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Abstract 

The two main challenges involved in prototyping a SoC (System-On-Chip) on a FPGA (field programmable gate 
array) are optimal tuning of the communication architecture according to the task graph of an application, and 
dimensioning the FPGA resources. In this paper, we present a methodological framework to estimate the number of 
resources required for a given communication architecture and task graph. Data analysis was based on a set of 
synthesized results for a given on-chip network. The most appropriate models were identified using a data mining 
approach. The evaluation of the models shows that the relative error is less than 5% in most cases. It is therefore 
possible to estimate the required resources in a short exploration time and without the synthesis steps. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Conference Program Chairs. 
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1. introduction 

NoCs (Network On Chip) have emerged as efficient scalable and low power communication structures for many-
core SoCs (System On Chip with several hundred or thousand cores). The designer has to configure the parameters 
of the NoC according to the application to optimize communication times between cores. Exploring all appropriate 
solutions is an intensive time process because of the sheer number of parameters required for the NoC. The Field 
Programmable Gate Array (FPGA) devices are widely used for prototyping systems. FPGA can then be used to 
emulate the time performances of NoC for each set of parameters in a rapid design space exploration. 
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Indeed, emulation provides precise timing and power evaluations in a shorter cycle than simulation 1. But before 
emulation, Each NoC candidate has to be synthesized then placed and routed to obtain the number of resources. 
Resources can be obtained either after the synthesis or after the place and route process. With large FPGAs, this 
process can take several hours for one NoC candidate. Usually, the designer selects the NoC parameters without 
exploring all the candidates, thereby saving a significant amount of time in the development process but the chosen 
solution is not always optimal. Area estimation is important in order to find architectural solutions that: 1) suit the 
target FPGA concerned 2) correspond to the requirements of the application 3) ensure efficient timing. 

Design space explorations for NoCs are mainly based on power consumption and timing on ASIC 1,3,4,5,8. The 
evaluation of the impact of various options on the area, the number of cycles and execution time on FPGA is 
described in 6. A power area analysis of NoCs in FPGAs was proposed in 7, but was based on analysis of the router 
only, not of the complete NoC. The authors make the assumption that summing all results leads to the result of the 
SoC. In 9, the relationship between events occurring in the NoC and energy consumption is modelled using linear 
regression. 

In this paper, we propose a methodological framework to extract the most appropriate mathematical model 
according to the selected NoC for FPGA resource dimensioning. The framework is based on data collection, data 
analysis and modelling of a selected NoC. The paper is organized into 3 sections. Section 2 presents the 
methodological framework and the 3 steps are described: 1. Choice of the structure, 2. Data collection and 3. Data 
analysis. Section 3 concludes the paper. 

2. Methodological Framework 

A model for system dimensioning requires accurate estimations of the resources required by the application. First, 
we describe the characteristics of the FPGA structures explored using our approach. Second, we present the 
methodological approach for resources dimensioning. The methodological framework is illustrated in figure 1. The 
methodological framework is split into three steps: 1) choosing the appropriate NoC structure for data analysis, 2) 
collecting the data required for data analysis, 3) analyzing the data to identify the most appropriate mathematical 
models. 

Fig 1. Methodological Framework 

A resource usage model for NoC enables the optimization of design parameters under resource constraints. 
Today, NoC mapping heuristics do not cope with FPGA resources constraints. NoC dimensions are determined 
before the mapping step. Using mathematical models enables to quickly evaluate the impact of NoC parameters on 
FPGA resource usage as far as estimation errors are minimized. We now describe the three steps of our 
methodology. 

Step 1: Choice of the structure 

The first step is selecting the appropriate NoC structure. Any NoC structure designed in HDL language can be 
used. Our experiments were conducted on two NoCs, one designed especially for the purpose (AdOCNet – 
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Adjustable On-Chip Network) and one existing NoC that is, often used in the research community (Hermes) 2. The 
NoC structure (topology, flow control, virtual channel, scheduling and routing algorithm) is fixed for a model. Table 
1 shows the characteristics of the two NoCs used for resource modeling.  
A 2D mesh topology is commonly used since it fits best to the FPGA’s topology. The two NoCs differ in their flow 
control and the number of virtual channels. Such differences have a significant impact on FPGA resource usage.  

Table 1. NoC characteristics 

 Topology Flow control Virtual channel Scheduling Routing algorithm 
Hermes 2D Mesh Credit based 2 Round robin XY 
AdOCNet 2D Mesh Handshake No Round robin XY 

Step 2: Data Collection 

The data were the FPGA resources in the post synthesis report in the VIVADO 2012 development tool 
(integrating the Xilinx synthesis tool) according to the NoC parameters. These resources may differ for other 
software, but are basically of the same type. From each synthesis processes, the results stored in a database are: 
 n1: the number of routers in the X-axis. 
 n2: the number of routers in the Y-axis.  
 n3: the depth of the buffer. 
 n4: the size of the flit. 
 LUT: the number of Look Up Table used. 
 MLUT: the number of Memory LUT used. 
 FF: the number of Flip Flop used. 

Step 3: Data Analysis 

The complete database of observed results was analysed to identify links between variables and LUT, MLUT, FF 
regarding the variables n1, n2, n3 and n4. The aim was to mathematically model the relation between the input 
configuration of the NoC and material resources used without going through the synthesizing step. 

3a. Data mining 

The aim of data mining is to automatically locate useful information among large quantities of data. Data mining 
can be both predictive and descriptive: when predictive, the aim is to predict the value of a particular attribute given 
existing data, when descriptive, the aim is to derive patterns that summarize underlying relationships in the data. 
Data mining is thus an integral part of knowledge discovery, which is the overall process of converting raw data into 
knowledge by obtaining selecting useful information from the data. Five core data mining tasks have been identified 
10,12: 1) predictive modelling, 2) attribute selection, 3) association analysis, 4) cluster analysis, 5) anomaly 
detection. In our approach, the most appropriate data mining task is predictive modelling. The task is to build a 
predictive model for a target variable, based on explanatory variables. Classification and regression are ways of 
predicting a discrete or continuous outcome. Regression analysis is a statistical tool for the investigation of 
relationships between variables. Usually, the investigator is looking for the causal effect of one variable on another. 

First, we checked for linear relationships between variables using Pearson’s correlation and variable clustering. 
The result of a cluster analysis is a binary tree, or dendrogram, with n-1 nodes. The branches of the tree are cut at a 
level of similarities obtained -in our case using the correlation between all the variables. Second, for predictive 
modelling, when the outcome or class is numeric and all the attributes are numeric, linear regression is the logical 
choice. The standard way of dealing with continuous prediction is writing the outcome as a linear sum of attribute 
values with appropriate weights such that: ypure = w0+w1x1+ w2x2+…+ wnxn where: ypure is the class, x1, x2,…, xn are 
the attribute values of the variable X1, X2,…and Xn, w1, w2,…, wn are the weights of each variable X1, X2,…and Xn. 

In this way, we obtained a regression equation to be used to determine the corresponding weights for each 
variable, a well-known procedure in statistics. The weights were calculated from the training data, the model 
minimizes this sum of squares by choosing the appropriate coefficients. Linear regression is an excellent, simple 
method for numeric prediction that has been widely used in statistical applications but is very sensitive to outliers. 
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The difference between the observed value of the dependent variable (yobs) and the predicted value (ŷpure) is called 
the residual (e). Each data point has one residual: e = yobs - ŷpure 

Both the sum and the mean of the residuals are equal to zero. That is, Σ e = 0 and e = 0. 

3b. Data analysis 

Table 2 lists the respective Pearson’s correlations for the AdOcNet (with 29 synthesis) and Hermes (with 152 
Synthesis) 11. 

Table 2.Pearson’s correlation for AdOcNet (left) and for Hermes (right) 
 AdOcNet  Hermes 

 n3 n4 n2 n1 FF LUT MLUT  n4 n2 n1 FF LUT MLUT 

n4 0.033              

n2 -0.045 -0.045       0.170      

n1 -0.071 -0.071 0.551      -0.157 -0.237     

FF -0.122 -0.124 0.731 0.954     0.364 0.509 0.531    

LUT -0.093 -0.127 0.721 0.959 0.998    0.460 0.503 0.467 0.992   

MLUT -0.340 -0.292 0.596 0.789 0.876 0.850   0.627 0.463 0.339 0.932 0.971  

n1 n2 -0.089 -0.089 0.733 0.959 0.997 0.999 0.834  -0.056 0.468 0.680 0.880 0.812 0.649 

When Pearson’s coefficient is greater than 0.7, the closer the points are located to one another on the line (a 
perfect correlation is 1, indicating that all points fall directly on a line). Concerning the two NoCs, there is a strong 
positive correlation between the observed resources. When similarities between groups were analyzed, the strongest 
correlation was found between FFs and LUTs (respectively 0.992 for Hermes and 0.998 for AdOcNet). Strong 
correlations were also found between MLUT and LUT, and between FF and MLUT. There is also a strong 
correlation (lesser but significant) between n1 × n2 and the number of FF and LUT. One main difference between 
both NoCs is the use of resource according to n3 parameter. AdOcNet only uses MUTs, LUTs and FFs for the NoC 
structure whereas the Hermes NoC uses BRAM to implement buffer (the number of BRAM does not change for the 
varying size of buffer). n3 is respectively considered as a variable for AdOcNet and a constant for Hermes. 
Therefore n3is not considered in the Person’correlation and hierarchical analysis for Hermes. Next, we identified 
strongly correlated group of variables by applying hierarchical analysis on the variables 10. Fig 2 presents the 
dendograms respectively AdOcNet (Figures 2a.) and Hermes (Figure 2b.). 

a) AdOcNet  

b) Hermes 

Fig 2.Hierarchical analysis of similarities between the variables 

For AdOcNet, a group contains five variables with 97.96 similarity (n1, FF, LUT, MLUT, n1 × n2). For Hermes, a 
group contains four variables with 94.00 similarity (FF, LUT, MLUT, n1 × n2). In conclusion, there are strong linear 

97.96 

94.00 
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links between the variables (see Table 4). For each NoC, FF, LUT, MLUT are strongly correlated with n1 n2. Our 
objective was to identify possible linear relationships between these resources and n1 n2. Figure 3 validates the 
linear relationship between the number of FF and n1 n2. We then checked it on the other resources for both NoCs. 
The regression equation is: FF = - 1371 + 447 n1 n2 

Table 3. Identification of the highly correlated variables for each NoC. 

NoC Highly correlated variables Similarity Level 

AdOcNet FF LUT n1 n2 n1 MLUT 97.96 

Hermes FF LUT MLUT n1 n2 94.00 
 

 
Fig 3. Number of FF regarding n1 n2 

Graphical analysis is a very effective way to investigate the adequacy of the fit of a regression model and to check 
the underlying assumption. The henry line test and histogram of residual values are depicted in Figure 4. The Henry 
line (left) is a graphical method for adjusting a gaussian distribution with that of a series of observations. The normal 
scores are not aligned, there are outliers amongst results. The histogram (right), used to check the variances, is not 
normally distributed around zero (a symmetric bell-shaped histogram evenly distributed around zero indicates that 
the normality assumption is likely to be true). We observe that the regression model does not completely fit the data. 
The model’s underlying assumption may have been violated. Such results enable us to enter in the modeling stage. 

Fig 4. Analysis of residual values. 

3c. Modelling 

Hypothesis: from only 3 synthesis for 3 categories of NoC (Small, Medium, Large), it is possible to dimension the 
Hermes or AdOcNet? 

Objective: to estimate the resources (LUT, MLUT, FF) according to n1  n2. 

Mathematical model: linear regression and the linear relationship are built on a straightforward model using the 
three points. 

Validation: from a new synthesis, we calculated the relative errors. 

Figure 5 shows the regression models of LUT usage, for Hermes and AdOcNet. The same approach was used for 
FF and MLUT and the models are similar to models for LUT. We estimated the resources using each corresponding 
equation and calculated the relative error. The mathematical model was validated on the same FPGA. A high error 
rate for FF (Hermes: 20.22%, AdOcNet: 13.24%) was observed for small (2 2) or (3 3) of NoCs, the error rate 
decreased to less than ± 2.5% for bigger sizes of NoC. This indicates that the analytically estimated results are a 
little bigger than the results obtained after synthesis (synthesized results) for small sizes of NoC. If the (2 2) or 
(3 3) router sizes of NoCs are not taken into account, the intervals of relative errors are [-7.90%; 6.90%] for Hermes 
and [-2.52%; 6.14%] for AdOcNet. Table 4 shows that the mean absolute percentage error is less than 2.3%. 

y = 447.07x - 1371.1 
R² = 0.9996 
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Estimations for small sizes (2 2) or (3 3) of NoCs can be replaced by direct synthesis because the execution time is 
not prohibitive, in that cases. However, buses or point to point communication can be better suited for small designs. 

  
Fig 5. Regression models for LUT for each NoC (x in the equations corresponds to n1 n2). 

Table 4. Mean absolute percentage error 
FF LUT MLUT 

Hermes 1.684% 2.289% 1.832% 
AdOcNet 1.999% 0.664% 0.000% 

3.  Conclusion 

In this paper, we showed the feasibility of identifying a mathematical model for NoC dimensioning on FPGA. 
This model can be extracted from only 3 synthesis steps done using the same FPGA with one computer. Extracting 3 
points is enough to provide a model of each FPGA resource (for each couple size of buffer and size of flits) 
according to the total number of routers. The resources estimated for Hermes are ±9% of the obtained resources. The 
resources estimated for AdOcNet are ±7% of the obtained resources. The AdOcNet structure is more regular than 
Hermes as the model is more precise. The model guarantees a reduction in the time needed for design space 
exploration (DSE) of NoCs. This model was validated by a comprehensive set of experimentations for a NoC using 
less than 10% of FPGA resources. More explorations concerning MPSoC or dedicated SoC will be explored (and 
the uses or not of memory blocks in the NoC structure according to the type of IP connected to the NoC). 
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