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P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer
drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internaliza-
tion are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of
cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins follow-
ed by flow cytometry andWestern blotting. Our data shows that the half-life of endogenously expressed P-gp is
26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar
H+ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatmentwith
the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When
cells were treated with both lysosomal and proteasomal inhibitors (BafA1 andMG132), the half-life was further
prolonged to 39–50 h. Functional assays donewith rhodamine 123 or calcein-AM, fluorescent substrates of P-gp,
indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or
proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1
and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized
in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to
increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

Published by Elsevier B.V.
1. Introduction

P-glycoprotein (P-gp), also known as ABCB1, is one transporter that
is frequently associated with the development of multidrug resistance
(MDR) in cancer cells [1,2]. This apical 170 kDa protein is a product of
the human MDR1 or ABCB1 gene and consists of two halves joined to-
gether by a linker region 75 amino acids in length. Each half consists
of 6 membrane-spanning α helices forming the transmembrane
domain (TMD) and a nucleotide-binding domain. The TMDs serve as a
site for substrate binding and in turn forms the translocation pathway
[3–7]. The process of active vectorial drug transport is mediated by
energy derived from hydrolysis of ATP that occurs at each of the NBDs
[3,8,9]. The primary physiological function of P-gp is to protect the
cells from harmful toxins and xenobiotics. Cancer cells are able to
exploit the protective function of this transporter and use it to their
lycoprotein; FITC, fluorescein
oxy-L-leucyl-L-leucyl-L-leucinal;
proteasome inhibitor I; Rh123,

kar).
advantage. P-gp induction contributes towards development of intrinsic
(resistance even before chemotherapeutic exposure), and acquired
resistance (due to frequent cycles of chemotherapeutic exposure) [1].
In accordance with this, the overexpression and thereby increase in
function of P-gp have been correlated to poor prognosis due to chemo-
therapeutic MDR [10–18]. P-gp transports several anticancer drugs in
an energy-dependent manner, thereby limiting the concentration of
the anticancer agents to sub-lethal intracellular concentrations and
protecting the cells [3,19–22]. Various structural and biochemical
pathways have been identified since the discovery of P-gp in the
1970's [23]. Several methods have been employed to target and inhibit
this MDR transporter, with very few agents showing promising results.
The expression of P-gp is regulated via both synthesis and degradation
of the protein. Targeting P-gp degradation has remained an attractive
option; however limited data are available regarding its degradation
pathway.

Cells utilize two major pathways for intracellular protein degrada-
tion: the endosomal–lysosomal system and the non-lysosomal system.
Most non-lysosomal degradation occurs via the ubiquitin/26S protea-
some system [24–27]. Endocytic, autophagic and phagocytic vesicles
ultimately fuse with lysosomes, the terminal degradation compartment
within the cell [28–31]. Cells regularly internalize extracellularmaterial,
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plasma membrane proteins and ligands via endocytosis [29]. A coordi-
nated balance is maintained between the removal of proteins from
the cell surface and endosomal recycling pathways that return the
proteins and lipids back to the plasma membrane, thus controlling the
composition of the plasma membrane [32]. Here we present a detailed
description of the degradation of cell surface P-gp following its internal-
ization. (We did not study the recycling of cell surface P-gp from
early endosomes or other vesicles.) Our results demonstrate that the
half-life of P-gp at the cell surface of HCT-15 cells expressing high
levels of endogenous P-gp without exposure to any anticancer
drugs [33] is in the range of 25–27 h, which is increased to 36.1 h
in cells treated with BafA1. In addition, after internalization, P-gp is
localized to the lysosomes. Thus, the lysosomal pathway plays a
major role in the degradation of P-gp in cancer cells, which intrinsi-
cally express this transporter at high levels without prior exposure to
any anticancer drugs.

2. Experimental procedures

2.1. Reagents and chemicals

Bafilomycin A1 (BafA1) was purchased from Enzo Life Sciences
(Farmingdale, NY). MG132, lactacystin, MG115, proteasome inhibitor I
(PSI) and cyclosporine A (CysA) were obtained from EMD4 Biosciences
(Gibbstown, NJ). Rhodamine123 (Rh123) and cycloheximide (CHX)
were purchased from Sigma-Aldrich (St. Louis, MO). Drugs used in the
studywere dissolved in dimethyl sulfoxide (DMSO) and proteasome in-
hibitors were dissolved inwater. Calcein- AM, Alexa Fluor® 488 Protein
labeling Kit for UIC2 labeling, Alexa Fluor® 647 donkey anti-rabbit IgG
(H + L) and Alexa Fluor® 647 goat anti-mouse IgG2a were purchased
from Invitrogen (Grand Island, NY). E-cadherin antibody conjugated
with Alexa Fluor® 647 was obtained from Santa Cruz Biotechnology
(Dallas, TX). Mouse anti-BiP/GRP78 was from BD Biosciences (San
Jose, CA). EEA1 rabbit mAb was procured from Cell Signaling Technolo-
gy (Danvers, MA). The lysosome-associated membrane protein 1
(LAMP-1) monoclonal antibody H4A3 was obtained from the Develop-
mental Studies HybridomaBank at theUniversity of Iowa (Iowa City, IA)
[34,35].

2.2. Cell lines

The human colorectal tumor HCT-15 cell line (Cat# CCL-225)
was obtained from ATCC (Manassas, VA) and was used to perform
the studies described here. The cells were cultured in DMEM
media supplemented with 10% fetal bovine serum (FBS), 5 mM glu-
tamine, penicillin 50 units/ml, and 50 μg/ml streptomycin, at 37 °C
in 5% CO2.

2.3. Biotinylation procedure

The water soluble EZ-link Sulfo-NHS-LC-Biotin (Thermo Scientif-
ic Pierce, Rockford, IL) was used for biotinylation of surface proteins
as the sulfo-NHS (N-hydroxy-succinimide ester) cannot permeate
the cell membrane, allowing only biotinylation of cell surface pro-
teins. The cells were washed three times with cold PBS and incubated
with EZ-link Sulfo-NHS-LC-Biotin (concentration range from 0.25 to
2 mg/ml) in PBS for 30 min at 4 °C. After incubation, the cells were
washed three times with cold PBS and further incubated at 37 °C in
5% CO2 for 0–48 h in DMEM supplemented with 10% FBS and other
additives.

2.4. Flow cytometry

To determine the half-life of P-gp at the cell surface, biotinylated
cells were trypsinized, collected and resuspended in Iscove's modified
Dulbecco's medium (IMDM) supplemented with 5% FBS (IMDM/FBS).
The cells were then incubated with either P-gp isotype control IgG2a
(1 μg/100,000 cells) (BD Biosciences, San Jose, CA), P-gp specific
MRK16 (1 μg/100,000 cells) or UIC2 (2 μg/100,000 cells) antibodies at
37 °C for 30 min in IMDM supplemented with 5% FBS. After washing,
the cells were incubated with 2 μg/100,000 cells of FITC-conjugated
secondary antibody (BD Biosciences, San Jose, CA) and 1 μg/ml of PE-
conjugated streptavidin (eBioscience, San Diego, CA) in IMDM/FBS me-
dium at 37 °C for 30 min. Cells were then washed and analyzed using a
FACSCalibur Flow Cytometer (Becton, Dickinson and Company, Franklin
Lakes, NJ).

The drug efflux function of P-gpwasmeasured using the fluorescent
substrates Rh123 and calcein-AM, as described previously [36]. Briefly,
250,000 cells in IMDM/FBS were incubated with or without inhibitors
of transport such as cyclosporine A at 5 μM along with Rh123 (1.3 μM)
for 45 min or calcein-AM (0.5 μM) for 10 min at 37 °C. The cells were
then washed with ice cold PBS and analyzed using the FACSCalibur
flow cytometer.

2.5. Precipitation and Western blotting

Biotinylated cells were lysed with TD buffer (50 mM Tris–HCl
[pH 7.4], 1% Triton X-100, 1 mM DTT, 1% aprotinin, 1 mM AEBSF,
20 μg/ml pepstatin, 10 μg/ml leupeptin) by incubating for 30 min on
ice. Four hundred μg of protein was precipitated with 40 μl of
streptavidin agarose (Thermo Scientific Pierce) at 4 °C overnight with
gentle rocking. After washing the agarose, biotinylated proteins were
eluted by incubating with 5 mM biotin (pH 8.0) for 1.5 h at 37 °C with
occasional vortexing. Biotinylated proteins were solubilized with
sample buffer by incubating for 30 min at 37 °C. The proteins were
then separated by SDS-PAGE and transferred onto nitrocellulose mem-
branes. The membranes were incubated with an anti-P-gp antibody
C219 1:2000 dilution followed by horseradish peroxidase-conjugated
rat anti-mouse secondary antibody. The bands were visualized using
the ECL (enhanced chemiluminescence) detection kit (GE Healthcare,
Piscataway, NJ).

2.6. Labeling of UIC2 antibody with Alexa Fluor® 488

For single-step detection of P-gp under permeabilized and non-
permeabilized conditions by confocal microscopy, UIC2 antibody was
labeled with Alexa Fluor® 488 (green fluorescence) using the Alexa
Fluor® 488 Protein labeling Kit as per manufacturer's protocol under
laboratory conditions. This labeled UIC2 antibody is referred to as
UIC2-alexa 488 in this report.

2.7. Immunofluorescence and confocal imaging of P-gp

HCT-15 (5 × 104) cells were seeded on coverslips in a 12-well
plate and grown for 48 h. The cells were rinsed twice with PBS
(pH 7.5) and then fixed with 2% paraformaldehyde in PBS, pH 7.5,
for 30 min. Cells were then rinsed thrice with PBS (pH 7.5) and treat-
ed with 100 mM glycine in PBS for 20 min followed by washing and
permeabilization with methanol at −20 °C for 5 min. (This step was
skipped when cells were imaged under non-permeabilized condi-
tions.) After washing, the cells were incubated with a blocking solu-
tion containing 5% donkey serum and 0.5% IgG free-BSA (Jackson
Immuno-Research Laboratories, Inc.) in PBS for 20 min. The blocking
solution was washed with PBS and the cells were incubated with
UIC2-Alexa Fluor-488 antibody (4 μg/100,000 cells) or E-cadherin
Alexa Fluor® 647 for 1 h at room temperature. To study co-
localization of P-gp with intracellular organelles, the cells were first
incubated with the respective intracellular marker antibody such as
LAMP1 (lysosomal marker), EEA1 (early endosomal marker) or
GRP78 (ER marker) for 1 h at room temperature and respective
Alexa Fluor® 647 labeled secondary antibodies for 30 min at room
temperature, followed by washing and subsequent labeling with
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UIC2-alexa488 antibody. The cells were then washed and the cover-
slips were inverted and mounted on the slides with VECTASHIELD ®
(Mounting Media with DAPI) (Vector laboratories). Fluorescence
images were taken at 100X using a confocal laser scanning micro-
scope Leica TCS-SP2 attached to an upright Leica DM-RE7 micro-
scope. All steps were performed at room temperature unless
otherwise mentioned.
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Fig. 1. Biotinylation of cell surface proteins ofHCT-15 cells and its effect ondetection of P-gp leve
LC-biotinwith concentration ranging from 0.025 to 2mg/ml for 30min at 4 °C. The cells were th
analyzed by flow cytometry and the histogram shows the level of biotin label at the cell surface
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itoring the transport of (D) Calcein-AM or (E) Rh123. The transport of these substrates in both
CysA (5 μM; traces labeled as Cal-AM + CysA in D and Rh123 + CysA in E). The histograms
additional independent experiments.
3. Results and discussion

Regulation of P-gp expression both at the transcriptional and post-
transcriptional levels is well documented, laying out the biosynthetic
pathway from P-gp synthesis starting in the endoplasmic reticulum as
a core glycosylated 150 kDa protein, that then reaches the Golgi appara-
tus and further matures into a glycosylated 170 kDa P-gp, which is then
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Fig. 2. The biotinylation of cell surface P-gp does not affect its detection bymonoclonal antibodies. HCT-15 cells were incubated with (A) PBS or (B) Sulfo-NHS-LC-biotin for 30min at 4 °C
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Table 1
Half-life of biotinylated P-gp at the cell surface under various treat-
ments of HCT-15 cells with lysosomal and proteasomal inhibitors.

Treatment(s) Half-life (h)

Biotin 26.7 ± 1.1
Biotin-BafA1 36.1 ± 0.5
Ammonium Chloride 34.9 ± 1.2
Biotin-MG132 26.0 ± 1.2
Biotin-Lacta 26.0 ± 1.5
Biotin-MG115 26.0 ± 1.2
Biotin-PSI 26.0 ± 1.1
Biotin-BafA1 + MG132 39.0 ± 1.0
Biotin-BafA1 + Lacta 50.0 ± 2.9
Biotin-BafA1 + MG115 38.0 ± 1.9
Biotin-BafA1 + PSI 45.0 ± 2.7

HCT-15 cells were treated with Sulfo-NHS-LC-biotin (1 mg/ml) for 30
min at 4 °C and then grown in DMEM for 0 to 48 h at 37 °C in the pres-
ence or absence of BafA1 (1 nM), Ammonium Chloride (1mM), MG132
(1 μM), lacta (5 μM) and PSI (100 nM) alone or together. The level of bi-
otinylated P-gp remaining at the cell surface was determined as given
in the legend to Figs. 2 and 3. The values represent the mean ± SD
from three independent experiments. BafA1, bafilomycin A1; Lacta,
lactacystin; PSI, proteasome inhibitor I.
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ready for trafficking and function as an efflux pump at the cell surface
[37,38]. Recently it was reported that phosphorylation of the transport-
er by Pim-1 kinase among other post-translational modifications is key
towards protecting it from proteolytic and proteasomal degradation,
thereby stabilizing the transporter and allowing it to be glycosylated
and delivered to the cell membrane [39]. However, limited information
is available regarding the fate of cell surface P-gp. Here we sought to
identify the pathway governing the degradative fate of P-gp following
its internalization in HCT-15 cells. These colon cancer cells express
high levels of endogenous P-gp (without exposure to any anti-cancer
drugs). In this study, we did not use cells subjected to any stress includ-
ing drug-selection or disease condition.

3.1. Determination of the half-life of P-gp at the cell surface

To evaluate the degradationmechanism of P-gp, we first determined
its half-life at the cell surface of HCT-15 cells that endogenously express
P-gp. HCT-15 cells were first labeled with biotin and then cultured in
media as described in Section 2. Biotin and streptavidin bind with one
of the strongest non-covalent bonds known, making the complex
resistant to proteolysis and extremes of heat and pH [40,41]. FACS
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measurements serve as the most useful tools for the measurement of
surface biotinylation and thereby detection of P-gp at the cell surface.
We initiated our examination by determining the concentration of
biotin that could biotinylate all cell surface proteins and further validat-
ed the reactivity of P-gp specific MRK16 or UIC2 antibodies and the
function of P-gp with Rh123 or calcein-AM accumulation assays under
biotinylation conditions. This would confirm if biotinylation of the cell
membrane would affect the expression or reactivity of P-gp-specific
antibodies or the function of P-gp.
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Fig. 4. The level of total cell surface P-gp is not affected by treatment with lysosomal or protea
incubatedwith the indicated drugs for 0–48 h. The cells were trypsinized and incubatedwith is
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As shown in Fig. 1A, 1 mg/ml of EZ-linked sulfo-NHS-LC-biotin
allowed the highest levels of biotinylation when testing a range of
concentrations between 0.025 and 2mg/ml. Under these conditions, re-
activity of either MRK16 or UIC2 with cell surface P-gp was unchanged
in biotinylated cells compared with control cells (Fig. 1B and C).
Biotinylation did not affect P-gp function as an efflux pump in either
calcein-AM or Rh123 accumulation assays because intracellular
calcein-AM or Rh123 levels in biotinylated cells were the same as
those in control cells and the inhibition of efflux function by 5 μM
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Fig. 5. Decrease in level of cell surface biotinylated P-gp was analyzed by precipitation
with streptavidin. (A) HCT-15 cells were incubated with PBS (control cells) or Sulfo-
NHS-LC-biotin for 30 min at 4 °C and then cultured for 0–48 h in normal growth condi-
tions. The cells were trypsinized at indicated times and proteins were precipitated from
the lysate of 1 million cells for each condition using streptavidin agarose as described in
Section 2. P-gp was detected by Western blotting using the P-gp-specific antibody C219.
The total P-gp level in the lysates remained constant over 0–48 h, as detected by C219 an-
tibodywithout precipitationwith streptavidin (the blot in lower panel). (B) The cellswere
grown in the presence of 1nM BafA1 + 1 μM MG132 and then the biotinylated P-gp was
precipitated using streptavidin agarose. The level of biotinylated P-gp (right panel) was
compared to the total P-gp in the cell lysates at various time intervals (left panel). The
blots from a representative experiment are shown. Similar results were obtained in two
additional experiments. (C) The level of total and biotinylated cell-surface P-gp was
plotted at indicated times ranging from 0 to 48 h as mean ± SD from three independent
experiments. The experimental conditions are given in the figure. IB, immunoblot and
IP, precipitation with streptavidin-agarose beads.
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cyclosporine A (CysA) was also not affected by biotinylation of cells
(Fig. 1D and E).

We then checked the half-life of P-gp at the cell surface by
measuring the clearance of biotinylated P-gp from the cell surface
under normal culture conditions. In control cells, total P-gp expression
levels remained constant between 0 and 48 h, as validated using
two human P-gp-specific monoclonal antibodies MRK16 and UIC2
(Fig. 2A and C). Comparatively, biotinylated P-gp levels diminished in
a time-dependent manner after biotinylation (Fig. 2B and C). The half-
lives of biotinylated P-gp at the cell surface were determined as
26.6 ± 1.8 h in MRK16-antibody reaction experiments and 26.7 ±
1.1 h in UIC2-antibody reaction experiments (Fig. 2C). These results
demonstrate that the half-life of P-gp at the cell surface is about 25 to
27 h with no difference in detection of biotinylated P-gp using either
the MRK16 or UIC2 antibodies.

3.2. Treatment with lysosomal inhibitor bafilomycin A1 prolongs the life of
cell surface P-gp

In this study, we characterized the degradation pathway for cell
surface P-gp. BafA1, a macrolide antibiotic, inhibits vesicular fusion
with the lysosome, the last step in the lysosomal degradation pathway.
BafA1 is a highly potent and selective vacuolar type H+-ATPase (V-
ATPase) inhibitor that inhibits the acidification of lysosomes, thus
blocking the protein degradation activity [42,43]. In addition, MG132,
a peptide aldehyde (carbobenzoxy-leu-leu-leucinal), is a potent cell
permeable inhibitor of the proteasomal degradation pathway,
preventing the degradation of ubiquitinated proteins, showing no effect
on cellular ATPases [44]. These two inhibitors of the critical checkpoints
in protein degradation pathways serve as important tools to identify the
degradative fate of P-gp. Hence, we examined the effect of BafA1 and/or
MG132 on the removal of biotinylated P-gp from the cell surface
(Fig. 3A). We also evaluated the effect of BafA1 and MG132 on cell
death by MTT assays. BafA1 at 1 nM and MG132 at 1 μM resulted in
N60% cell survival over a treatment period spanning 48 h (Fig. 3B),
hence we selected the concentrations of 1 nM for BafA1 and 1 μM for
MG132 for use in subsequent studies. A 48 h treatment of biotinylated
HCT-15 cells yielded approximately 40% P-gp expression on the cell sur-
face compared to untreated cells, with only 10% biotinylated P-gp ex-
pression obtained in cells treated without BafA1 (Fig. 3A, B and C). The
half-life of P-gp in BafA-treated biotinylated cells was 36.1 ± 0.5 h,
whereas the half-life in cells treated with MG132 was 26.2 ± 2.3 h,
which was almost the same as that in control cells.

We also tested ammonium chloride, another inhibitor that blocks
acidification of lysosomes [45], on the rate of internalization of cell
surface P-gp. The half-life of biotinylated P-gp could be determined as
26 h in control cells. Ammonium chloride (1mM) treatment prolonged
it to 34.9 h, attaining similar numbers as BafA1 (Table 1). These results
suggest the fate of internalized P-gp is to end up in the acidic compart-
ments (most likely lysosomal) for degradation, since BafA1 or ammoni-
um chloride prolonged the cell surface retention of P-gp.

3.3. The combination of lysosomal inhibitor and proteasomal inhibitors
further prolongs the half-life of P-gp

It is clear from the data in Fig. 3 that treatment with MG132,
which inhibits the 26S proteasomal pathway, has no effect on the
half-life of P-gp. We also checked the effect of other proteasomal in-
hibitors such as lactacystin, MG115 and PSI on the internalization of
cell surface P-gp. A cell survival MTT assay revealed that 5 μM
lactacystin, 0.5 μM MG115 and 100 nM PSI in the presence of 1 nM
BafA1 allowed over 60% cell growth under these conditions (data
not shown). However, interestingly cells that were treated with a
combination of BafA1 (1 nM) andMG132 (1 μM) showed an increase
in the half-life of cell surface biotinylated P-gp from 36.1 ± 0.5 h
to 39 ± 0.1 h (Fig. 3C). Thus, a combination of lysosomal and
proteasomal inhibitors significantly increased the cell surface reten-
tion of P-gp (Fig. 3A, C and Table 1).

Similar to MG132, other proteasome inhibitors also together
with BafA1 prolonged the half-life of biotinylated P-gp and the values
were 50 ± 2.9 h in the presence of lactacystin (5 μM), 38 ± 1.9 h, for
MG115 (1 μM) and 45 ± 2.7 h with PSI (100 nM) together with 1 nM
BafA1 (Table 1). In contrast, lactacystin, MG115 or PSI alone did not
affect the rate of removal of P-gp from the cell surface compared with
no drug treatment. Total P-gp levels after 48 h culture were virtually
unchanged in all of the samples (Fig. 4A and B). The treatment with
BafA1 (lysosomal inhibitor) or MG132 (proteasomal inhibitor) did not
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affect the function of P-gp (data not shown). These data suggest that
there still exists an unexplored mechanism by which the proteins that
end up in the lysosome and are not degraded are then directed to the
proteasome for degradation.
3.4. Measuring the level of biotinylated P-gp by precipitating with
streptavidin followed by Western blotting with P-gp-specific antibody

Precipitation with streptavidin followed byWestern blot analysis
was carried out on biotinylated HCT-15 cells. The biotinylated cell ly-
sates were incubated with streptavidin agarose, and the precipitated
P-gp was then detected by Western blot using an anti-P-gp antibody
C219 (Fig. 5A). The expression of biotinylated P-gp decreased over a
period of 48 h in a time-dependent manner after biotinylation under
normal culture conditions, although total P-gp levels were constant
up to 48 h in control and biotinylated cells. A comparison of the
expression levels at each time point with those at 0 h revealed that
the half-life of biotinylated P-gp was 27.6 ± 1.8 h and that this
numberwas consistent with the numbers obtained from FACS exper-
iments (Fig. 2C). A similar experiment was performed with BafA1-
treated cells, as shown in Fig. 5B, biotinylated P-gp could be clearly
detected until 48 h in cells treated with BafA1, although it could
not be detected at 48 h in cells without treatment with BafA1. The
half-life of biotinylated P-gp in BafA1-treated cells was 35.7 ±
0.7 h. These results were consistent with the numbers obtained
from FACS experiments (Fig. 2C).
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Fig. 6. Localization of biotinylated P-gp in permeabilized and non- permeabilized HCT-15 cells
abilized HCT-15 cells. (B) Staining of cell membrane using cell surface marker E-cadherin-ale
cadherin-alexa647 antibody in permeabilized cells as described in Section 2. (D) The cells we
and lysosomal marker LAMP1-alexa647 (red). The third panel shows an overlay of both stains w
were stained with DAPI present in VECTASHIELD® in all samples.
3.5. Conjugation of Alexa Fluor® 488 label with UIC2 antibody does not af-
fect detection of P-gp at the cell surface

TheUIC2 antibodywas conjugatedwith Alexa Fluor® 488 for single-
step detection of cell surface P-gp in non-permeabilized and for detec-
tion of intracellular P-gp in permeabilized HCT-15 cells. Fig. 6A shows
the membrane localization of P-gp in non-permeabilized cells using
UIC2-alexa488 antibody (green fluorescence). To ensure that the cell
membrane was not completely destroyed upon permeabilization, the
non-permeabilized HCT-15 cells were stained with E-cadherin Alexa
Fluor® 647 (red) (Fig. 6B). Fig. 6C shows the labeling of E-cadherin in
permeabilized plasma membrane. The nuclei were stained blue with
DAPI present in the VECTASHIELD® in all samples.

3.6. P-gp co-localizes with LAMP1 lysosomal marker in permeabilized cells

Intracellular localization of P-gp was checked by double staining of
HCT-15 cells with lysosomalmarker (LAMP1) antibody and P-gp specif-
ic UIC2-Alexa Fluor-488 antibody. The cells were permeabilized with
methanol and stained with LAMP1 antibody followed by Alexa Fluor®
647-labeled secondary antibody (red). These cells were then stained
with UIC2-alexa 488 antibody (green). Fig. 6D shows the double
staining of HCT-15 cells. The left panel shows P-gp labeling (green),
the middle shows lysosomal staining (red) and the right panel shows
a merge of these two. The yellow color in the merged image represents
co-localization of P-gp (green) and LAMP1 (red) staining. Under these
conditions, P-gp was not detected in either early endosomes or in the
1P M erge

erin C E-cadherin

. (A) Detection of cell surface P-gp using UIC2-alexa488 antibody (green) in non-perme-
xa647 antibody (red) in non-permeabilized cells. (C) Staining of cell membrane using E-
re permeabilized and double stained with P-gp specific antibody UIC2-alexa488 (green)
ith these two antibodies. Yellow color indicates staining with both antibodies. The nuclei
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ER as its co-localization with EEA1 (early endosome marker) and BiP/
GRP78 (ER marker) in permeabilized cells was not observed (data not
shown).

This is the first report to determine the cellular fate of cell surface P-
gp at steady state. The half-life of P-gp at the plasmamembrane is quite
long (25–27 h) compared to that of other proteins. After internalization,
the P-gp protein is degraded in lysosomes. However, if the lysosomal
degradation pathway is blocked, then the transporter is degraded by
the proteasomal pathway, as the half-life of P-gp is significantly extend-
ed in cells treated with both lysosomal and proteasomal inhibitors
(Table 1). These findings summarized in Fig. 7 schematic (see legend
to this figure for details) suggest that it should be possible to screen
small molecule and natural compound libraries to identify compounds
that would significantly accelerate the internalization followed by
degradation of cell surface P-gp, providing a way to sensitize cancer
cells to anticancer drugs and improve the chemotherapeutic outcome.
Recently Peng et al. identified compounds that could interact in two
different modalities with ABCG2 (another anticancer drug efflux ABC
transporter linked to the development of MDR), by inhibiting its efflux
function and also accelerating its lysosomal degradation upon treat-
ment, thereby reducing MDR in cancer cells [46]. It should also be pos-
sible to design therapeutics and to screen small molecule libraries that
would have a similar effect on P-gp, drugs that would accelerate the
degradation of this resilient transporter that renders cells impervious
to chemotherapeutic agents.
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