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An algorithm is developed for finding the global minimum of a continuously 
differentiable function on a compact interval in RI . The function is assumed to 
be the sum of a convex and a concave function, each of which belongs to 
Cr[a, b]. Any one-dimensional function with a bounded second derivative can be 
so written and, therefore, such functions generally have many local minima. 
The algorithm utilizes the structure of the objective to produce an e-optimal 
solution by a sequence of simple one-dimensional convex programs. 

1. INTRODUCTION 

We consider the problem, denoted by (P), 

minf(X) 

x E [a, 4 

where f = h + g, h and g are convex and concave respectively, and both h and g 
are differentiable on an open interval containing [u, b]. The latter assumption, 
together with the fact that h and -g are convex, implies that h’ and g’ are both 
continuous. Note that any functivn f with a bounded second derivative is of this 
class. That is, let M > 0 be chosen so that 

and rewrite f as 

2M 3 sup(f “(x) I 3 E [a, bl> 

j(x) = Mx2 + (f(x) - Mx2). 

Therefore, such functions may have many local minima and, as a result, the 
application of methods which require the function to be unimodal will lead, 
at best, to a local minimum and not necessarily to a global minimum. 
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74-02629. 

310 
0022-247X/78/0622-0310$02.00/0 
Copyright 0 1978 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81932264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ALGORITHM FOR A CLASS OF ONE-DIMENSIONAL FUNCTIONS 311 

This paper develops an algorithm for finding an <-optimal solution in a 
finite number of steps. That is, if x** is a global minimizer, we seek an x* so 
that f(x**) >f(x*) - E. The algorithm utilizes the structure off and locates 
an c-optimal solution by a sequence of one-dimensional convex programs. 
Therefore, efficient unimodal methods [I, 21 can be incorporated as subroutines. 
The algorithm does make explicit use of h’ and g’. 

Recently, Shubert [3] has developed a sequential search method for opti- 
mizing a one-dimensional function on a compact interval. The only requirement 
is that the function be globally Lipschitzian and that the Lipschitz constant be 
known. He demonstrates that his sampling rule is minimax with respect to the 
class of functions with the same Lipschitz constant. 

Also, Brent [4] has developed a method for optimizing a one-dimensional 
function, on a compact interval, with a bounded second derivative, His procedure 
does not require the computation of first derivatives but does require knowledge 
of a small upper bound for the second derivative. 

The purpose of this paper is to demonstrate how rather simple gradient 
methods can also be used to find a global minimum for one-dimensional function 
on a compact interval. 

The algorithm is coded in Fortran IV for use on the 360/91 and the last 
section of the paper presents some examples. 

Section 2 contains the results which motivate (in particular, Theorems 3 and 4) 
the algorithm of Section 3. Figure 1 of Section 3 is useful for the geometric 
interpretation of the results of Section 2. 

2. MAIN RESULTS 

THEOREM 1. Let ui E [a, b) and let ZQ+~ solve the convex program L,(u,) 

min h(x) + g’(q) x 

x E [ui , 4 
(44UiN 

Then ZQ+~ solves 
minf(x) 

x E [U< ) up+J 

Proof. By optimality of uifl for L,(uJ and by concavity of g we have 

Wi) >, &i+d + g’(u,> @i+l - 4 3 Wi+J + &,+J - &4 

Therefore, f(q) 3 f (ui+l). Now, assume there is a UE (ui , uifl) so that 
f(a) <f (ui+J. By concavity of g we have 

&!‘(Ui) (c - %+I) < g’(4 (@ - %+I), 

dUi+*) < g@) + g’@> (%+I - 4, 
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and, by assumption, 

Adding these three inequalities we get 

which contradicts the optimality of ui+r for L&u<). 
Note that Theorem 1 replaces f with a convex approximation 

f&G 4 = 44 + &i) + g’@,) (x - 4) 

and, of course, fr(x; ui) 3 f(x) on [a, 61 and fr’(~; ui) 3 f’(x) on [ui ,6] because 
of concavity of g. 

We now present a convergence result on the iterative solution of problems 

WiN* 

THEOREM 2. Let u1 E [a, b) be such that f’(q) < 0. De$ne, for i = 1, 2 ,..., 

%+I = (min x [ x E [ui , b], h(x) +g’(u,) x < ,~$, h(Y) + g’(4) r>* 

Then ui --f u where f’(u) < 0 for all u E [ul , U) and f ‘(c) = 0 ;f ui < b all i. 
In addition, c solves 

minf(x) 

x E [Ul ( a]. 

Proof. First observe that if f ‘(uJ > 0 then uitl = ui is an optimal solution 
for L,(q). Also, if f ‘(uJ < 0 then any optimal solution, ui+r , for L,(uJ is such 
that ui < ui+r . These facts follow by convexity and the fact that f ‘(q) is the 
value of the derivative, at ui , of the objective function of Lg(ur). Also note that 
iff ‘(q) < 0 then f ‘(u) < 0 for all u E [ui , Ui+1]. This follows since the optimality 
of uitl for L,(q) together with the concavity of g and convexity of h imply 

0 2 h’(u,+l) + g’(u<) 3 h’(ui+l) + g’(u) >, h’(u) + g’(u) z f ‘(u). 

Now, suppose at some iteration, i, f ‘(ui) = 0 and i is the first such iteration. 
Then ui+r = ui and set G = ui . Also, suppose at some iteration, i, f ‘(ui) < 0 
and uitl = b. Then set ii = b and by the above we have f’(n), < 0. Therefore, 
assume f’(q) < 0 and ui+i < b for all i. By boundedness and monotonicity 
both sequences {ui} and {ui+r} converge to the same limit, C, and by continuity 
of both h’ and g’ we have f ‘(ti) = 0. Iterative use of Theorem 1 implies that c 
minimizes f on the interval [ur , c]. 
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Now let yj E [a, 6) and define the function, on an open interval containing 

P, 11, 

4v = NJ+ + w - YiN + ~(g(b) - gw + i?(Yj)* 

Then aj is convex on [0, 11, ~~(0) =f(yj), a$( 1) = f(b), and u,(A) < f(yj +- 
A(b - yj)) for X E [0, 11. That is, by setting x = yj + X(b - yi), we have that 

uj (z) = h(x) + g(bi I$") Cx - Yj) + g(Yj) G fCx) 

for s E [yj , b]. We then have the following. 

THEOREM 3. Let yi E [a, 6) and let UB be some upper bound for problem (P) 
such that .f(y,i) > UB. Consider the convex program, S(?/j), 

subject to 

Then 

min X 

uj(A) < UB 
s(Yj) 

A>0 

(i) If hi < 1 is optimal for S(y,), the interva2 [yj , yj + hj(b - yj)] 
contains no points x such that f (x) < UB. 

(ii) If Xj > 1 is optimal for S( yj) or if S(y,) is infeasible, then the interval 
[yj , b] contains no points x such that f(x) < UB. 

Proof. 

(i) sate that if f ( yj) = UB then hi = 0 is optimal. If f (yi) > UB then 
X = 0 is infeasible for S(y,). Now, assume Xj > 0. Then X E [0, Xi) is infeasible 
for S(y,) and 

uj(A) < f (yj + h(b - yj)) 

for all A E [0, hj]. Therefore, f(yj + A(b - yj)) 2: UB for all h E [0, Aj]. 

(ii) If Xj > 1 or if S(y,) is infeasible, then for all X E [0, 11 we have 

UB < uj(h) <f (yj f X(b - yj)). 

Xote that if ~~‘(0) ), 0 and f (yj) > UB, then S(y,) has no feasible solution 
in [0, 11. 

As in Theorem 2, we can iteratively solve problems S(yj). That is, if Xj < I 
is the optimal solution to S(y,) and yj+r =-: yi + Xj(b - v,~) is such that 
f ( yjL1) ) UB then solve S(y,?+r). 

THEOREM 4. Let y1 E [a, 6) be such that .f (yl) > UB. Assume for all j that 
the optimal solution for S( yj) is Aj < 1. Then, the sequence (yj} converges to a point 
p such that f(y) r- UB. In addition, for all .Y E [yl , -7) we have f(x) > UB. 
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Proof. Suppose at iteration j we have f (yj+l) = UB and j is the first such 
iteration; therefore, because of Theorem 2, f(yJ > UB for all v = l,..., j. 
Then hj+i = 0 and we GUI set y = yj+r . Therefore, the only case left to consider 
is f (y,) > UB for all j. Then Aj E (0, 1) f or all j and hence, for all j, yj < yj+l < b 
and /~(y,+~) + /\j(g(b) - g(yJ) + g(yJ = UB. By monotonicity and bound- 
edness, both sequences {y9} and {Y~+~} converge to the same limit, y, and there- 
fore h,(g(b) - g(yj)) -+ 0. This latter claim is true since if g(yi) does not 
converge to g(b), then y < b and therefore yi+i = yj + Ai(b - yj), for all j, 
implies Xi -+ 0. Hence, 

UB = ljz(h(Yj+J + Mdb> - g(Yj)) + g(Yj)) = f (is)* 

Iterative use of Theorem 3 implies f (x) > UB for all x E [yl , y]. 
Note that Theorems 3 and 4 imply that a sequence of S(y,) problems can be 

used to move from a point xk = yi , f (xk) > UB, , to a point, xkfl , (if one 
exists) such that f (xk+r) = UB, and there are no better points in the interval 
bk 9 %+1 1. In fact, these theorems form the basis of the algorithm. 

3. THE ALGORITHM 

In this section we present the major steps of an algorithm which is suggested 
by Theorems 1-4. We defer discussion of the details to a later section. See Fig. 1 
for the geometric idea of the procedure. 

FIG. 1. Geometric interpretation of the algorithm. 

Let UB be some initial upper bound for (P). For instance, UB = f (a), 
UB = min{f (a), f (b)}, or UB could be the best value of the objective f found 
by, say, some coarse grid or random search method. 
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Step 0. Set k = 0, xI: = a, UB, = UB; go to Step 1. 

Step 1. 

If f(xk) > UB, , find out whether or not there exists x,,,r E (xk , b] such 
that f(xk+r) = UB, . 

(Recall, Theorems 3 and 4 imply that such a point, if it exists, can be found by a 
sequence of S(y,) problems, where ~1~ = xk) 

If such an xk+r exists, set UB,,, = UB, , k = k + I, and go to Step 2. 
If such an xk+r does not exist, then any x* E {x E [a, b] 1 f(x) < UB,} is optimal. 
If f(xd < UBI, , set UB, = f (x,J and go to Step 2. 

Step 2. 

If f’(x& < 0, fi n d out whether or not there exists xTpil E (xk , b] such that 
f’(xk+& = 0 and f (xk+J < UB, . 

(Recall, Theorems 1 and 2 imply that such a point, if it exists, can be found 
by a sequence of L,(uJ problems, where ur = xk) 

If such an xk+r exists, set UB,+l =f(xle+r), k = k + 1, and go to Step 3. 
If such an xk+r does not exist, then x* = b is optimal. If f ‘(xk) 2 0, go to 

Step 3. 

Step 3. Increment xk slightly to a point xk+r > xk , set UB,,, = 
min{ UB, , f (x&}, k = k + 1, and go to Step 1. 

In the next section we discuss appropriate modifications and numerical 
aspects of the basic algorithm. The appendix contains a more detailed, and 
typical, algorithm needed for machine implementation. 

4. DISCUSSION AND MODIFICATIONS OF THE ALGORITHM 

Note that Steps 1 and 2 of the algorithm involve possibly infinite sequences 
of simple convex problems each of which may also involve an infinite number of 
steps. Therefore, it is clear that tolerance parameters must be introduced so the 
procedure cannot cycle within a major step. 

Problem S(yi) is easily solved by, say, Newton’s procedure beginning at 
h = 0, q(0) > UB, . Therefore, if there is a root for crj(X) = UB, then, 
within a finite number of steps, a point Aj must be reached such that Aj is 
E,-optimal. That is, we say hi is e,-optimal if 
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Therefore, if we choose to stop solving S(yJ problems when we reach a pointy 
such that 

where A > l l , then we will solve at most a finite number of S(y,) problems at 
Step 1. This is true since u,(hJ < f (yj+r) and if f (yj+J < UB, + e1 , then 
Step 1 is exited since A > or . Therefore, if Xi E (0, 1) is <,-optimal for S(y,) 

and f (yj+J > u& + cl , all j, then the proof of Theorem 4 shows f (yj) --+ 
UB, + cr and, therefore, within a finite number of steps, a point y must be 
reached such that UB, <f (7) < UB, + A. 

Similarly, we now show that, by the introduction of appropriate tolerance 
parameters, we will solve at most a finite number of L,(u$) problems at Step 2 
of the algorithm. We say ui+r is t-,-optimal for L,(ui) if uifl is optimal or 

Therefore, if we choose to stop solving L,(ui) problems when we reach a point 
ii such that f ‘(a) 3 -es , c3 > c2, then we will solve at most a finite number of 
L,(ui) problems at Step 2. To see this, if for all i we have f’(q) < ---Ed and 

fq4+1) + g’(d 3 -E2 7 then, as in the proof of Theorem 2, we have that 
f ‘(ui) -+ -e2 and therefore, within a finite number of steps, a point zi must be 
reached such that f’(p) > -~a (recall, e3 > l 2). Each L,,(uf) problem is easily 
solved by, say, some unimodal search method or, in some cases, by using 
Newton’s procedure for finding a root of h’(u) = -g’(uJ. However, care must 
be taken in the latter case since h’ is not generally convex. 

Another aspect of Step 1 requires some discussion. Even if f (xk) > UB, , it 
may be the case that the solution of S(y,), yr = xk , leads to a point y2 which is 
not much to the right of yr . For instance, suppose S(yJ is solved by Newton’s 
method starting at h = 0. The first step of this procedure moves us from h = 0 to 

x = uBk -fh) 
%‘(O> ’ 

where ~~‘(0) = (b - yr) h’(y,) + g(b) - g(y,). Therefore, we see that if f(yJ 
is very close (and larger) than UB, or if ~~‘(0) is relatively large in absolute 
value, then this step may be quite small and, therefore, the iterative procedure 
suggested by Theorems 3 and 4 may converge slowly. When f ‘(x& < 0 and the 
step is too small, it is desirable to go to Step 2 of the basic algorithm. This is the 
case for the algorithm contained in the appendix. When f ‘(x,J > 0 and the step 
is too small, the following results are useful. 

Basically, the idea is to move “uphill” to a point er such that f(w) - UB, 
is relatively large and such that there exists no point x E [yr , V] such that 
f(x) <f(n). Of course, the idea is to obtain a relatively larger step to the right 
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(from yi) by this procedure. Suppose we approximate, at z‘i ~-= ‘rk , the functionf 
by the concave function 

f*(x; VI) = g(x) + h(v,) f h’(q) (x -- q). 

Then fs(x; z+) <f(x) and therefore if we can find the largest x such that 

f&i 4 >ff(v,), h (‘f t en i vs is such an X) there does not exist any point s E [vi , v2] 
such that f(,~) < f(zJ and, of course, f(vJ > f(vi). For convenience, let 

Rj(s) _ fi(X; Vj) - f(Vj). 

M’e restate the above as a theorem. 

THEOREM 5. Let vj E [u, 6) and let z)~+~ solve the concave program 

subject to 
max .r 

R,(x) 3 0 

X E [Vj , b] 

tLhtvd) 

where Rj(x) = g(x) - g(vJ + h’(q) (x - vj). Then the interval [vj , vj+J 
contains no points x such that f(x) <f(q). 

Before continuing observe that if f’(vj) > 0 then the optimal solution, 

vuj+1, for L,(vj) is such that vj+i > vj . This follows since R,(vJ = 0, 
Rj’(vj) -f’(vj), and therefore a slight increase to the right of vj will maintain 
feasibility of the constraints for L,(vj). 

We also have the following result on iterative solutions of problems L,(vj). 

THEOREM 6. Let v1 E [a, b) be such that f’(q) > 0. Define, for j = 1, 2 ,,.., 

vj+1 = max{x 1 x E [vj , b], R,(x) > O}. 

Then vj -+ V; and if v < b then f ‘(fl) < 0. In addition, there does not exist any 
.r E [vl , V] so that f(x) <f(q). 

Proof. If at some iteration, j, vui = b then vjtl == b and then set v = b. Also, 
if for some j we have 0 > f’(vi) = Rj’(vj), t h en concavity of Ri together with 
Rj(vj) = 0 imply vj+i = vi and therefore we can set Z‘ = ‘I:~ . Therefore, assume 
for all j that f’(q) > 0 and vj < b. Then concavity of Rj together with 
R,(vJ = R,(vi+J = 0 and Rj’(vi) = f ‘(vi) imply 0 3 R,‘(vj+i) = g’(v,+r) + 
h’(vj) for all j. By boundedness and monotonicity, both sequences {vj} and {vi+i} 
converge to the same limit, ti, and by continuity of both g’ and h’ we have that 
f’(V) < 0. Iterative use of Theorem 5 implies f(v) > f (vJ for all v E [vi , ~1. 

Theorems 5 and 6 imply that we can, by iterative use of problems L,(v!), 
possibly “escape” from a point yi , such that f ‘( yi) > 0, f (yi) > UB, , and 
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the optimal solution, ya , for S(y,) is not much to the right ofy, . As noted above, 
such may occur if 

uBk -f&l) 

Al’ 

is small. Note that there is no need to necessarily solve many .&(wJ problems. 
For instance, we may stop at some w$ , and go to Step 1, if 

u&z - f (=‘i) 
Ui’(O) 

is sufficiently large. This is the procedure adopted in the algorithm of the 
appendix. In fact, we agree to cease solving the L,(r+) problems (see Step 5b 
of appendix algorithm) if for some zli the step-size above is sufficiently large 
or if for some r+ the step-size is small and f ‘(vi) < c3 . 

As for the L,(uJ and S(y,) problems, we need to show that we will solve at 
most a finite number of L,(wJ problems. In particular, Lh(u,.) is also easily solved 
by Newton’s method starting at v = b, R,(b) < 0 (note that if R,(b) >, 0, then 
an optimizer for &(v,.) is at least equal to b). Therefore, if R,(b) < 0 and 
R,.‘(wr) = f ‘(et,) > 0 there is a root for R,(o) = 0 in (nr, b). Then, within a 
finite number of steps, we must reach a point, nuT+r, such that -Q < &(z~~+i) < 
0 = R,.(o,.). Hence, if f ‘(z)r) > 0 and ZI, < b, all r, the concavity of R, implies 
0 3 R,‘(v,+J = g’(co,+i) + h’(~,.), all r, and as in the proof of Theorem 6 we 
have that within a finite number of steps a point, 5, must be reached such that 
f’(c) G cj * 

Before continuing, we observe that the solutions of problems L,(uJ and S(yJ 
are simplified when we use the representationJ(x) = Mx2 + (f(x) - Mx2). In 
this case, since L,(uJ has a quadratic objective, we have that 

Uifl = min{b, ui - f ‘(uJ2M). 

Similarly, the problem of finding the smallest root (if real roots exist) 
of uj(X) = uBk reduces to finding the roots of a quadratic equation. 

Therefore, when this representation is used, we may set c1 = l 2 = 0. Of 
course, then, when this representation is used the above step-size test becomes 
“ls Yj+l - yi sufficiently large ?” where yj+i is the smallest root (if real roots 
exist) of 

crj(z) = UB,. 

5. PERTURBATION AND E-OPTIMALITY 

In the last section we discussed the introduction of tolerance parameters into 
the various subproblems. Therefore, in general, a sequence of L,(uJ problems 
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will be stopped at a point ti such that 0 >f’(~) 3 -~a . Therefore, in order to 
now initiate a sequence of S(yJ problems (or, possibly, a sequence of L,(Vj) 
problems), or possibly another sequence of L,(uJ problems, a perturbation step 
of size, say, 6 is required. In fact, the procedure in the appendix perturbs when 
i f’(.q.); sg cg . Therefore, some examination of the effect of such perturbations 
is in order. 

Let .f” exist and let M2 be an upper bound for f” on [a, b]. Let .xk E [a, b) 
and let .~~-r = xk + 8. Now, for any x E [x~ , x~+J we have f(x) - f(.~.) :~ 
f’(4) (X - .Q), where c is some point between xk and x,:~ r . But 

/ f’(E) - f’(.Q < l%12S 

and therefore, 

f(x) - f(+) >, (f’(xd - M&) (.x - x.1). 

Now, iff’(xk) 3 --~a, we have 

f(x) -f&t) >, -(c3 + M$) (x - xg) 2 -(E:: + M,S) 6. 

Therefore, if we want a perturbation to have the property that f(x) - f(xp) 3 
-E, it suffices to choose a 6, given es , such that 

(c3 + M$) 6 < c. 

This means that if we choose 

s= -c2 + (es2 f ~M,E)~” 

2% 

then, given es , a perturbation of size 6 from xlz to .rkfl -= s,; + 6 will have the 
property that f(x) - f(.Q > --E for all w E [xb , x~+J and, since f(xJ > UB, , 
we also have f(x) >, UB, - E. 

Therefore, if for a particular problem M2 is known or can easily be found, 
then there is no problem in choosing a perturbation parameter 6 so as to guarantee 
f(x) - ,f(s,) :s -c: for x E [x1;, xk + S] when f’(+) 3 -es . On the other 
hand, if M, is unknown then we must generally assume that the perturbation 
parameter is small enough so that perturbation cannot cause us to overlook 
minima whose objective values are significantly less than the current bound 
UB, . 

We now discuss e-optimality in the context of the algorithm of the appendix. 
Note that the algorithm is not “complete” in that the procedures for solving 
the L,(u,), S(y,), and &(z+.) subproblems are not specified. Note also that the 
algorithm is the basic algorithm of Section 3 with (i) the step-size test for the 
S(yj) problems (Step 2), (ii) the “hill climbing” routine if the step-size test 
fails (Step 5) and (iii) the appropriate tolerance parameters as discussed in 
Section 4. Step 6 is the perturbation step. 
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Let a mode for f on [a, 61 be defined as follows. A subinterval [x, y] of [a, ZJ] 
is said to be a mode if f '(z) = 0 on [x, y]. 

Inspection of the algorithm (of the appendix) shows that Step 7 must be 
reached if f has a finite number of modes on [a, b]. In particular, Step 6 (pertur- 
bation) guarantees that nonsingleton modes (i.e., x < y) can cause no problem. 

It only remains to discuss the accuracy of x* at Step 7 of the algorithm. Step 7, 
or termination, is entered through Step 2 or Step 4 or Step 5 or Step 6. Step 7 
can be entered via Step 2 only if for some S(yj) problem (yr = x.~) we have 
that hi 3 1 or S(y,) is infeasible. In this case, the accuracy of x* is associated 
only with the accuracy of UB, . Step 7 can be entered via Step 4 only if b is 
optimal for some L,(uJ problem (pi = xJ. If f (b) is considerably smaller than 
UB, , then x* = b is optimal. If f(b) is considerably larger than UB, , then 
accuracy of x* is associated only with the accuracy of UB, . The same is true if 
f (6) is equal (or nearly equal) to UB, . Step 7 can be entered via Step 5 only if b 
is optimal for some Lh(zlr) problem, where cut = xk . In this case the accuracy of 
x* is again only associated with the accuracy of UB, . Therefore, if the perturba- 
tion parameter 6 is appropriately chosen (as discussed above) then the algorithm 
finds an c-optimal solution. That is, if x** is a global minimizer, the algorithm 
produces an x* such that f (x**) 2 f (x*) - E. 

6. NUMERICAL EXAMPLES 

The algorithm was coded in Fortran IV for use on the IBM 360/91. We now 
state the results of some problems. 

Problem 1. Let a = 0, b = 7.5, h(x) = x4 + 41x2, g(x) = 10(x - 8)-5 - 
12x3 - 18(x + 4). The function is sketched in Fig. 2. 

For this problem we chose d = 5, 6, = 0.005, 6 = 0.05, e1 = 0.0005, 
l 2 = 0.0005, l s = 0.05, cp = 0.01, UB = f(u). 

The algorithm starts from xi = 0 and after four L, problems stops at 
xa = 0.2449515. The algorithm then perturbs to xs = 0.2949515 and after 
solving three L, problems stops at xq = 1.8360970. The algorithm then initiates, 
at this latter point, a sequence of 53 S(y$) problems and then stops at xg = 
7.482527. The algorithm then initiates, at xg , one L, problem and concludes 
that xs = 7.5 is optimal with f (x,J = -119.1875. The execution time for this 
problem is 0.31 seconds on the 360/91. Note that the algorithm bypassed the 
second local minimum when moving from x, to xg . Also, each of the subproblems 
L,(uJ, S(yJ, and Lh(z+) was solved by Newton’s method. 

Problem 2. We altered the above problem by changing b from 7.5 to 7.2. 
Thus the optimum is at the first local minimum (see Fig. 2). Also, we chose 
the parameter values d = 5, 6, = 0.005, 6 = 0.005, or = 0.0005, E., = 0.0005, 
E3 -= 0.005, Ed = 0.01, UB = f (u). The sequence of steps is as follows. The 
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FIG. 2. Sketch off and sequence of points xk for minimizing f on [0, 7.51. 

algorithm initiates, at x 1 = 0, five L, problems and stops at X, := 0.2451384. The 
algorithm then perturbs to xs = 0.2501384 and initiates, at x3 , four Lh problems 
and stops at sp = 1.77198 1. The algorithm then initiates, at X, , 36 S( ~1~) problems 
(starting from yr = x* to ys8 = 6.084911). The algorithm then concludes that 
S( ys8) is infeasible and, therefore, x* = x2 is e-optimal withf(x,) = -74.12217. 
Note that we do not actually know e since we have not computed M2 for this 
problem. However, since we see (graphically) that f is convex on [,x2 , x3], we 
have, for .v E [,Q , x3], 

f(x) - f(X2) > f’(X2) (x - x*) 2; -SE3 . 

That is, .Q is &,-optimal where 8~s = 0.000025. The execution time is 0.25 sec. 

Problem 3. Same as Problem 1 and the problem is run in the form 

J@> = W2/2) x2 + w> - ww) x2) with M, = 106 (the upper bound for 
f” was found by a fine grid search for the purpose of this example; of course, 
such information cannot be considered as generally available). Therefore, we 
can set q r= ~a == 0. Also, to help see the effect of a good initial bound, we chose 
UB -f(b), the optimal objective value (the remaining parameters are those of 
Problem 1). 
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The algorithm starts at x1 = 0 with 22 S(yJ problems, yi = x1, and stops 
at yss = 7.499999. The algorithm then initiates, at U, = yza , one L, problem 
and concludes that x* = b is optimal. The execution time is 0.05 sec. 

7. APPENDIX 

This section contains a more detailed version of the algorithm or procedure 
of Section 3. The algorithm is not necessarily in the most “economical” form 
for there are various modifications of the basic algorithm that one can think of. 
The algorithm is essentially that of Section 3 with step-size test (for S(y,)) 
and the “hill climbing” routine included. Also, note that if the representation 
f(x) = Mx2 + (f(x) - MS) is o t b e used then, as mentioned in Section 4, we 
can set e1 = l s = 0. Also, in this case, Step 2 would be slightly modified as 
follows. We would actually solve S(y,) and if Y~+~ < b is optimal we would 
then ask if yj+i - yj > 6, . If not, we would go to Step 3. If yes, we would solve 
S(yj+i) iff(y& > UB, + A; otherwise, we would go to Step 3. 

As in Section 3, UB is some initial upper bound for problem (P). 

Step 0. Select e > 0, q > 0, us > 0, l a > l a , c4 > 0, 6, > 0, A > cl , 
6 > 0. Set k = 1, UB,-, = UB, xk = a, and go to Step 1. 

Step 1. Compute f(~#) and set UB, = min{ UB,-, , f(xJ}. 
If xlc = b, go to Step 7. 
If xL < b and UB, <f (xlc) < UB, + A, go to Step 3. 
If xlc < b and UB, + A < f(x&, go to Step 2. 

Step 2. Set j = 1, yj = xk, and go to Step 2a. 

Step 2a. Compute q’(0) = (b - yi) h’(y,) + g(b) - g(yi). 
If ~~‘(0) 3 0, go to Step 7. 
If ~~‘(0) < 0, go to Step 2b. 

Step 2b. 
If [UB, - f (yi)]/uj’(0) 3 6, , go to Step 2c. 
If [ UB, - f (yi)]/ui’(0) < 6, , go to Step 3. 

Step 2c. Solve S(yj). 
If S(yj) is infeasible or if the optimal solution, X, , is such that X, > I, go 

to Step 7. 
If hj E (0, 1) is <,-optimal for S(y,) (e.g., UB, < u&) < UB, + Q) and 

f(yj + Aj(b - yi)) > UB, + A, go to Step 2d. 
If hj E (0, 1) is q-optimal for S(y,) and UB, < f (yj + hi(b - yj)) < 

UB, + A, set xlc+i = yi + &(b - yj), UB,,, = UB, , k = k + 1, and go to 
Step 3. 

Step 2d. Set yj+i = yj + h,(b - yj), j = j + I, and go to Step 2a. 
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Step 3. Compute f’(+J. 

If f’(xk) < -e3 , go to Step 4. 
If f’(x&.) > c3 , go to Step 5. 
If -Ed .<f’(+) < Ed, go to Step 6. 

Step 4. Set i = 1, ui = xk , and go to Step 4a. 

Step 4a. Compute g’(u,) and go to Step 4b. 

Step 4b. Solve L,(uJ and let zqtl be c,-optimal (e.g., ui+l is optimal or 
E2 ‘2 h’(u,-,) i g’(q) 3 -cJ. 

If ui+l = h, set xkfl = uifl , UB,,, = min{UB, ,f(~~+~)j, K = k -+ 1 and 
go to Step 7. 

If z+-* < b andf’(q+J < -Ed , set i = i + 1 and go to Step 4a. 
If uisl < b and Ed 3 f’(z~+~) > -Ed , set x~+~ = ui+l , lJBTc+, == 

min{ UB, , f(xr+J}, k = k + 1 and go to Step 6. 

Step 5. Set r = 1, v, = xk , and go to Step 5a. 

Step 5a. Compute h’(q). If R,(b) 3 0, go to Step 7. If R,(b) < 0, go to 
Step 5b. 

Step 5b. Solve LA(q) and let vrfl be <,-optimal (e.g., ~1,;~ z b is optimal or 

E4 < e.(%l) < 0). 
If or+1 = b, go to Step 7. 

If z’+1 < h, compute 

S(v,.+d = (0 _ 
-f h+J + U&c 

f-%+1) wG+1) + g(b) - ‘d%+d * 

If S(VT.,l) 3 6, , set x~,+~ = vrfl , UB,,, = UB, , k :.= k + 1, and go to 
Step 2. 

If 6(0,+,) < 6, and f’(v,.+J > c3 , set r = Y + 1 and go to Step 5a. 

If S(v,+,) < 6, and -c3 <f ‘(v,.+J < e3 , set x7c+l = v,+~ , UB,,, = UB, , 
k-k+ l,andgotoStep6. 

If a(~,.+,) < 6, and f ‘(v,.+J < -c3, set xkil = vu,+1 , UB,,, = UB, , 
k--=k+l,andgotoStep4. ’ 

Step 6. Set x~+~ = min{x, + S,6} and go to Step 6a. 

Step 6a. 

If .Yk,~l :; b and f (xk+1) < UB, , set UB,+, = f(~~+~), k := k + 1 and go 
to Step 7. 

If x1, -1 -: b and f (xk+l) > UB, , go to Step 7. 
If .vh_, < h and f(xk+l) < f(xk), set UB,,, -= min[UB, , .f(x,-,)I, 

k k’l, and go to Step 1. 
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If x,,, < b and f(x,+,) > f(xk), Set uBk+1 = UB, , k = k + 1, and go to 

Step 1. 
If xk+l < b and f(xk+l) =f(x& set UB,,, = u& , k = k + 1, and go to 

Step 6. 

Step 7. Let x* E (x E [a, b] 1 f(x) < UB,}. Then x* is e-optimal; stop. 
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