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Abstract

For k a field of arbitrary characteristic, and R a k-algebra, we show that the PI degree of an iterated skew
polynomial ring R[x1; τ1, δ1] · · · [xn; τn, δn] agrees with the PI degree of R[x1; τ1] · · · [xn; τn] when each
(τi , δi ) satisfies a qi -skew relation for qi ∈ k× and extends to a higher qi -skew τi -derivation. We confirm
the quantum Gel’fand–Kirillov conjecture for various quantized coordinate rings, and calculate their PI
degrees. We extend these results to completely prime factor algebras.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Presented here is a new technique for analyzing skew polynomial rings satisfying a poly-
nomial identity with an eye toward discovering their PI degrees. It combines and extends the
methods of Jøndrup [16] and Cauchon [5], who introduced techniques of deleting derivations in
skew polynomial rings, by means of which they showed that some properties of certain types of
iterated skew polynomial ring A = k[x1][x2; τ2, δ2] · · · [xn; τn, δn] are determined by the corre-
sponding ring A′ = k[x1][x2; τ2] · · · [xn; τn]. Jøndrup’s results imply that A and A′ have the same
PI degree under certain hypotheses, including characteristic zero for the base field. Cauchon de-
veloped an algorithm that gives an isomorphism between certain localizations of A and A′, but
this requires a qi -skew condition on each (τi, δi) with qi not a root of unity, which usually pre-
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cludes A from satisfying a polynomial identity. We relax the restrictions placed on the base field
and its chosen scalars by Jøndrup and Cauchon, respectively, by introducing the notion of a
higher q-skew τ -derivation.

Our main theorem addresses both PI degree parity and the structure of division rings of
fractions, thus confirming some cases of the quantum Gel’fand–Kirillov conjecture. For more
information on that conjecture and proofs of conditions under which the result holds, see [1,6,
17,21,25,26].

The first section sets up the conventions under which we work, including definitions and an
established result concerning the PI degree of quantum affine space. A comprehensive discussion
of any unfamiliar terms can be found in [4,11] and [20]. In the second section we define higher
τ -derivations and give necessary and sufficient conditions for their existence. In the third section
we present a structure theorem for a localization of q-skew polynomial rings. This extends the
work of Cauchon [5], and the calculations are simplified by the presence of higher q-skew τ -
derivations. In the fourth section we deal with the structure of iterated skew polynomial rings.
The main theorem there asserts that if A is an iterated q-skew polynomial ring with certain higher
τ -derivations, then there is a finitely generated Ore set T ⊆ A such that AT −1 is isomorphic
to a localization of a much “nicer” iterated skew polynomial ring. In the fifth section, we use
the tools developed in the previous sections to confirm certain cases of the quantum Gel’fand–
Kirillov conjecture and to find the PI degree of some quantized coordinate rings and quantized
Weyl algebras. In the last section, we follow up with a structure theorem for completely prime
factors of iterated skew polynomial rings. Many routine arguments have been omitted; details
can be found in [12].

Throughout, k will denote a field of arbitrary characteristic, q ∈ k a nonzero element. The
following assumptions apply to all skew polynomial rings that we will consider:

• all coefficient rings are k-algebras,
• all automorphisms are k-algebra automorphisms,
• all skew derivations are k-linear,
• in all skew polynomial rings R[x; τ, δ], τ is an automorphism, not just an endomorphism.

To say that R[x; τ, δ] is a q-skew polynomial ring means that the automorphism and skew
derivation satisfy the relation δτ = qτδ. The reader will note that this is opposite to Cauchon’s
conventions, but it matches the presentation in [8] and others. To say that δ is locally nilpotent
means that for every r ∈ R there is an integer nr � 0 such that δnr (r) = 0, and δp(r) �= 0 for
p < nr . Such nr is called the δ-nilpotence index of r . The symbol N refers to the set of positive
integers. For a real number m we use the notation �m� in section five to indicate the integer part
of m.

Definition 1.1. We say that two rings R and S exhibit PI degree parity when these two conditions
are satisfied:

(1) R is a PI ring if and only if S is a PI ring,
(2) PIdegR = PIdegS.

For a field k and multiplicatively antisymmetric λ ∈ Mn(k), the corresponding multiparameter
quantum affine space is the k-algebra Oλ(k

n) with generators x1, . . . , xn and relations xixj =
λij xj xi for all i, j . The corresponding multiparameter quantum torus is the k-algebra Oλ((k

×)n)
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given by generators x±1
1 , . . . , x±1

n and the same relations. The multiplicative set generated by
x1, . . . , xn in Oλ(k

n) is a denominator set, and Oλ((k
×)n) is a localization of Oλ(k

n) with respect
to this set.

In this paper we will show that iterated skew polynomial algebras covering a large class of
standard examples have PI degree parity with Oλ(k

n) for an appropriately chosen λ.

Theorem 1.2. Let A = k[x1; τ1, δ1] · · · [xn; τn, δn], where each τi is a k-linear automorphism
of k〈xi, . . . , xi−1〉 such that τi(xj ) = λij xj for all i, j with 1 � j < i � n and some λij ∈ k×,
and where each δi is a k-linear τi -derivation. Assume that there exist elements qi ∈ k× with
qi �= 1 such that δiτi = qiτiδi , and that δi extends to a locally nilpotent, iterative higher qi -skew
τi -derivation on k〈xi, . . . , xi−1〉 for i = 1, . . . , n. Set λji = λ−1

ij , λ = (λij ) ∈ Mn(k
×). Then

(1) A and Oλ(k
n) have isomorphic division rings of fractions.

(2) A is a PI-algebra if and only if all the λij are roots of unity, in which case A and Oλ(k
n)

have the same PI degree.

To find out what that PI degree may be, we utilize a result of De Concini and Procesi. In [7,
Proposition 7.1], they establish the following formula for calculating the PI degree of a quantum
affine space Oλ(k

n). Their assumption of characteristic zero from [7, Section 4] is not used in
this result.

Theorem 1.3 (De Concini–Procesi). Let λ = (λij ) be a multiplicatively antisymmetric n × n

matrix over k.

(1) The quantum affine space Oλ(k
n) is a PI ring if and only if all the λij are roots of unity. In

this case, there exist a primitive root of unity q ∈ k× and integers aij such that λij = qaij for
all i, j .

(2) Suppose λij = qaij for all i, j , where q ∈ k is a primitive �th root of unity and the aij ∈ Z.
Let h be the cardinality of the image of the homomorphism

Z
n (aij )−−−→ Z

n π−→ (Z/�Z)n

where π denotes the canonical epimorphism. Then PI-deg(Oλ(k
n)) = √

h.

2. Higher q-skew τ -derivations

Before the featured definition, a brief discussion of a tool used to study q-skew polynomial
rings is needed. Having the q-skew relation δτ = qτδ in place allows us to group terms of the
same degree when we do skew polynomial arithmetic. The means to do this are provided by the
q-Liebnitz rules.

Definition 2.1. For an indeterminate t , and integers n � m � 0, we define the following polyno-
mial functions:

(m)t = tm−1 + tm−2 + · · · + t + 1, (1)

(m)!t = (m)t (m − 1)t · · · (1)t , and (0)!t = 1, (2)
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(
n

m

)
t

= (n)!t
(m)!t (n − m)!t . (3)

The expressions
(
n
m

)
t

are called the t-binomial coefficients, or Gaussian polynomials. The t-
binomial coefficients satisfy identities similar to those of the regular binomial coefficients. More
information can be found in combinatorics texts such as [30]. When we evaluate the t-binomial
coefficients at t = q , we obtain the q-binomial coefficients that we need for studying q-skew
polynomial rings.

As shown in [8, Section 6], the following q-Liebnitz rules hold for any q-skew polynomial
ring R[x; τ, δ]:

δn(rs) =
n∑

i=0

(
n

i

)
q

τn−iδi(r)δn−i (s) for all r, s ∈ R and n = 0,1,2, . . . ,

xnr =
n∑

i=0

(
n

i

)
q

τn−iδi(r)xn−i for all r ∈ R and n = 0,1,2, . . . .

Now, taking a cue from the study of Schmidt differential operator rings, for instance [18], we
define a sequence of k-linear maps that allows us to broaden the class of rings for which we may
derive results like those of Jøndrup and Cauchon.

Definition 2.2. A higher q-skew τ -derivation (h.q-s.τ -d.) on a k-algebra R is a sequence
d0, d1, d2, . . . of k-linear operators on R such that

d0 is the identity,

dn(rs) =
n∑

i=0

τn−idi(r)dn−i (s) for all r, s ∈ R and all n,

diτ = qiτdi for all i.

If a sequence of k-linear maps satisfies the first two conditions, we refer to it as a higher
τ -derivation. We abbreviate the sequence {di}∞i=0 usually as just {di}. A h.q-s.τ -d. is locally
nilpotent if for all r ∈ R, there exists an integer n � 0 such that di(r) = 0 for all i � n, and
dp(r) �= 0 for p < n. In this case, n is called the d-nilpotence index of r. A h.q-s.τ -d. is iterative
if didj = (

i+j
j

)
q
di+j for all i, j . This implies that the di commute with each other. A q-skew

τ -derivation δ on R extends to a h.q-s.τ -d. if there is a h.q-s.τ -d. {di} on R with d1 = δ.

For example, consider the k-algebra with two generators x and y, and one relation
xy − qyx = 1, where q ∈ k×. We will assume that q �= 1 and recognize this algebra as a q-skew
polynomial ring k[y][x; τ, δ] with τ(y) = qy and δ(y) = 1, commonly known as a quantized
Weyl algebra and denoted A

q

1(k). If q is not a root of unity, then the maps

di = δi

(4)

(i)!q
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comprise an iterative higher q-skew τ -derivation that extends δ on k[y]. The properties of a
higher q-skew τ -derivation follow directly from the fact that δ is a q-skew τ -derivation and the
first q-Liebnitz rule. This particular h.q-s.τ -d. is also locally nilpotent because

di(y
n) =

{(
n
i

)
q
yn−i when i � n,

0 when i > n.
(5)

Proposition 2.3. Let {di} be a sequence of k-linear maps on a k-algebra R with d0 = idR ,
and let R�x; τ−1� be the skew power series ring where τ is a k-linear automorphism of R, the
coefficients are written on the right of the variable x, and rx = xτ(r) for all r ∈ R.

(a) Then {di} is a higher τ -derivation on R if and only if the map Ψ :R → R�x; τ−1� given by
r �→ ∑∞

i=0 xidi(r) is a ring homomorphism.
(b) Extend τ to an automorphism of R�x; τ−1� such that τ(x) = xq . Assume that {di} is a

higher τ -derivation. Then the sequence {di} is a h.q-s.τ -d. if and only if this diagram is
commutative:

R�x; τ−1�
τ

R�x; τ−1�

R

Ψ

τ
R.

Ψ

Proof. The proof is elementary. Hence, it is left to the reader. �
Remark 2.4. If {di} is locally nilpotent on R, we observe that claims analogous to the proposition
can be made for the map Ψ :R → R[x; τ−1].

Proposition 2.5. Let {di} be a h.q-s.τ -d. on a k-algebra R, where τ is an automorphism, and
let S be a right denominator set in R with τ(S) = S. Then {di} can be uniquely extended to a
h.q-s.τ -d. on RS−1.

Proof. It has been established that τ and d1 extend uniquely to RS−1 by τ(rs−1) = τ(r)τ (s)−1

and d1(rs
−1) = d1(r)s

−1 − τ(rs−1)d1(s)s
−1 in [8, Lemma 1.3]. Suppose that {di} extends to a

h.q-s.τ -d. on RS−1. For r ∈ R and s ∈ S, we apply dn to the equation r1−1 = (rs−1)(s1−1) to
get

dn(r)1
−1 = dn

((
rs−1)(s1−1)) =

n∑
j=0

τn−j dj

(
rs−1)dn−j

(
s1−1)

= τn
(
rs−1)dn(s)1

−1 + · · · + dn

(
rs−1)s1−1.

This implies that

dn

(
rs−1) =

[
dn(r) −

n−1∑
τn−j dj

(
rs−1)dn−j (s)

]
s−1.
j=0
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So we have uniqueness in case of existence.
To show existence, let Ψ :R → R�x; τ−1� be the map defined in Proposition 2.3, and let

φ :R�x; τ−1�→ RS−1�x; τ−1� be the natural map. Consider the composite map Φ = φΨ :R →
RS−1�x; τ−1�. For any s ∈ S, the constant term of Φ(s) is a unit. So we may inductively solve
for the coefficients of an inverse for Φ(s) in RS−1�x; τ−1�. Details, as in [29, 1.2], are left to
the reader. Hence, Φ extends to a ring homomorphism Φ ′ :RS−1 → RS−1�x; τ−1� such that
Φ ′(rs−1) = Φ(r)Φ(s)−1, and we consider the diagram

RS−1�x; τ−1�
τ

RS−1�x; τ−1�

RS−1

Φ ′

τ
RS−1

Φ ′

where τ has been extended to an automorphism of RS−1�x; τ−1� as in Proposition 2.3.
Since Φ(r) = ∑∞

i=0 xidi(r)1−1, and {di} is a h.q-s.τ -d. on R, we have

τΦ(r) =
∞∑
i=0

xiqiτdi(r)1
−1 =

∞∑
i=0

xidi

(
τ(r)

)
1−1 = Φτ(r)

for all r ∈ R. It follows directly that τΦ ′(rs−1) = Φ ′τ(rs−1). So, indeed, the diagram is com-
mutative.

Define a sequence {di} on RS−1 such that di(t) equals the coefficient of xi in Φ ′(t) for all
t ∈ RS−1. Then by Proposition 2.3 we conclude that this sequence is a h.q-s.τ -d. on RS−1

extending {di} on R. �
The following lemmas are proved by induction on the length of monomials in the given gen-

erators.

Lemma 2.6. Let A be a k-algebra, B ⊆ A a k-subalgebra generated by {b1, b2, . . .}, τ a k-linear
automorphism of A, and {di} a higher τ -derivation on A. If di(bj ) ∈ B and τ(bj ) ∈ B , for all
i, j ∈ N, then di(B) ⊆ B for all i.

Lemma 2.7. Let A be a k-algebra with a set {xj } of generators, τ an automorphism of A, and
{di} a h.q-s.τ -d. on A. If {di} is locally nilpotent for all xj , then {di} is locally nilpotent on A.

Consider again the quantized Weyl algebra A
q

1(k). In case q is an �th root of unity, the d�

given in (5) would be undefined due to the occurrence of a zero denominator. However, realiz-
ing A

q

1(k) as a factor of a quantized Weyl algebra over k[t±1] allows us to define a h.q-s.τ -d.
on A

q

1(k) nonetheless. The k[t±1]-algebra At
1(k[t±1]) has generators x and y and one relation

xy − tyx = 1. This is a t-skew polynomial ring k[t±1][y][x; τ̄ , δ̄] where τ̄ (y) = ty, τ̄ (t) = t ,
δ̄(y) = 1, and δ̄(t) = 0. Note that

δ̄i (yn) =
{

(n)!t
(n−i)!t y

n−i when i � n,
0 when i > n
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implying that δ̄i
(
k[t±1][y]) ⊆ (i)!t k[t±1][y]. So the assignment

d̄i = δ̄i

(i)!t

defines an iterative, locally nilpotent h.t-s.τ̄ -d. {d̄i} on k[t±1][y]. Now, the relation xy − tyx = 1
is equivalent to the relation xy − qyx = 1 modulo 〈t − q〉. Hence we have

At
1

(
k
[
t±1])/〈t − q〉 ∼= A

q

1(k).

When q is an �th root of unity, we have δ̄�
(
k[t±1][y]) ⊆ 〈t − q〉k[t±1][y]. Nonetheless, the h.t-

s.τ̄ -d. {d̄i} on k[t±1][y] induces a h.q-s.τ -d. {di} on k[y], also iterative and locally nilpotent,
with d1 = δ. Note that even though δ� = 0 in this algebra, we have di(y

i) = 1 for all i.
This phenomenon is not unique to the quantized Weyl algebras. The conditions that drive it

are codified in the following theorem.

Theorem 2.8. Let R be a k-algebra and R[x; τ, δ] a q-skew polynomial ring where q ∈ k, q �= 1.
Suppose there exists a torsion-free k[t±1]-algebra R and R[x; τ̄ , δ̄] a t-skew polynomial ring
such that R/〈t −q〉R ∼= R, with τ̄ and δ̄ reducing to τ and δ. Suppose further that δ̄i (R) ⊆ (i)!tR
for all i. Then δ extends to an iterative h.q-s.τ -d. {di} on R. If δ̄ is locally nilpotent, then so is

{di}. If q is not a root of unity, then di = δi

(i)!q for all i. If q is a primitive �th root of unity, then

di = δi

(i)!q for i < �.

Proof. The assumption δ̄i (R) ⊆ (i)!tR for all i implies that the sequence of maps d̄i = δ̄i

(i)!t
make up a well-defined iterative h.t-s.τ̄ -d. on R, and also implies that δ̄�(R) ⊆ 〈t − q〉R because
(�)t ≡ (�)q = 0 modulo 〈t − q〉. Since τ̄ and δ̄ reduce to τ and δ modulo 〈t − q〉, we have an
isomorphism R/〈t − q〉[x; τ̄ , δ̄] ∼= R[x; τ, δ] whereby {d̄i} induces an iterative h.q-s.τ -d. {di}
on R. The reduction of the maps from R to R also implies the remaining results. �

We will find that all of the conditions assumed above are satisfied by the common quantized
coordinate rings and related examples, which will be discussed in a subsequent section.

3. The τ -derivation removing homomorphism

The propositions in this section were shown to hold when q is not a root of unity in [5].
The proofs, which are computational in nature and related to those presented in detail by Cau-
chon, have been omitted. Let A = R[x; τ, δ], and suppose that δ is locally nilpotent. Set S =
{xn | n ∈ N ∪ {0}} ⊂ A. The following result is well known.

Lemma 3.1. The set S is a denominator set in A.
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Suppose also that the derivation δ extends to an iterative, locally nilpotent higher q-skew
τ -derivation {di} on R and that q �= 1. Denote Â = AS−1 = S−1A, the localization of A with
respect to S, and define a map f :R → Â by

f (r) =
∞∑

n=0

q
n(n+1)

2 (q − 1)−ndnτ
−n(r)x−n,

noting that {di} is locally nilpotent and that q − 1 is invertible. If q is not a root of unity and {di}
is obtained from a q-skew τ -derivation δ as in (5), the formula for f can be rewritten as

f (r) =
∞∑

n=0

q
n(n+1)

2
(q − 1)−n

(n)!q δnτ−n(r)x−n.

The rewritten formula matches the one presented in [5, Section 2] when q is replaced by q−1 to
account for the difference between δτ = qτδ (used here) and τδ = qδτ (used in [5]). We will
show that f is a homomorphism and that the multiplication in imf is made simpler than that in
A by removing the derivation, as seen in the following.

Proposition 3.2. If r ∈ R, then xf (r) = f (τ(r))x in Â.

From Proposition 3.2, it follows by routine induction that

xmf (r) = f
(
τm(r)

)
xm ∀m ∈ Z. (6)

This is what we need in order to show that our map is indeed a k-algebra homomorphism.

Proposition 3.3. The map f :R → Â is a k-algebra homomorphism.

Proposition 3.4.

(1) The map f extends uniquely to an algebra homomorphism, also denoted f , of R[y; τ ] to Â

satisfying f (y) = x.
(2) The extended homomorphism is injective.

Definition 3.5. The algebra homomorphism f : R[y; τ ] → Â = AS−1 is called the derivation
removing homomorphism. The image of f , call it A′, is the subalgebra of Â = AS−1 gener-
ated by x and f (R), and is isomorphic (as an algebra) to R[y; τ ] by the derivation removing
homomorphism f .

Observe that A′ contains the multiplicative system S = {xn | n ∈ N ∪ {0}}. Since Eq. (6) holds
and f (y) = x, the elements of this set are normal in A′. Hence, S satisfies the (two-sided) Ore
condition in A′. The elements of S are regular in A′ because they are regular in Â, and thus:

Proposition 3.6. A′S−1 = AS−1.
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This equality of quotient rings reveals that if A is a PI ring, then

PIdegA = PIdegA′ = PIdegR[y; τ ],

with the second equality arising from the derivation removing homomorphism f . This recovers
the result of Jøndrup [16] without the assumption that k has characteristic zero. We summarize
the results of this section in the following theorem.

Theorem 3.7. Let k be a field, R a k-algebra and A = R[x; τ, δ] a q-skew polynomial ring
in which δ extends to a locally nilpotent, iterative h.q-s.τ -d. {di} on R for some q ∈ k×,
q �= 1. Let S be the Ore set in A generated by x, and define a map f :R → AS−1 by

f (r) = ∑∞
n=0 q

n(n+1)
2 (q − 1)−ndnτ

−n(r)x−n. Then f is a k-algebra homomorphism, and it
extends to an injective homomorphism f :R[y; τ ] → AS−1 sending y to x. Furthermore, the
extension f :R[y±1; τ ] → AS−1 is an isomorphism. So there is PI degree parity between A and
R[y; τ ]. Moreover, if R is a noetherian domain, then FractA ∼= FractR[y; τ ].

4. Main theorem

In the case where A is an iterated skew polynomial ring, we would like to apply repeatedly
the method presented above to remove all of the derivations and compare the resulting Ore local-
izations. We must first establish some facts about the behavior of h.q-s.τ -d. when the variables
adjoined to the coefficient ring are rearranged, and about iterated localization. The results of
these lemmas will ensure that after the induction step in the proof of the main theorem we are
left with a ring to which the method of the preceding section applies.

The first parts of the following lemmas hold in a broader class of skew polynomial rings and
also when the q-skew condition is imposed. The final parts assert that h.q-s.τ -d. are preserved
when rearranging of the variables is permissible.

Lemma 4.1. Let S = R[x; τ, δ], A = R[x; τ, δ][y;σ ], and Â = R[x; τ, δ][y±1;σ ], where
σ(R) = R and σ(x) = λx for some λ ∈ k×.

(1) Then A = R[y;σ ′][x; τ ′; δ′], and Â = R[y±1;σ ′][x; τ ′; δ′], where σ ′ = σ |R , τ ′|R = τ ,
δ′|R = δ, τ ′(y) = λ−1y, and δ′(y) = 0.

(2) If (τ, δ) is q-skew, then so is (τ ′, δ′).
(3) Suppose further that δ extends to a h.q-s.τ -d. {di} on R, and that σdi = λidiσ for all i. Then

the τ ′-derivation δ′ extends to a h.q-s.τ ′-d. {d ′
i} on R[y±1;σ ′] such that the restrictions of

the d ′
i to R coincide with di , and d ′

i (y) = 0 for all i � 1. Moreover, {d ′
i} restricts to a h.q-

s.τ ′-d. on R[y;σ ′].
(a) If {di} is iterative, then {d ′

i} is iterative.
(b) If {di} is locally nilpotent, then {d ′

i} is locally nilpotent.

Proof. (1) Routine details omitted so as not to try the patience of the reader.
(2) Suppose that (τ, δ) is q-skew on R. It is easy to check that the two τ ′-derivations τ ′−1δ′τ ′

and qδ′ agree on a set of generators for R[y±1;σ ′].
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(3) Define a sequence of maps d ′
i : R[y±1;σ ′] → R[y±1;σ ′] by

d ′
i

(
m∑

j=−m

rjy
j

)
=

m∑
j=−m

di(rj )y
j .

It is not difficult to verify that this sequence is a h.q-s.τ ′-d. �
Lemma 4.2. Let

A = R[x1; τ1, δ1][x2; τ2, δ2] · · · [xn; τn, δn][y;σ ],
Â = R[x1; τ1, δ1][x2; τ2, δ2] · · · [xn; τn, δn]

[
y±1;σ ]

,

where σ(R) = R, and for all i ∈ {1, . . . , n}, σ(xi) = λixi for some nonzero λi ∈ k. Let Aj =
R[x1; τ1; δ1][x2; τ2, δ2] · · · [xj ; τj , δj ] for j = 1,2, . . . , n, and A0 = R.

(1) Then

A = R[y;σ ∗][x1; τ ′
1, δ

′
1

][
x2; τ ′

2, δ
′
2

] · · · [xn; τ ′
n, δ

′
n

]
,

Â = R
[
y±1;σ ∗][x1; τ ′

1, δ
′
1

][
x2; τ ′

2, δ
′
2

] · · · [xn; τ ′
n, δ

′
n

]
,

where σ ∗ = σ |R , τ ′
i |Aj

= τi , δ′
i |Aj

= δi , τ ′
i (y) = λ−1

i y, and δ′
i (y) = 0 for all 1 � i � n and

j � i − 1.
(2) If (τi, δi) is qi -skew for any 1 � i � n, then (τ ′

i , δ
′
i ) is also qi -skew.

(3) Suppose that each δi extends to a h.qi -s.τi -d. {di,p}∞p=0, and that σdi,p = λ
p
i di,pσ on

Ai−1 for all i and p. Then each δ′
i extends to a h.qi -s.τ ′

i -d. {d ′
i,p}∞p=0 on the algebra

R〈y, y−1, x1, . . . , xi−1〉, where d ′
i,p coincides with di,p on Aj , for j < i, and d ′

i,p(y) = 0
for p � 1. Moreover, {d ′

i,p} restricts to a h.qi -s.τ ′
i -d. on R〈y, x1, . . . , xi−1〉.

(a) If {di,p} is iterative for any 1 � i � n, then {d ′
i,p} is iterative.

(b) If {di,p} is locally nilpotent for any 1 � i � n, then {d ′
i,p} is locally nilpotent.

Proof. (1) The condition σ(xi) = λixi for all i implies that σ(Ai) = Ai . The result can then be
proved using induction on n and Lemma 4.1.

(2) Consider the two τ ′
i -derivations τ ′−1

i δ′
iτ

′
i and qiδ

′
i on the ring

R
[
y±1;σ ∗][x1; τ ′

1, δ
′
1

] · · · [xi−1; τ ′
i−1, δ

′
i−1

]
for 1 � i � n. They agree on a full set of generators, giving the result.

(3) Suppose the result holds for the algebra R[x1; τ1, δ1] · · · [xn−1; τn−1, δn−1][y±1;σ ]. Then
Lemma 4.1 may be applied, with An−1 providing the coefficients, to get

An−1[xn; τn, δn]
[
y±1;σ ] = An−1

[
y±1;σ ′][xn; τ ′

n, δ
′
n

]
,

where δ′
n extends to a h.qn-s.τ ′

n-d. {d ′
n,p} on An−1[y±1]. The induction hypothesis gives the

result. �
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Definition 4.3. For a k-algebra A and a, b ∈ A, we say that a and b scalar commute if there is an
element α ∈ k× such that ab = αba. We may also say that a and b α-commute.

In the following two lemmas, we let D denote the division ring of fractions for the noetherian
domain A. When comparing localizations of A, we identify them as subrings of D.

Lemma 4.4. Let A be a noetherian domain, S ⊆ A \ {0} an Ore set. Let T be an Ore set in
AS−1 \ {0} with S ⊆ T .

(1) Then there exists an Ore set T̃ ⊆ A \ {0} with S ⊆ T̃ such that AT̃ −1 = (AS−1)T −1.
(2) Suppose A is a k-algebra and S is generated by s1, . . . , sn satisfying sisj = γij sj si for all

i, j and some γij ∈ k×. Further suppose that T is generated by S ∪ t for some t ∈ AS−1 that
satisfies si t = λitsi for all i and some λi ∈ k×. Then there exist a cyclic Ore set T̂ ⊆ A \ {0}
and an (n + 1)-generator Ore set Ŝ ⊆ A \ {0} such that S ⊆ Ŝ, and (AS−1)T −1 = AT̂ −1 =
AŜ−1.

Proof. (1) Consider T ∩ A, the subset in T of elements with a denominator of 1. Clearly, this is
a multiplicative set in A which contains S. Set T̃ = T ∩ A. Let a ∈ T̃ and α ∈ A. Then a ∈ T ,
and since α ∈ AS−1, there exist b′ ∈ T and β ′ ∈ AS−1 such that aβ ′ = αb′. By [11, 10.2],
there exist y ∈ S, and b,β ∈ A such that β ′ = βy−1 and b′ = by−1; hence, aβy−1 = αby−1 in
AS−1. It follows that aβ = αb in A. So T̃ satisfies the right Ore condition in A, and the left Ore
condition by symmetry. By the universal property, AT̃ −1 ∼= (AS−1)T −1. As subrings of D, we
have AT̃ −1 = (AS−1)T −1.

(2) The generating element t has the form t = ā(s
m1
1 s

m2
2 · · · smn

n )−1 for some mi ∈ N, and
ā ∈ A. For any si ∈ S, we have

si ā
(
s
m1
1 s

m2
2 · · · smn

n

)−1 = λiā
(
s
m1
1 s

m2
2 · · · smn

n

)−1
si = μλiāsi

(
s
m1
1 s

m2
2 · · · smn

n

)−1
,

where μ is a product of powers of the γij . So ā scalar commutes with the generators of S via
the relations si ā = μλiāsi . Let Ŝ be the multiplicative set generated by ā, s1, . . . , sn in A, and
T̂ the multiplicative set generated by ās1s2 · · · sn in A. We have (AS−1)T −1 = AT̃ −1, where
T̃ = T ∩A as in part (1). From the scalar commuting relations it follows that any element at̃−1 ∈
AT̃ −1 may be written in the form b(ās1 · · · sn)−m for some m ∈ N ∪ {0}, b ∈ A, or the form
cā−�n+1s

−�1
1 · · · s−�n

n , for �j ∈ N ∪ {0}, c ∈ A. So we conclude that Ŝ and T̂ are Ore sets in A and
that (AS−1)T −1 = AT̂ −1 = AŜ−1. �
Lemma 4.5. Let A be a noetherian domain, S1 ⊆ A\{0} an Ore set, and for integers j = 2, . . . , n

let Sj be an Ore set in ((AS−1
1 ) · · ·)S−1

j−1 \ {0} with Sj−1 ⊆ Sj .

(1) Then there exists an Ore set T ⊆ A \ {0} such that

AT −1 = (((
AS−1

1

)
S−1

2

) · · ·)S−1
n .

(2) Suppose A is a k-algebra, S1 is generated by s1, and for j = 2, . . . , n, Sj is generated by
Sj−1 ∪ {sj }, where sisj = γij sj si for some multiplicatively antisymmetric (γij ) ∈ Mn(k

×).
Then there are a cyclic Ore set T̂ ⊆ A and an n-generator Ore set Ŝ ⊆ A such that S1 ⊆ Ŝ,
and ((AS−1)S−1) · · ·S−1 = AT̂ −1 = AŜ−1.
1 2 n
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Proof. These results are proved by induction on n. �
In the proof of the main theorem, we will use without mention the facts gathered here. For

greater details on these statements, see [11, 10X, 10Y] and [8, 1.4].

(1) Given a noetherian ring A and a normal element x ∈ A, the multiplicative set generated by
x is an Ore set.

(2) The multiplicative set generated by a nonempty family of right Ore sets is right Ore.
(3) Let A = R[x; τ, δ], and S a right denominator set in R such that τ(S) = S. Then S is a right

denominator set in A and the identity map on AS−1 extends to an isomorphism of AS−1

onto (RS−1)[x; τ, δ] sending x1−1 to x. Note that if A is a k-algebra, τ , δ are k-linear, and
τ(k×S) = k×S, then the result holds because S is a denominator set if and only if k×S is a
denominator set.

Theorem 4.6. Let R be a k-algebra and noetherian domain,

A = R[x1; τ1, δ1] · · · [xn; τn, δn],

where each τi is a k-linear automorphism of R〈xi, . . . , xi−1〉 such that τi(xj ) = λij xj for all i, j

with 1 � j < i � n and some λij ∈ k×, and where each δi is a k-linear τi -derivation. Assume
that there exist elements qi ∈ k× with qi �= 1 such that δiτi = qiτiδi , and that δi extends to a
locally nilpotent, iterative h.qi -s.τi -d. on R〈xi, . . . , xi−1〉 for i = 1, . . . , n.

(1) Then there exists an Ore set T ⊆ A generated by n elements of A such that

AT −1 ∼= R
[
y±1

1 ; τ1
][

y±1
2 ; τ ′

2

] · · · [y±1
n ; τ ′

n

]
where τ ′

i |R = τi and τ ′
i (yj ) = λij yj for all i, j with 1 � j < i � n.

(2) There is PI degree parity between A and R[y1; τ1][y2; τ ′
2] · · · [yn; τ ′

n]. Moreover, these alge-
bras have isomorphic division rings of fractions.

Proof. (a) Suppose, inductively, that we have

R[x1; τ1, δ1]
[
y±1

2 ; τ2
] · · · [y±1

n ; τ ′
n

] ∼= AS−1
2

where the restriction of τ ′
i to R〈x1〉 coincides with τi , τ ′

i (ym) = λimym for 2 � i � n and
1 < m < i, and S2 is an Ore set in A generated by n − 1 elements from A. Then by Lemma 4.2

AS−1
2

∼= R
[
y±1

2 ; τ ′′
2

] · · · [y±1
n ; τ ′′

n

][
x1; τ ′

1, δ
′
1

]
(7)

where the restrictions of τ ′
1 and δ′

1 to R coincide with τ1 and δ1, τ ′
1(yj ) = λ−1

j1 yj , δ′
1(yj ) = 0, and

τ ′′
i coincides with the restriction of τi to R〈y2, . . . , yi−1〉 for 2 � i � n. Observe that by Lem-

mas 4.2 and 2.7 we also have δ′
1τ

′
1 = q1τ

′
1δ

′
1, and that δ′

1 extends to a locally nilpotent iterative
h.q1-s.τ -d. on R〈y±1

2 , . . . , y±1
n 〉. Then applying the derivation removing homomorphism to the

right-hand side of (7) gives an isomorphism(
AS−1)T −1 ∼= R

[
y±1; τ ′] · · · [y±1

n ; τ ′
n

][
y±1; τ ′]
2 1 2 2 1 1
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where T1 ⊆ AS−1
2 is an Ore set generated by one element of AS−1

2 . Then Lemma 4.5 and a
reordering of variables show the existence of an Ore set T ⊆ A, generated by n elements of A,
such that AT −1 ∼= R[y±1

1 ; τ1][y±1
2 ; τ ′

2] · · · [y±1
n ; τ ′

n].
(2) This follows from part (1). �

Corollary 4.7. Let A = k[x1; τ1, δ1] · · · [xn; τn, δn] with the hypotheses as in Theorem 4.6. Set
λ = (λij ). Then

(1) A and Oλ(k
n) have isomorphic division rings of fractions.

(2) A is a PI-algebra if and only if all the λij are roots of unity, in which case A and Oλ(k
n)

have the same PI degree.

5. Examples

We will demonstrate how each of the following k-algebras satisfies all the conditions of The-
orem 2.8. Then Corollary 4.7 is applied to obtain an isomorphism of quotient division rings
(thereby confirming the quantum Gel’fand–Kirillov conjecture) and PI degree parity with a mul-
tiparameter quantum affine space. For concreteness, we will mainly discuss the single parameter
cases of these examples; multiparameter cases are addressed in [12].

When calculating the PI degree of a quantum affine space, we encounter an antisymmetric, or
skew-symmetric, integral matrix. As proved in [23, Theorem IV.1], such a matrix is congruent to
a matrix in skew normal form.

Theorem 5.1 (Newman). Let A be a skew-symmetric matrix of rank r which belongs to Mn(R),
where the commutative principal ideal domain R is not of characteristic 2. Then r = 2s, and
A is congruent to a block diagonal matrix S = diag(B1, . . . ,Bs,0, . . . ,0), where Bi = ( 0 hi−hi 0

)
and hi | hi+1, 1 � i � s − 1.

The same result, in the language of alternating bilinear forms, can be found in [3, Section 5.1].
The matrix S in Theorem 5.1 is clearly equivalent to the more familiar Smith normal form,

diag(h1, h1, h2, h2, . . . , hs, hs,0,0, . . . ,0), where the diagonal entries are the invariant factors
of the matrix A. In the examples that follow, we outline the operations necessary to obtain the
Smith normal form.

Definition 5.2. Let A = k[x1; τ1, δ1] · · · [xn; τn, δn] and A′ = k[x1; τ1] · · · [xn; τn] be iterated
skew polynomial rings. (1) If there exists Q = (q1, . . . , qn) ∈ (k×)n such that δiτi = qiτiδi for
i = 1, . . . , n, then A is called an iterated Q-skew polynomial ring. (2) If there exist λji ∈ k×
such that τj (xi) = λjixi for all i < j , then set λij = λ−1

ji and λii = 1 for all i. We call
Λ = (λij ) ∈ Mn(k

×) the matrix of relations for A′.

The following lemma is proved by induction on the length of monomials in the given genera-
tors.

Lemma 5.3. Let C be a commutative k-algebra, A a C-algebra, B ⊆ A a C-subalgebra gener-
ated by {b1, b2, . . .}. Let τ be a C-algebra automorphism of A, and δ a u-skew τ -derivation on
A for some unit u ∈ C. If τ(bj ) ∈ B and δn(bj ) ∈ (n)!uB for all j, n, then δn(B) ⊆ (n)!uB for
all n.
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For a first family of examples, we take odd-dimensional quantum Euclidean spaces. The
even-dimensional ones will be covered in Example 5.4. With appropriate modifications to the
parameters of this first example, the omitted details of the successors become clear.

5.1. The coordinate ring of odd-dimensional quantum Euclidean space; Oq(ok2n+1)

For q ∈ k×, assuming q has a (fixed) square root q1/2 ∈ k, the k-algebra Oq(ok2n+1) may be
presented as an iterated skew polynomial ring

k[w][y1;σ1][x1; τ1, δ1] · · · [yn;σn][xn; τn, δn]

with automorphisms σi, τi and derivations δi defined by

σi(w) = q−1w, all i,

τi(w) = qw, all i,

σi(yj ) = q−1yj , j < i,

σi(xj ) = q−1xj , j < i,

τi(yj ) = qyj , i �= j,

τi(xj ) = qxj , j < i,

τi(yi) = yi, all i,

δi(w) = δi(xj ) = δi(yj ) = 0, j < i,

δi(yi) = (
q1/2 − q3/2)w2 + (

1 − q2)∑
�<i

y�x�, all i.

Quantum Euclidean spaces have been studied since 1990 when they were introduced by
Reshetikhin et al. in [28]. The three-dimensional case has applications to the structure of space–
time at small distances. Musson simplified the original set of relations in [22], and Oh further
simplified them, renaming the generators ω, xi , yi in [24]. Here, we have made a change to Oh’s
variables, yi �→ qiyi , to obtain the relations in our presentation of Oq(ok2n+1).

Routine computations show that τ−1
i δiτi(yi) = q−2δi(yi) for all i, and so we conclude

that each (τi, δi) is a q−2-skew derivation. We may present the analogous k[t±1]-algebra
Ot (ok[t±1]2n+1) as an iterated skew polynomial ring with coefficient ring k[t±1] and genera-
tors w, yi , xi for i = 1, . . . , n,

k
[
t±1][w][y1; σ̄1][x1; τ̄1, δ̄1] · · · [yn; σ̄n][xn; τ̄n, δ̄n]

where the automorphisms and derivations are defined analogously to those of the algebra
Oq(ok2n+1) with t ∈ k[t±1] replacing q ∈ k×. So each (τ̄i , δ̄i ) is a t−2-skew derivation. It is
immediate that

Ot

(
ok

[
t±1]2n+1)

/〈t − q〉 ∼= Oq

(
ok2n+1)

with each τ̄i and δ̄i reducing to τi and δi respectively.
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Let Aj denote the k[t±1]-subalgebra generated by w, ym, xm for m < j , and yj . To show that
δ̄i
j (Aj ) ⊆ (i)!t−2Aj , we apply Lemma 5.3 noting that δ̄i

j (yj ) has been given for i = 1 and is zero

for i > 1. So, by Theorem 2.8, each δi in our presentation of Oq(ok2n+1) extends to an iterative,
locally nilpotent h.q−2-s.τi -d. on an appropriate subalgebra. Then Corollary 4.7 gives

FractOq

(
ok2n+1) ∼= FractOB

(
k2n+1),

where the matrix of relations is

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 q q−1 q q−1 · · · q q−1

q−1 1 1 q q−1 · · · q q−1

q 1 1 q q−1 · · · q q−1

q−1 q−1 q−1 1 1 · · · q q−1

q q q 1 1 · · · q q−1

...
...

...
...

...
. . .

...
...

q−1 q−1 q−1 q−1 q−1 · · · 1 1
q q q q q · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If q ∈ k× is a root of unity, we may assume without loss of generality that it is a primitive r th
root of unity. Then the powers of q from the matrix B become the entries of a (2n+1)× (2n+1)

integer matrix

B ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 1 −1 · · · 1 −1
−1 0 0 1 −1 · · · 1 −1
1 0 0 1 −1 · · · 1 −1

−1 −1 −1 0 0 · · · 1 −1
1 1 1 0 0 · · · 1 −1
...

...
...

...
...

. . .
...

...

−1 −1 −1 −1 −1 · · · 0 0
1 1 1 1 1 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, PIdegOq(ok2n+1) can be computed from Theorem 1.3(2) using the matrix B ′. The cardi-
nality of the image will not be changed if we first perform some row reductions on B ′. Letting
N = 2n + 1, n > 2, we manipulate the rows as follows.

• For i = 2,4,6, . . . ,N − 1, replace row i with row i + row (i + 1).
• For i = N,N − 2,N − 4, . . . ,5, replace row i with row i − row (i − 2).
• Replace row 5 with row 5 − row 1.
• For i = 2,4,6, . . . ,N − 5, replace row i with row i − 2row (i + 5).
• Multiply the even numbered rows, except row 2n − 2, by −1.

The resulting matrix has 2n pivots and one zero row. We put the rows in this order

3,1,5,7,2,9,4,11,6,13, . . . ,2i,2i + 7, . . . ,N,N − 5,N − 3,N − 1
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to place the pivots on the main diagonal and the zero row in the last position. Then we have a
matrix of this form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 −1

2
1 1 ∗

4
1 1

4

0
. . .

1 1
4

2 −2
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal entries of this echelon matrix do not yet reveal the size of its image because the
pivot in row three does not divide all of the (suppressed) entries in its row when n � 3. So more
row reduction is needed.

First replace row 3 with row 3 + ∑� n−2
2 �

i=1 row(4i + 2).
For n even and j = 5,7,9, . . . ,2n − 3, replace row j as follows:

for j = 4p + 1,p � 1, use row j +
n−2

2∑
i=p+1

2 · row(4i) + row(2n);

for j = 4p + 3,p � 1, use row j +
n−2

2∑
i=p+1

2 · row(4i + 2).

For n odd and j = 5,7,9, . . . ,2n − 5, replace row j as follows:

for j = 4p + 1,p � 1, use row j +
� n

2 �∑
i=p+1

2 · row(4i) + 2 · row(2n);

for j = 4p + 3,p � 1, use row j +
� n−2

2 �∑
i=p+1

2 · row(4i + 2) + row(2n).

Then add row(2n) to row(2n − 3), and add 2 · row(2n) to row(2n − 1). For integers 4 � j �
2n− 1, with j �≡ 2 (mod 4), add (−1)j col 3 to col j . Subtract col(2n+ 1) from col 3; add row 3
to row(2n − 2); and subtract 2 · row 3 from row(2n). The result is an upper echelon matrix in
which each pivot divides all the nonzero entries in its row. So it is trivial to diagonalize by column
operations. The Smith normal form for n odd is diag(1,1, . . . ,1,4,4, . . . ,4,0) with n + 1 ones
and n − 1 fours. The Smith normal form for n even is diag(1,1, . . . ,1,2,2,4,4, . . . ,4,0) with
n ones, two twos, and n − 2 fours.
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For the cases n = 1,2, the row-reduced matrices are, respectively,

(1 0 0
0 1 −1
0 0 0

)
,

⎛⎜⎜⎜⎝
1 0 0 1 −1
0 1 −1 1 −1
0 0 2 −2 2
0 0 0 2 −2
0 0 0 0 0

⎞⎟⎟⎟⎠ .

Hence we have, for all n > 0,

PIdegOq

(
ok2n+1) =

{
rn, r odd,

rn/2� n
2 �, r even, r /∈ 4Z,

rn/2n−1, r ∈ 4Z.

5.2. The multiparameter quantized Weyl algebras; A
Q,Γ
n (k)

For Q = (q1, . . . , qn) ∈ (k×)n and Γ = (γij ) a multiplicatively antisymmetric n × n matrix

over k, the algebra A
Q,Γ
n (k), studied in [17] and [19], may be presented as an iterated skew

polynomial ring

k[y1][x1; τ1, δ1][y2;σ2][x2; τ2, δ2] · · · [yn;σn][xn; τn, δn]

where the automorphisms and derivations are defined by

σi(yj ) = γjiyj , j < i,

σi(xj ) = γij xj , j < i,

τi(yj ) = qjγjiyj , j < i,

τi(xj ) = q−1
j γij xj , j < i,

τi(yi) = qiyi, all i,

δi(xj ) = δi(yj ) = 0, j < i,

δi(yi) = 1 +
∑
�<i

(q� − 1)y�x�, all i.

Corollary 4.7 gives FractAQ,Γ
n (k) ∼= FractOΛ(k2n), where the 2n × 2n matrix of relations Λ is

comprised of 2 × 2 blocks

Bii =
(

1 q−1
i

qi 1

)
, for all i;

Bij =
(

γji q−1
i γji

γij qiγij

)
, for i < j ;

Bij =
(

γji γij
−1

)
, for i > j.
qjγji qj γij
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Consider the single parameter case, denoted A
q
n(k), where qi = q for all i, and γij = 1 for i < j ,

relegating the σi to identity maps. Assuming that q is a primitive r th root of unity, then δi(y
r
i ) = 0

and τi(y
r
i ) = yr

i for all i, implying that yr
i is central. The definition of the τi , along with the

q-Liebnitz rule, implies that xr
i is central for all i. So the algebra A

q
n(k) is a finitely generated

module over the central subring k[yr
i , x

r
1, . . . , yr

n, x
r
n]. Using Corollary 4.7 and the suitable matrix

of relations verifies that PIdegA
q
n(k) = rn.

5.3. The multiparameter coordinate ring of quantum n × n matrices; Oλ,p(Mn(k))

The multiparameter coordinate ring of quantum n × n matrices was introduced by Artin,
Schelter, and Tate in [2]. The k-algebra Oλ,p(Mn(k)) is defined by generators xij for i, j =
1, . . . , n and relations

x�mxij =
⎧⎨⎩

p�ipjmxij x�m + (λ − 1)p�iximxlj (� > i, m > j),

λp�ipjmxij x�m (� > i,m � j),

pjmxij x�m (� = i,m > j),

where λ ∈ k× and p = (pij ) ∈ Mn2(k×) is multiplicatively antisymmetric. It can also be pre-
sented as an iterated skew polynomial ring

k[x11][x12; τ12] · · · [xij ; τij , δij ] · · · [xnn; τnn, δnn]

where each τ�m and δ�m is k-linear and satisfies

τ�m(xij ) =
⎧⎨⎩

p�ipjmxij when � > i and m �= j,

λp�ipjmxij when � > i and m = j,

pjmxij when � = i and m > j,

δ�m(xij ) =
{

(λ − 1)p�iximx�j when � > i and m > j,

0 otherwise.

Corollary 4.7 gives FractOλ,p(Mn(k)) ∼= FractOΛ(kn2
), where the matrix of relations Λ =

(bij ) ∈ Mn2(k) is comprised of n × n blocks

Bii =

⎛⎜⎜⎜⎜⎝
1 p21 p31 · · · pn1

p12 1 p32 · · · pn2
p13 p23 1 · · · pn3
...

...
. . .

...

p1n p2n p3n · · · 1

⎞⎟⎟⎟⎟⎠ for all i,

Bij =

⎛⎜⎜⎜⎜⎝
λ−1pij pijp21 pijp31 · · · pijpn1

λ−1pijp12 λ−1pij pijp32 · · · pijpn2
λ−1pijp13 λ−1pijp23 λ−1pij · · · pijpn3

...
...

. . .
...

−1 −1 −1 −1

⎞⎟⎟⎟⎟⎠ , for i < j,
λ pijp1n λ pijp2n λ pijp3n · · · λ pij
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Bij =

⎛⎜⎜⎜⎜⎝
λpij λpijp21 λpijp31 · · · λpijpn1

pijp12 λpij λpijp32 · · · λpijpn2
pijp13 pijp23 λpij · · · λpijpn3

...
...

. . .
...

pijp1n pijp2n pijp3n · · · λpij

⎞⎟⎟⎟⎟⎠ , for i > j.

The single parameter quantized coordinate ring of n × n matrices, Oq(Mn(k)), is defined over
k analogously to Oλ,p(Mn(k)), but with relations that are recovered by setting λ = q−2 and
pij = q for all i > j . When k has characteristic zero and q is a primitive mth root of unity for m

odd, Jakobsen and Zhang found in [15] that PIdegOq(Mn(k)) = m
n(n−1)

2 by using De Concini and
Procesi’s tool given in Theorem 1.3. This result is reproved in [14] using results of De Concini
and Procesi and also Jøndrup’s work from [16]. Now we can recover PIdegOq(Mn(k)) without
the assumption that k has characteristic zero.

The matrix of relations can be reduced through row operations to an upper triangular n2 × n2

matrix with 2n − 2 ones, (n − 1)(n − 2) twos, and n zeroes on the diagonal. Assuming that
q ∈ k is a primitive mth root of unity, and recalling Theorem 1.3, the cardinality of the image in

(Z/mZ)n
2

is mn2−n if m is odd. Thus we conclude that PIdegOqMn(k) = m
n(n−1)

2 , recovering the
result of Jakobsen and Zhang [15] in characteristic zero. By similar methods, one can show that

PIdegOqMn(k) = m
n(n−1)

2 /2
(n−1)(n−2)

2 when m is even. For details on this result see [15] or [12].

5.4. The algebra K
P,Q
n,Γ (k), which generalizes the coordinate rings of even-dimensional

quantum Euclidean space and quantum symplectic space

For P = (p1, . . . , pn) and Q = (q1, . . . , qn) in (k×)n with pi �= qi for all i = 1, . . . , n, and
Γ = (γij ) ∈ Mn(k

×) multiplicatively antisymmetric, the k-algebra K
P,Q
n,Γ (k) introduced in [13]

is defined by generators xi, yi for i = 1, . . . , n and relations

yiyj = γij yj yi, all i, j,

xixj = qip
−1
j γij xj xi, i < j,

xiyj = pjγjiyj xi, i < j,

xiyj = qjγjiyj xi, i > j,

xiyi = qiyixi +
∑
�<i

(q� − p�)y�x�, all i.

(An odd-dimensional analogue of K
P,Q
n,Γ (k) is developed in [9].)

This algebra may be presented in the form of an iterated skew polynomial ring

k[y1][x1; τ1][y2;σ2][x2; τ2, δ2] · · · [yn;σn][xn; τn, δn]
where the automorphisms τi , σi and derivations δi are defined by

σi(yj ) = γij yj , j < i,

σi(xj ) = p−1
i γjixj , j < i,

τ (y ) = q γ y , j < i,
i j j j i j
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τi(xj ) = q−1
j piγij xj , j < i,

τi(yi) = qiyi, all i,

δi(xj ) = δi(yj ) = 0, j < i,

δi(yi) =
∑
�<i

(q� − p�)y�x�, all i.

Corollary 4.7 gives FractKP,Q
n,Γ (k) ∼= FractOΛ(k2n), where the 2n × 2n matrix of relations Λ =

(Bij ) is comprised of 2 × 2 blocks

Bii =
(

1 q−1
i

qi 1

)
, for all i;

Bij =
(

γij q−1
i γji

pj γji qip
−1
j γij

)
, for i < j ;

Bij =
(

γij p−1
i γij

qj γji q−1
j piγij

)
, for i > j.

Suppose qi is an ri th root of unity, pi is an si th root of unity, and γij is an rij th root of unity
for all i, j . Let r = lcm{ri, si , γij | i, j = 1, . . . , n}.

The coordinate ring of quantum Euclidean 2n-space over k, Oq(ok2n), is formed by setting
qi = 1, pi = q−2 for all i, and γij = q−1 for i < j in the parameters Q, P , and Γ (see [13,
Example 2.6]). By a method similar to that used in Example 5.1, suppressed here in the interest
of saving space but listed explicitly in [12], we obtain

PIdegOq

(
ok2n

) =

⎧⎪⎨⎪⎩
rn−1, r odd,

rn−1/2� n−1
2 �, r even, r /∈ 4Z,

rn−1/2n−2, r ∈ 4Z.

As a specific case of K
P,Q
n,Γ (k), quantum symplectic space Oq(sp(k2n)) is formed by setting

qi = q−2 and pi = 1 for all i, and γij = q for i < j (see [13, Example 2.4]). With these parame-
ters we have, for all n,

PIdegOq

(
sp

(
k2n

)) =

⎧⎪⎨⎪⎩
rn, r odd,

rn/2� n+1
2 �, r even, r /∈ 4Z,

rn/2n, r ∈ 4Z.

6. Prime factor localizations

In this section we present a structure theorem for completely prime factors of iterated skew
polynomial rings analogous to the main theorem of section four. Applying this result to the
algebras studied in section five, we would like to strengthen it to the form of the quantum
Gel’fand–Kirillov conjecture. Recall that the assumptions about skew polynomial rings from
section one are still in effect.
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Theorem 6.1. Let A = R[x; τ, δ], where R is noetherian and δτ = qτδ for some q ∈ k×. Assume
that δ extends to a locally nilpotent, iterative h.q-s.τ -d., {di}, on R. Let P ∈ specA be completely
prime. Then

(1) there exists a cyclic Ore set S in A/P such that (A/P )S−1 is isomorphic to (R[y; τ ]/Q)Y−1

for some completely prime Q ∈ specR[y; τ ] and cyclic Ore set Y ,
(2) FractA/P ∼= FractR[y; τ ]/Q.

Proof. The completely prime ideal P naturally satisfies one of two cases: x ∈ P or x /∈ P . If
x ∈ P , then xA ⊆ P and Ax ⊆ P . So the relation xr = τ(r)x + δ(r) implies that δ(r) ∈ P

for all r ∈ R. Hence, there is a completely prime ideal I ∈ R such that A/P ∼= R/I ∼=
R[y; τ ]/(I + 〈y〉). In this case, we can take S = Y = {1} and localize. If x /∈ P , then xi /∈ P

for all i ∈ N ∪ {0} because A/P is a domain. Letting S = {1, x, x2, . . .}, which is a known
denominator set in A, we have P ∩ S = ∅. Since extension and contraction provide in-
verse bijections between the sets specAS−1 and {I ∈ specA | I ∩ S = ∅}, we know that
P e ∈ specAS−1. From Theorem 3.7, we have AS−1 ∼= R[y±1; τ ], a localization of R[y; τ ].
So there is a completely prime ideal Q̄ � R[y±1; τ ] such that AS−1/P e ∼= R[y±1; τ ]/Q̄. Setting
Y = {1, y, y2, . . . , }, contraction to R[y; τ ] gives a completely prime ideal Q, where Q∩Y = ∅,
such that R[y±1; τ ]/Q̄ ∼= (R[y; τ ]/Q)Y−1. The canonical projection π :AS−1 → (A/P )S−1

gives AS−1/P e ∼= (A/P )S−1. Thus (A/P )S−1 ∼= (R[y; τ ]/Q)Y−1. �
Theorem 6.2. Let R be a noetherian k-algebra, and let

A = R[x1, τ1, δ1] · · · [xn; τn, δn]

be an iterated skew polynomial ring where, for j < i and λij ∈ k×, τi(xj ) = λij xj , and δi is a qi -
skew τi -derivation, qi �= 1, which extends to a locally nilpotent, iterative h.qi -s.τi -d. {di,p}∞p=0 on
R[x1; τ1, δ1] · · · [xi−1; τi−1, δi−1] for all i. Let A′ = R[y1; τ ′

1][y2; τ ′
2] · · · [yn; τ ′

n] where τ ′
i (yj ) =

λij yj for all i with j < i and the same units λij as above. Let P be a completely prime ideal
in A. Then

(1) there exists a finitely generated Ore set Sn in A/P such that (A/P )S−1
n is isomorphic to(

A′/Q
)
Y−1

n for some completely prime ideal Q ⊆ A′ and finitely generated Ore set Yn,
(2) FractA/P ∼= FractA′/Q.

Proof. The result is obtained using Theorem 6.1, Lemma 4.2, and an induction argument. �
When R is replaced by k, we have the following result.

Corollary 6.3. Let A = k[x1, τ1, δ1] · · · [xn; τn, δn], where τi(xj ) = λij xj and δiτi = qiτiδi ,
qi �= 1, for λij , qi ∈ k× and all i with j < i. Assume that each δi extends to a locally nilpo-
tent, iterative h.qi -s.τi -d. {di,m}∞m=0 on the subalgebra k[x1; τ1, δ1] · · · [xi−1; τi−1, δi−1]. Let P

be a completely prime ideal in A and set λii = 1 and λji = λ−1
ij . Then for λ = (λij ) ∈ Mn(k),

and an appropriate completely prime ideal Q ⊆ Oλ(k
n), we have

FractA/P ∼= FractOλ

(
kn

)
/Q.
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We summarize how this applies to the k-algebras of quantized coordinate type.

Corollary 6.4. Let A be any of the examples discussed in Sections 5.1–5.4, and let P be
a completely prime ideal of A. Then there exist a positive integer N , a multiplicatively an-
tisymmetric N × N matrix λ over k, and a completely prime ideal Q ∈ Oλ(k

N) such that
FractA/P ∼= FractOλ(k

N)/Q.

To complete the question posed by the corollary, one might ask how far the quantum Gel’fand–
Kirillov conjecture extends to prime factor algebras. For instance:

Question 6.5. Find conditions under which we can conclude that for any positive integer n,
multiplicatively antisymmetric matrix λ ∈ Mn(k

×), and completely prime ideal Q ∈ specOλ(k
n),

we have

FractOλ

(
kn

)
/Q ∼= FractOp

(
Km

)
for some field extension K ⊇ k, integer m � n, and m × m matrix p over K .

A positive answer in the generic case has been provided in the proof of [10, Theorem 2.1]:

Theorem 6.6 (Goodearl–Letzter). Let k be a field, λ = (λij ) a multiplicatively antisymmetric
n × n matrix over k×, and Λ the subgroup of k× generated by the λij . If Λ is torsionfree, then
all of the prime ideals Q of Oλ(k

n) are completely prime.

In their proof, they showed that FractOλ(k
n)/Q ∼= FractOp(Km), and identified K as the

quotient field of a commutative domain embedded in the center of Oλ((k
×)n)/Q′, where Q′ is

the prime ideal in Oλ((k
×)n) induced by localization.

The division ring of real quaternions provides an example showing that Question 6.5 needs to
have some conditions imposed. Note that

H ∼= Oλ

(
R

3)/Q, where λ =
( 1 −1 −1

−1 1 −1
−1 −1 1

)
, and Q = 〈

x2
1 + 1, x2

2 + 1, x2
3 + 1

〉
.

Therefore, we cannot obtain the desired isomorphism of quotient division rings in this case, illus-
trating the necessity of an extra condition such as the one imposed by Panov in [27, Section 3].
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