
Procedia Computer Science 00 (2010) 000–000

Procedia
Computer
Science

www.elsevier.com/locate/procedia

WCIT 2010

Proposing a New Search Template for Modelling Languages
Reza Rafeh

Department of Computer Engineering
Arak University, Arak, Iran

r- rafeh@araku.ac.ir

Abstract

The major problem in solving combinatorial optimization problems is the huge size of the search space. To explore
the search space in a reasonable time, using smart search algorithms is inevitable. One of the main difficulties in
implementing search methods is the lack of a uniform, high-level template for all search paradigms. In this paper,
we propose a high-level, parametric template suitable for modeling languages which covers both tree search and
local search.

Keywords: Combinatorial Optimization Problems; Search Space; Tree Search; Local Search; Zinc Modelling Language

Tackling combinatorial optimization problems consists of two major steps: modeling and solving. Modelling
means formulation the problem precisely, while solving involves finding a pro per value for each variable. The most
popular techniques for solving constraint decision problems come from three main areas: constraint programming
techniques, mathematical methods and local search techniques. For a given problem, different techniques can have
quite different efficiency and it is often unclear which one is the best before performing systematic experimentation.

Regarding the modelling step, the most popular tools come from four main areas: constraint programming
languages, constraint libraries, (mathematical) modelling languages and specification languages. The most high-
level practical modelling is provided by modelling languages. This is because, on the one hand, modelling languages
do not require modellers to be skilled programmers (opposed to constraint programming languages and libraries),
and on the other hand, they are implementable (as opposed to generic specification languages).

Zinc [1] is a high-level modeling language designed to support experimentation with different solving techniques.
Conceptual models in Zinc can be automatically mapped into design models that use one of the following three
solving techniques: constraint programming (CP); Mixed Integer Programming (MIP)r; and incomplete search using
local search methods.

Using the default search performs well for MIP, but for CP and local search, efficiency often depends on the
modeller providing an effective, model-specific search strategy. Therefore, users need to specify search routines for
their models. However, allowing users to define their search routines requires the integration of a conceptual model
and a search strategy, something that is difficult to achieve cleanly since while the former is best expressed
declaratively, the latter is inherently procedural.

In this paper we propose a search template suitable for high-level modeling languages as Zinc. Our first
implementation consists of three high-level search patterns for backtracking search, branch and bound, and local
search. Zinc search routines take complex expressions, functions and predicates as parameters.

1. Backtracking search in Zinc

c⃝ 2010 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of the Guest Editor.

Procedia Computer Science 3 (2011) 1490–1493

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2011.01.037

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81932197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2011.01.037
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Author name / Procedia Computer Science 00 (2010) 000–000

Before illustrating the use of search patterns, we explain the structure of Zinc models by means of a simple
example, the N-queens problem, which tries to place n queens on an n × n chess board in such a way that no two
queens can attack each other. Here is a Zinc model for the problem:
int: n;
type Domain = 1..n;
array[Domain] of var Domain :q;
predicate noattack(Domain: i,j, var Domain: qi,qj) =
qi != qj /\ qi + i != qj + j /\ qi - i != qj - j;
constraint forall(i,j in Domain where i<j)
noattack(i,j,q[i],q[j]);
solve satisfy;

Variable n is defined as an integer parameter. Domain is a new type for the range 1..n, and q is an array of n finite
domain decision variables (indicated by the keyword var) over that range. For our purposes, the most interesting
feature of Zinc is that it allows the user to define new predicates and functions. In the above example, the noattack
predicate is defined, which succeeds if queens qi and qj of rows i and j respectively, cannot take each other (/\ is
used for conjunction). By using the forall expression, the constraint applies the noattack predicate on each pair of
queens to ensue they cannot attack each other. The last line declares the model to be a satisfaction problem. If the
solve item has no annotation for search (like in this model), Zinc uses the default search to solve the model.

Depth-first search pattern backtrack(init,expand) can be used for solving satisfaction problems with
backtracking search using a propagation solver. The first argument, init, is the state of the root node in the search
tree. This is often the list of variables to label, but can be anything the modeller needs to create choice points, and
can include extra information such as a counter to implement iterative deepening. The second argument, expand, is a
(possibly user-defined) function that takes the state for the current node and returns its children as a list of pairs of
the form (ns, c), where ns is the child’s state, and c the constraint that should be posted right before this child
becomes the current node. It is worth pointing out that expand has implicit access to the solver state and, therefore,
can call standard propagation solver reflection functions such as domain(V), which returns the current domain of
variable V.

For examle, we can use a standard labeling search for the N-queens model by annotating the solve item as
follows:
solve satisfy::backtrack(q,std_label);
where the initial local state is the list of variables q and function std label is the expand function. It is defined by:

function list of tuple(list of $T, var bool): std_label(list of $T:Vs) =
if Vs = [] then []
else [(tail(Vs), head(Vs) == d) | d in domain(head(Vs))]
endif;

which takes a list of variables Vs (with polymorphic type list of $T) and (by using a list comprehension) for each
variable V in Vs returns a list of tuples in which the first element is the remaining variables (and will be the state of
the children nodes) and the second element is an equality constraint between the variable and a value from its
domain. The head and tail functions are provided in the Zinc library and return the head and tail of the input list,
respectively. Since the output of domain is a set and Zinc’s sets are ordered, the domain values are considered from
smallest to largest. To instantiate each variable, the backtracking search tries the constraints returned by std label in
order.

2. Branch-and-bound

The search pattern backtrack(init,expand,bound,flag) is used for optimization problems to implement the
backtracking pattern extended with branch and bound. This is used as an annotation to the solve item which is either
in the form solve maximize expr or solve minimize expr for maximization and minimization problems,
respectively.

R. Rafeh / Procedia Computer Science 3 (2011) 1490–1493 1491

Author name / Procedia Computer Science 00 (2010) 000–000

The first two arguments of the pattern are similar to the previous pattern. The two extra arguments are a function,
bound, for computing the new bound from the previous and current bounds, and a flag to indicate the kind of
branch-and-bound search performed. The flags are similar to those provided in ECLiPSe [2], and include restart (to
restart the search from the root of the search tree), continue (to continue the search from the current node in the
search tree), and dichotomic (to do dichotomic search).

3. Local search

Local search methods (such as hill-climbing or simulated annealing) try to improve a single valuation by moving
to a neighbour. Such methods can be implemented for a model using the search pattern local_search(init valn, init
state,move, finish), which takes as arguments the initial valuation (list of variable/value pairs), the initial state
information, a function move that takes the current state and returns the new valuation to move to (this needs only to
give the values for variables that have been changed in the move) along with the new state, and a function finish that
takes the state and indicates whether the search should finish.

Similar to Comet [3], Zinc support these reflection functions: val(V) gives the value of variable V in the
valuation, var_penalty(V) the degree of violation associated with variable V , penalty(C) the violation of
constraint C, current penalty the total penalty for the current valuation, and new_penalty(Val) the total penalty that
will result if the changes in valuation V al are applied to the current valuation.

The modeller can then specify, for example, a simple hill-climbing search routine by annotating the solve item as:
solve satisfy::local_search([(q[i],i)|i in Domain],1000,move,finish);
where initially the ith queen is placed on row i and the initial state is simply the maximum permitted number of

moves. The move function is:
function valuation: swap($T: v1, $T: v2) = [(v1,val(v2)),(v2,val(v1))];
function tuple(int, valuation): move(int: nmovesleft) =
let {int: i=maximizes(q,var_penalty),
int: j=minimizes([swap(q[i],q[k])|k in Domain], new_penalty)
} in
(nmovesleft-1,swap(q[i],q[j]));
function has_ended: finish(int: nmovesleft) =
if current_penalty == 0 then sol(get_valuation)
elseif nmovesleft =< 0 then end(get_valuation)
else continue
endif;
where function swap takes two variables and returns a valuation in which the values of variables have been

swapped. The built-in type valuation is defined in Zinc as a list of variable/value pairs. The built-in functions
minimizes and maximizes take a list and a function and return the position of the element in the list that minimizes
and maximizes the function, respectively. The move function chooses the most violated queen q1 and determines the
queen q2 with which it can be swapped to reduce the overall violation. The number of moves left for the next
iteration is decremented. After each move, the function finish is invoked which decides upon the state whether the
search should finish. The enumerated type has ended is defined in Zinc’s library as:
enum has_ended = {sol(valuation),end(valuation),continue};
to indicate if the search has found a solution, it has not but it must end, or should continue.

4. Evaluation

By evaluating our approach we intended to show two things: the expressiveness of our approach and the
ignorable overhead of the required mappings. To investigate the first aim, we chose a set of 8 well known
benchmarks and searched the literature for the best tree and local search strategy for each problem. The three search
patterns in Zinc were expressive enough to implement the best search algorithms for all models.

For the first implementation, we map Zinc models into ECLiPSe programs (ECLiPSe was chosen because it
supports all target solving techniques). Our results show that the models with user-defined search are faster than the
equivalent models with default search, and that using the same search method, the mapped models have

1492 R. Rafeh / Procedia Computer Science 3 (2011) 1490–1493

Author name / Procedia Computer Science 00 (2010) 000–000

approximately the same performance as hand-written models in ECLiPSe. This shows that our mapping does not
lose efficiency.

We are currently working on adding new search patterns on Zinc and for the future we plan to enable the users to
combine search paradigms for a given model.

Acknowledgements

 We thank Arak University for financial support of this project.

References

1. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, The design of the Zinc modelling language. Constraints
13(3) (2008).

2. Apt, K.R., Wallace, M.G.: Constraint Logic programming using ECLiPSe. Cambridge University Press, Cambridge (2006)
3. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)

R. Rafeh / Procedia Computer Science 3 (2011) 1490–1493 1493

