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a b s t r a c t

An inverse nodal problem is studied for the diffusion operator with real-valued coefficients
on a finite intervalwith Dirichlet boundary conditions. The oscillation of the eigenfunctions
corresponding to large modulus eigenvalues is established and an asymptotic of the nodal
points is obtained. The uniqueness theorem is proved and a constructive procedure for
solving the inverse problem is given.
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1. Introduction

Inverse nodal problems consist in recovering operators from given nodes (zeros) of their eigenfunctions. From the
physical point of view this corresponds to finding, e.g., the density of a string or a beam from the zero-amplitude positions
of their eigenvibrations. McLaughlin seems to be the first to consider this sort of inverse problem (see [1]). Later on,
some remarkable results were obtained. For example, X. F. Yang got the uniqueness for general boundary conditions
using the same method as McLaughlin (see [2]); C. K. Law and Ching-Fu Yang (see [3]) have reconstructed the potential
function and its derivatives from nodal data. Besides, the readers can refer to [4–9] (see also the references therein). In
the references cited above, the inverse nodal problems were studied for second-order differential equations with a linear
dependence on the spectral parameter. In the present paper we investigate the inverse nodal problem for the differential
pencil L = L(q0(x), q1(x)) of the form

y′′ + (ρ2 − 2ρq1(x)− q0(x))y = 0, 0 < x < 1, (1)
y(0) = y(1) = 0, (2)

where ρ is a spectral parameter and qm(x) ∈ Wm1 [0, 1],m = 1, 2, are real-valued functions. Differential equations with a
nonlinear dependence on the spectral parameter frequently appear in mathematics as well as in applications, for example,
the diffusion operator (see [10–21] for details). First we prove that, being numbered in a natural way, the nth eigenfunction
of L (here n ∈ Z \ {0}) has exactly |n| − 1 nodes in the interval (0, 1) for sufficiently large |n|, which is an analog of the
classical Sturm’s oscillation theorem for the Sturm–Liouville operator. Further, we study the inverse problem of recovering
L from the nodal points. Note that for any C ≡ const the modified pencil

LC = L(q0(x)+ 2Cq1(x)− C2, q1(x)− C)

possesses the same eigenfunctions as L does. Indeed, the pencil LC is obtained from L by the shift of the spectral parameter
ρ → ρ + C . Below (see Theorem 4) we prove that it is a unique modification of L leaving the nodal points unchanged,
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provided that q1(x) is not a constant. Otherwise one deals with two-parametric set of pencils L(q0(x) + C0, C1) possessing
the same nodal points. In what follows without loss of generality we assume that

ω0 :=

∫ 1

0
q1(x) dx = 0 (3)

and also we exclude the Sturm–Liouville operator (q1(x) ≡ 0) from the consideration, i.e.

q1(x) 6= const. (4)

Under these assumptions we prove the uniqueness of recovering the functions q0(x), q1(x) from a dense set of nodal points
and obtain a constructive procedure for solving the inverse nodal problem. The analogous results can be obtained also for
other types of boundary conditions (2). We note that in [15] the uniqueness of recovering the function q0(x) −

∫ 1
0 q0(t) dt

from the nodal points was studied, provided that q1(x)was known a priori.
There are some connections between inverse nodal problems and the classical inverse spectral theory (see [22–28]). We

note that for differential pencils some aspects of inverse spectral problems were studied in [10,11,13,17,19–21] and other
works.
In the next section we investigate the oscillation of the eigenfunctions and derive a detailed asymptotic formula for

the nodal points. In Section 3 we prove the uniqueness theorem and point out an algorithm for solving the inverse nodal
problem. The main results of the paper are contained in Theorems 3 and 4.

2. Oscillation theorem. Asymptotics of the nodal points

Let S(x, ρ) be a solution of Eq. (1) satisfying the initial conditions S(0, ρ) = 0, S ′(0, ρ) = 1. The eigenvalues of L coincide
with the zeros of its characteristic function∆(ρ) := S(1, ρ). Denote

Q (x) :=
∫ x

0
q1(t) dt. (5)

Using the standard approach (see, e.g., [23]) one can establish the asymptotics

S(x, ρ) =
sin(ρx− Q (x))

ρ
+ ξ(x, ρ), (6)

where

ξ (ν)(x, ρ) = O
(
1

ρ2−ν
exp(|Imρ|x)

)
, ν = 0, 1, |ρ| → ∞, (7)

uniformly with respect to x ∈ [0, 1]. According to (6) and (7) we have

∆(ρ) =
sin ρ
ρ
+ O

(
1
ρ2
exp(|Imρ|)

)
, |ρ| → ∞. (8)

By the well-known method (see, e.g., [23]) using (8) and Rouché’s theorem one can prove that L has infinitely many
eigenvalues ρn, n ∈ Z \ {0}, of the form

ρn = πn+ O
(
1
n

)
, |n| → ∞. (9)

Theorem 1. For sufficiently large |n| the eigenfunction yn(x) := S(x, ρn) has exactly |n| − 1 zeros x
j
n in the interval (0, 1):

0 < x1n < x
2
n < · · · < x

n−1
n < 1 for n > 0

and

0 < x−1n < x−2n < · · · < xn+1n < 1 for n < 0.

Moreover,

xjn =
j
n
+
Q ( jn )
πn
+ O

(
1
n2

)
, |n| → ∞, (10)

uniformly with respect to j.

Proof. First we note that ρn are real for sufficiently large |n|. Indeed, according to (9) for large |n| in the domain Dn := {ρ :
|ρ − πn| ≤ 1} there is exactly one eigenvalue ρn. Taking into account the real-valuedness of q0(x), q1(x) we conclude
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that there is also an eigenvalue ρn ∈ Dn, and hence ρn = ρn. Therefore, the functions yn(x) are real-valued for large |n|.
Substituting (9) in (6) we arrive at

ρnyn(x) = sin(πnx− Q (x))+ εn(x), (11)

where in view of (7)

ε(ν)n (x) = O
(
1
n1−ν

)
, ν = 0, 1, |n| → ∞, (12)

uniformly on [0, 1]. Consider on (0, 1) the equation yn(x) = 0, which according to (11) and (12) is equivalent for large |n|
to the aggregate of equations

x = χ jn(x) :=
j
n
+
Q (x)
πn
+ εjn(x), j ∈ Z, (13)

where εjn(x) = (−1)j+1 arcsin εn(x)πn . The estimates (12) give

(εjn)
(ν)(x) = O

(
1
n2−ν

)
, ν = 0, 1, |n| → ∞, (14)

uniformly for j ∈ Z and x ∈ [0, 1]. Put q1(x) = 0 on (−∞, 0) ∪ (1,+∞) and continue ε
j
n(x) on (−∞, 0) ∪ (1,+∞)

by differentiability in any way to satisfy (14) uniformly in x ∈ R and j ∈ Z. For example one can take εjn(x) = 0 on
(−∞,− 1

|n| ] ∪ [1+
1
|n| ,+∞) and

εjn(x) =


|n|3

(
x+

1
|n|

)2 (
εjn(0)

(
1
|n|
− 2x

)
+ (εjn)

′(0)
x
|n|

)
, x ∈

(
−
1
|n|
, 0
)
,

n2
(
x− 1−

1
|n|

)2 (
εjn(1) (1+ 2|n|(x− 1))+ (ε

j
n)
′(1)(x− 1)

)
, x ∈

(
1, 1+

1
|n|

)
.

Consider Eq. (13) in R. According to (14) and the formula

χ jn(x1)− χ
j
n(x2) =

1
πn

∫ x1

x2
q1(t) dt + (εjn)

′(θ)(x1 − x2), θ ∈ (x1, x2),

there exists n0 such that for |n| ≥ n0 the function χ
j
n(x) is a contracting mapping in R for all j ∈ Z. Let |n| ≥ n0. Thus, for

each j ∈ Z Eq. (13) has a unique solution inR, which we denote by xjn. Substituting x
j
n in (13) we arrive by (14) at the formula

xjn =
j
n
+
Q (xjn)
πn
+ O

(
1
n2

)
, |n| → ∞, (15)

uniformly with respect to j ∈ Z. In particular, we have

xjn =
j
n
+ O

(
1
n

)
, |n| → ∞,

uniformly in j. Substituting this on the right-hand side of (15) we arrive at (10), which, in turn, gives

xj+1n − x
j
n =

1
n
+ O

(
1
n2

)
, |n| → ∞,

uniformly in j. Consequently, for large |n|wehave xjn < x
j+1
n for positive n and xjn > x

j+1
n for negative n. For j = 0,±1, n, n±1

formula (10) gives

x−1n = −
1
n
+ O

(
1
n2

)
, x0n = O

(
1
n2

)
, x1n =

1
n
+ O

(
1
n2

)
,

xn−1n = 1−
1
n
+ O

(
1
n2

)
, xnn = 1+ O

(
1
n2

)
, xn+1n = 1+

1
n
+ O

(
1
n2

)
.

Thus, according to the boundary conditions (2) and the order of xjn we conclude that x0n = 0, x
n
n = 1 for large |n|. Hence,

exactly |n| − 1 zeros lie in (0, 1), namely: xjn, j = 1, n− 1, for positive n and x
j
n, j = n+ 1,−1, for negative n. �

Corollary 1. From (10) it follows that the set X of all nodal points is dense in [0, 1].
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For convenience we agree that in what follows x0n = 0, x
n
n = 1. For solving the inverse nodal problem we need a more

detailed asymptotics of the nodal points, which is established in the following theorem.

Theorem 2. In the representation

xjn =
j
n
+
Q (xjn)
πn
+ δjn (16)

the term δjn has the form

δjn =
1

2(πn)2

(∫ xjn

0
(q0(t)+ q21(t)) dt − ω1x

j
n − (A

j
n − A

n
nx
j
n)

)

+
1

2(πn)3

(∫ xjn

0
(q0(t)+ q21(t))q1(t) dt − ω2x

j
n

)
+ o

(
1
n3

)
, |n| → ∞, (17)

uniformly with respect to j, where

ω1 =

∫ 1

0
(q0(t)+ q21(t)) dt, ω2 =

∫ 1

0
(q0(t)+ q21(t))q1(t) dt,

Ajn =
∫ xjn

0
(q0(t)+ q21(t)) cos(2πnt − 2Q (t)) dt −

∫ xjn

0
q′1(t) sin(2πnt − 2Q (t)) dt.

(18)

Proof. Let us first calculate a more detailed asymptotics of the spectrum. In (6) we have more precisely

ξ(x, ρ) =
1
2ρ2

{
(q1(0)+ q1(x)) sin(ρx− Q (x))− cos(ρx− Q (x))

∫ x

0
(q0(t)+ q21(t)) dt

+

∫ x

0
(q0(t)+ q21(t)) cos(ρ(x− 2t)− Q (x)+ 2Q (t)) dt +

∫ x

0
q′1(t) sin(ρ(x− 2t)− Q (x)+ 2Q (t)) dt

}
+
1
4ρ3

{[
q21(0)+ q

2
1(x)+

(q1(0)+ q1(x))2

2
−
1
2

(∫ x

0
(q0(t)+ q21(t)) dt

)2]
sin(ρx− Q (x))

− cos(ρx− Q (x))
∫ x

0
(q0(t)+ q21(t))(q1(0)+ q1(x)+ 2q1(t)) dt

}
+ o

(
1
ρ3
exp(|Imρ|x)

)
, |ρ| → ∞, (19)

uniformly in x ∈ [0, 1]. This gives

∆(ρ) =
sin ρ
ρ
+
1
2ρ2

{
(q1(0)+ q1(1)) sin ρ − ω1 cos ρ +

∫ 1

0
(q0(t)+ q21(t)) cos(ρ(1− 2t)+ 2Q (t)) dt

+

∫ 1

0
q′1(t) sin(ρ(1− 2t)+ 2Q (t)) dt

}
+
1
4ρ3

{[
q21(0)+ q

2
1(1)+

(q1(0)+ q1(1))2 − ω21
2

]
sin ρ

− [(q1(0)+ q1(1))ω1 + 2ω2] cos ρ
}
+ o

(
1
ρ3
exp(|Imρ|)

)
, |ρ| → ∞. (20)

Substituting (9) in (20) and taking∆(ρn) = 0 into account we arrive at

ρn = πn+
ω1 − Ann
2πn

+
ω2

2(πn)2
+ o

(
1
n2

)
, |n| → ∞. (21)

Substituting (21) in (6), (19) we get

ρnyn(x) = sin(πnx− Q (x))

−
1
2πn

{[∫ x

0
(q0(t)+ q21(t)) dt − ω1x

]
cos(πnx− Q (x))− [q1(0)+ q1(x)] sin(πnx− Q (x))

−

[∫ x

0
(q0(t)+ q21(t)) cos(πn(x− 2t)− Q (x)+ 2Q (t)) dt

+

∫ x

0
q′1(t) sin(πn(x− 2t)− Q (x)+ 2Q (t)) dt − A

n
nx cos(πnx− Q (x))

]}
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−
1

(2πn)2

{[
(q1(0)+ q1(x))

(∫ x

0
(q0(t)+ q21(t)) dt − ω1x

)
+ 2

∫ x

0
(q0(t)+ q21(t))q1(t) dt − 2ω2x

]
cos(πnx− Q (x))

−

[
q21(0)+ q

2
1(x)+ ω1x

∫ x

0
(q0(t)+ q21(t)) dt +

(q1(0)+ q1(x))2 − ω21x
2

2

−
1
2

(∫ x

0
(q0(t)+ q21(t)) dt

)2]
sin(πnx− Q (x))

}
+ o

(
1
n2

)
, |n| → ∞, (22)

uniformly in x ∈ [0, 1]. Substituting (16) in (22) and taking (15), S(xjn, ρn) = 0 into account we get (17). �

3. Uniqueness theorem. Solution of the inverse nodal problem

Consider the following inverse problem.

Problem 1. Given the set of nodal points X , find the functions q0(x), q1(x).

Here and below the notion ‘‘set of nodal points’’ is understood with account of their indices. In other words, {xjn}(n,j)∈I =
{x̃jn}(n,j)∈Ĩ if and only if I = Ĩ and x

j
n = x̃

j
n for all (n, j) ∈ I.

Denote

Ãjn =
∫ xjn

0
(p̃(t)+ q21(t)) cos(2πnt − 2Q (t)) dt −

∫ xjn

0
q′1(t) sin(2πnt − 2Q (t)) dt,

where

p̃(x) = q0(x)−
∫ 1

0
q0(t) dt.

According to (18) we have

Ajn = Ã
j
n + o

(
1
n

)
, |n| → ∞,

uniformly in j. Thus, the following assertion is an immediate corollary of Theorem 2.

Lemma 1. Fix x ∈ [0, 1]. Choose {jn} such that x
jn
n → x as |n| → ∞. Then there exist finite limits and the corresponding

equalities hold:

Q (x) = π lim
|n|→∞

(nxjnn − jn), (23)

f (x) := 2π lim
|n|→∞

n(π(nxjnn − jn)− Q (x
jn
n )), (24)

g(x) := π lim
|n|→∞

n(2πn(πnxjnn − π jn − Q (x
jn
n ))− f (x

jn
n )+ Ã

jn
n − Ã

n
nx
jn
n ) (25)

and

f (x) =
∫ x

0
(q0(t)+ q21(t)) dt − x

∫ 1

0
(q0(t)+ q21(t)) dt, (26)

g(x) =
∫ x

0
(q0(t)+ q21(t))q1(t) dt − x

∫ 1

0
(q0(t)+ q21(t))q1(t) dt. (27)

Let us prove the uniqueness theorem for the solution of the inverse nodal problem.

Theorem 3. The specification of any dense subset X0 ⊂ X uniquely determines the functions q0(x), q1(x), which can be found
by the following algorithm.

Algorithm 1. Let a dense subset X0 of the nodal points be given. Then
(i) for each x ∈ [0, 1] choose a sequence {xjnn } ⊂ X0 such that x

jn
n → x as |n| → ∞;

(ii) find the function Q (x) via (23) and calculate

q1(x) = Q ′(x); (28)



S.A. Buterin, C.T. Shieh / Applied Mathematics Letters 22 (2009) 1240–1247 1245

(iii) calculate f (x) by formula (24) and determine

p(x) = f ′(x)− q21(x)+
∫ 1

0
q21(t) dt; (29)

(iv) fix an arbitrary x ∈ [0, 1] such that Q (x) 6= 0, find g(x) via (25) and put

A =
1
Q (x)

(
g(x)−

∫ x

0
(p(t)+ q21(t))q1(t) dt + x

∫ 1

0
(p(t)+ q21(t))q1(t) dt

)
; (30)

(v) finally, calculate the function q0(x) by the formula

q0(x) = p(x)+ A. (31)

Proof. Formula (28) follows from (5). Further, differentiating (26) and comparing with (29) we obtain

q0(x) = p(x)+
∫ 1

0
q0(t) dt.

Substituting this in (27) and taking (3) into account we get

g(x) =
∫ x

0
(p(t)+ q21(t))q1(t) dt − x

∫ 1

0
(p(t)+ q21(t))q1(t) dt + Q (x)

∫ 1

0
q0(t) dt.

According to (4) there exists x ∈ [0, 1] such that Q (x) 6= 0. Comparing the latter relation with (30) we arrive at

A =
∫ 1

0
q0(t) dt

and hence formula (31) holds. �

Let us point out an alternative algorithmusing the notion of nodal length ljn := x
j+1
n −x

j
n analogously to the case q1(x) ≡ 0

(see [7]), which allows one to approximate q0(x), q1(x) directly, i.e. not via their primitive functions. Consider the step-
function jn(x):

jn(x) =

{
0, x = 0,
max
xjn<x

j, x ∈ (0, 1], for n > 0, jn(x) =

{
−1, x = 0,
max
xjn≥x

j, x ∈ (0, 1], for n < 0.

Clearly, xjn(x)n → x as |n| → ∞. First we prove the following assertion.

Lemma 2. There exists a finite limit and the corresponding equality holds:

q1(x) = π lim
|n|→∞

n(nljn(x)n − 1). (32)

Moreover, for almost all x ∈ (0, 1) there exists a finite limit

v(x) := 2π lim
|n|→∞

n2
(
πnljn(x)n − π −

∫ xjn(x)+1n

xjn(x)n

q1(t) dt

)
(33)

and

v(x) = q0(x)−
∫ 1

0
q0(t) dt + q21(x)−

∫ 1

0
q21(t) dt. (34)

Proof. According to (16) and (17) we have

ljn =
1
n
+
1
πn

∫ xj+1n

xjn

q1(t) dt + o
(
1
n2

)
, n =

1

ljn

(
1+ o

(
1
n

))
.

Hence,

πn(nljn − 1) = n
∫ xj+1n

xjn

q1(t) dt + o(1) = q1(ξ jn)+ o(1), ξ jn ∈ (x
j
n, x

j+1
n ).

Thus, if xjn → x, then q1(ξ
j
n)→ q1(x), and (32) is proved. Further, as in [7] we obtain that for any function f (x) ∈ L(0, 1)∫ xjn(x)+1n

xjn(x)n

f (t) cos(2πnt) dt,
∫ xjn(x)+1n

xjn(x)n

f (t) sin(2πnt) dt = o
(
1
n

)
,
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and hence n(Ajn(x)+1n − Ajn(x)n ) = o(1). Therefore, (16) and (17) yield

ljn(x)n =
1
n
+
1
πn

∫ xjn(x)+1n

xjn(x)n

q1(t) dt +
1

2(πn)2

∫ xjn(x)+1n

xjn(x)n

(q0(t)+ q21(t)− ω1) dt + o
(
1
n3

)
.

Since
1

ljn
= n+ o

(
1
n

)
and, for all Lebesgue points of f (x) ∈ L(0, 1),

1

ljn(x)n

∫ xjn(x)+1n

xjn(x)n

f (t) dt = f (x)+ o(1),

we have

n
∫ xjn(x)+1n

xjn(x)n

f (t) dt = f (x)+ o(1).

Hence, we get (33) and (34). �

Thus, we arrive at the following alternative algorithm for solving Problem 1, which unlike the first one contains no
differentiation.

Algorithm 2. Let the set of nodal points X be given. Then
(i) find the function q1(x) via (32);
(ii) calculate v(x) by (33) and find the function

p(x) = v(x)− q21(x)+
∫ 1

0
q21(t) dt;

(iii) find the mean value A =
∫ 1
0 q0(t) dt as is done in Algorithm 1 and calculate the function q0(x) by (31).

Finally, let us give a generalization of the uniqueness theorem for the case when (3) is not assumed any more while
(4) being kept. For this purpose together with L we consider the pencil L̃ = L(q̃0(x), q̃1(x)) with, generally speaking, other
functions q̃0(x), q̃1(x). We agree that if a certain symbol α denotes an object related to L then the same symbol with tilde α̃
denotes the analogous object corresponding to L̃, and α̂ := α − α̃.

Theorem 4. If X0 = X̃0 then

q1(x) = q̃1(x)+ ω̂0, q0(x) = q̃0(x)− 2ω̂0q̃1(x)− ω̂20. (35)

Proof. Note that the pencils

L1 = L(q0(x)+ 2ω0q1(x)− ω20, q1(x)− ω0), L̃1 = L(q̃0(x)+ 2ω̃0q̃1(x)− ω̃20, q̃1(x)− ω̃0)

possess the same nodal points as L, L̃ do respectively. Since∫ 1

0
(q1(t)− ω0) dt =

∫ 1

0
(q̃1(t)− ω̃0) dt = 0,

according to Theorem 3 we have

q1(x)− ω0 = q̃1(x)− ω̃0, q0(x)+ 2ω0q1(x)− ω20 = q̃0(x)+ 2ω̃0q̃1(x)− ω̃
2
0,

which is equivalent to (35). �
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