the landslide
susceptibility maps derived from GISPEX approach including: (c) GSA-OWA and (d) GSA-AHP.
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drawback of the AHP is that a large number of pairwise compar-
isons is needed to calibrate the hierarchy. When there are a few
levels and sublevels, the AHP can be applied in a straightforward
manner to derive the weights (Carmone et al., 1997). Naturally, as
the size of the hierarchy increases, the number of pairwise
comparisons increases rapidly which leads a degree of sensitivity
and subsequently influence the pairwise comparisons. In order to
deal with these issues, the results of our research demonstrate
that one way of mitigating the limitations of the AHP technique is
to apply AHP through the MCS that characterizes the multi-criteria
procedural rationality paradigm. The improved accuracy of MCDA
in the ‘alternative approach’ by using the revised weights from

AHP-MCA clearly approved leads to improvements in the accuracy
and reliability of LSM studies.

In the context of uncertainty analysis for GIS-MCDA based on
DST approach, our research results showed that the DST can be
used to evaluate the reliability of the whole system. The DST
allows a flexible representation of uncertainty for data sources of
different types and expert judgement in particular. Moreover,
multiple experts0 knowledge can provide more reliable informa-
tion for an observation (e.g. the failure probability of a component)
than a single expert can. As the results of our conventional
approach (S-MCE, see Section 4.1) indicated, the expert judgment
can often suffer from subjectivity of judgement, which affects the

Fig. 7. Results of the uncertainty representation based belief function for the landslide susceptibility maps derived from S-MCE approach including: (a) OWA, (b) AHP and
the landslide susceptibility maps derived from GISPEX approach including: (c) GSA-OWA, and (d) GSA-AHP.

Table 6
Representation certainty and validation of results by DST and ROC.

MCDA Plausibility Belief interval Belief ROC

Classical approach OWA 0.04–0.29 0.06–0.42 0.46–0.81 0.15629
AHP 0.55–0.68 0.10–0.37 0.21–0.66 0.75415

Alternate approach GSA- OWA 0.26–0.81 0.19–54 0.71–0. 96 0.45565
GSA- AHP 0.34–0.79 0.32–0.45 0.63–0.90 0.90557
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uncertainty of MCDA results. The DST addresses these issues
effectively and is able to combine multi-expert knowledge by
taking into account ignorance and conflicts through a belief
structure (Sallak et al., 2010). The DST of evidence provides an
explicit mechanism by replacing subjective probabilities with
‘degrees of belief’ that can be used to represent the extent to
which a decision maker believes a specific proposition to be true.
The degrees of belief assigned to a set of collectively exhaustive
and mutually exclusive hypotheses (by a so-called ‘belief function’)
are allowed to sum to less than one, with the difference revealing
the degree of ignorance. Such ignorance may be due to a lack of
data or familiarity with the problem at hand, imprecision in
assessment, or the absence of certain stakeholders in a group
decision (Durbach and Stewart, 2012). The DST representation is
proposed as an attractive way of dealing with the issue at hand
(expert judgment) (Sallak et al., 2010). The DST confirmed that the
output results of belief, disbelief, uncertainty (doubt), and plausi-
bility have to be defined as precisely as possible, in order to obtain
a reasonable result (Carranza, 2009; Althuwaynee et al., 2012;
Feizizadeh et al., 2012). In our research, the uncertainty assess-
ment using the DST also confirmed the possibility of improving the
accuracy of MCDA by means of integrating sensitivity analysis
through GISPEX. The certainties measured by DST are significantly
increased for both MCDA methods when GSA is performed in the
GISPEX approach, (see Table 6).

6. Conclusion and future work

GIS-MCDA is complex due to the intricacy of the systems
considered and the competing interests of multiple stakeholders.
Further research in MCDA is needed to acquire better under-
standing of factors and mechanisms contributing to uncertainty in
a decision-making system, and how the uncertainty affect the
quality of the decisions rendered. Developing acceptable and
efficacious decision-making approaches requires an improvement
of uncertainty analysis techniques, concepts, and assumptions in
pertinent research, with subsequent verification of LSM results
(Ascough et al., 2008). In this paper, we focussed on applying the

GISPEX approach for uncertainty and sensitivity analysis in GIS-
MCDA, integrating the AHP and MCS, and assessing the certainty
of the resulting outcomes through ROC and DST approaches. Based
on our results, further improvement of the accuracy of GIS-based
MCDA can be achieved by employing GSA of weights used in
MCDA techniques. This study demonstrates the efficacy of the
GISPEX approach to assessing the uncertainty of results produced
by GIS-based MCDA models. Furthermore, the results of this
research reveal that it is possible to enhance LSM by providing
information about the uncertainty of its estimates.

This research and other studies demonstrate that MCDA meth-
ods can provide an effective tool for spatial decision making
systems when the resulting accuracies are improved (Boroushaki
and Malczewski, 2008; Azizur Rahman et al., 2012; Feizizadeh and
Blaschke, 2013a, 2013b, 2013c). Building on these results, future
research should focus on integration of decision rules in GIS-MCDA
(e.g. AHP-OWA operators) with uncertainty analysis methods (e.g.
spatially explicit-DST) in order to provide a comprehensive
approach to deal with imprecision of input data and subjectivity
of human judgement such research may include the integration of
a fuzzy set with GIS-MCDA (Fuzzy-AHP) for improving the decision
rule of the AHP – in particular the pairwise matrix of the AHP.
In this study we attempted to improve the accuracy of GIS-MCDA
based LSM in an effort to provide the bases for decision making
plans for reducing and mitigating the landslide hazard. We
conclude that the resulting landslide prediction maps were not
only accomplished for the sake of comparison. The results of this
study will be given to the responsible authorities in the East
Azerbaijan province for risk management. The information pro-
vided by these maps shall help planners and engineers to reduce
losses caused by future landslides through prevention, mitigation
and avoidance. We will monitor whether or not the results
described in this article will be utilized for supporting the mitiga-
tion of future landslide hazards in the Tabriz basin.
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