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Glutamic acid
CcO), which are responsible for most O2 consumption in biology, are also redox-
linked proton pumps that effectively convert the free energy of O2 reduction to an electrochemical proton
gradient across mitochondrial and bacterial membranes. Recently, time-resolved measurements have
elucidated the sequence of events in proton translocation, and shed light on the underlying molecular
mechanisms. One crucial property of the proton pump mechanism has received less attention, viz. how
proton leaks are avoided. Here, we will analyse this topic and demonstrate how the key proton-carrying
residue Glu-242 (numbering according to the sequence of subunit I of bovine heart CcO) functions as a valve
that has the effect of minimising back-leakage of the pumped proton.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Cytochrome c oxidase (CcO) functions as a genuine proton pump,
as distinguished from the bc1 complex and the photosynthetic
reaction centre, which operate according to the Mitchellian redox-
loop principle [1,2]. Whereas several proposals have been made for
the mechanism of proton pumping in CcO, less consideration has been
given to the essential question of how leaks or short-circuits are
prevented (but see Refs. [2–5]). The problem of short-circuits can also
arise in redox-loop mechanisms, as recently discussed for the bc1
complex [6], but is of particular concern for proton pumps. A true
proton pump mechanism must, by definition, include proton transfer
across the entire membrane dielectric, but paradoxically, if such
continuous proton conductance is allowed, the pump will be
compromised by leaks. This fact has certainly been realised, but its
implications on the mechanism have only been rarely addressed.

Recent time-resolved electron and proton transfer studies of the
cytochrome oxidase reaction [7–9] have stimulated a more
thorough analysis of the mechanism, also in terms of how proton
leaks may be prevented [2,4]. In this regard, the insightful work by
Siegbahn and Blomberg [4] is particularly relevant in that it not only
stresses the importance of avoiding such leaks, but also analyses
the properties of the pump mechanism that are required to that
effect.

A mechanistic proton pump sequence was developed on the basis
of the experiments by Belevich et al. [7], where electron injection into
the activated form of the oxidised enzyme was studied. This sequence
ll rights reserved.
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starts with electron transfer from the CuA centre to heme a across ca.
1/3 of the membrane dielectric (Fig. 1). Reduction of heme a is
suggested to raise the pKa of a proton-loading site (PLS), the identity of
which is still uncertain, but which may be the A-propionate group of
heme a3 [2,4]. Next, there is proton transfer to the PLS, initially from
Glu-2421, with subsequent reprotonation of the latter via the so-called
D-pathway. The proton at the PLS raises the mid-point redox potential
of heme a3, enabling it to receive the electron from heme a, and
resulting in further elevation of the pKa of the PLS. The following
reaction step is crucial for the mechanism, viz. proton transfer from
the N-side of the membrane to the binuclear site to form the
equivalent of water, and annihilating the charge of the electron at that
site. Neutralisation of the charge in the binuclear site lowers the pKa of
the PLS, providing the driving force for proton ejection from the PLS to
the P-side of the membrane to complete the reaction sequence.

It is in this last step in the sequence that one of the crucial
questions concerning leakage arises, viz. why is the proton at the PLS
not transferred backwards to the N-side of the membrane instead of
being released on the P-side? This concern is of particular importance
under conditions with a substantial electrochemical proton gradient
across the membrane. Siegbahn and Blomberg [4] indeed identified
this to be a key leakage problem of the proton pump that is not easily
explained; their explanation depended on an assumed nature of the
transition state of proton transfer between the PLS and the N-side of
the membrane. Our recent molecular dynamics studies of the
rotational isomerisation of the side chain of the residue Glu-242
may give an alternative explanation. Glu-242 may not only be a
1 Glu-242 is numbered on the basis of the subunit I structure of bovine heart CcO.
The corresponding number is 278 in CcO from P. denitrificans and 286 in CcO from Rh.
sphaeroides and the bo3 quinol oxidase from E. coli.
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Fig. 1. The role of Glu-242 in proton transfer by cytochrome c oxidase. Two positions of
the Glu-242 side chain are depicted, “up” and “down”. In the up state the carboxylic acid
either makes contact with the D-propionate of heme a3 or with the binuclear heme a3/
CuB centre, both mediated by water molecules in the nonpolar cavity above Glu-242. In
the down state the side chain makes contact with the N-side of the membrane via the
so-called D-channel of proton transfer, again mediated by water molecules. The
pumped proton is proposed to be transferred from Gluup to a proton-loading site,
possibly the A-propionate of heme a3, before being released to the P-side of the
membrane. Approximate relative distances across the dielectric barrier (d) are given for
different positions along the proton transfer trajectories.
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passive proton-shuttling devise, but may also function as a valve that
effectively prevents proton backflux in the crucial transition con-
sidered above.

2. Dynamics and energetics of Glu-242 side chain isomerisation

The side chain of Glu-242 is directed “down” towards the D-
pathway of proton transfer in all the X-ray structures, which does not
allow proton transfer from this residue to the binuclear site or for
proton pumping (Fig. 1). Yet, the evidence for involvement of Glu-242
in the latter events is substantial [10–13], and it has long been thought
that the side chain of Glu-242 must be able to rotate to an “up”
conformation towards the binuclear centre (Fig. 1 and Refs. [14–16]),
where it can donate a proton either to the binuclear site or to the D-
propionate of heme a3, which is the likely transient proton acceptor
for the proton to be pumped [17–19]. The latter functions are not
possible without water molecules in the nonpolar cavity “above” Glu-
242; evidence for such water molecules has so far been obtained only
by computational methods [14,15,20–24].

Wehave shownbymoleculardynamics simulations that theposition
of the protonated side chain of Glu-242 strongly depends on the
hydration state [25,26]. With no water molecules added to the studied
CcO structure from bovine heart mitochondria (PDB 1V54; [27]) the X-
ray “down” position was favoured by a factor of ~20, but adding four
water molecules to the nonpolar cavity “above” Glu-242 changed the
bias towards the “up” position [25]. However, the small cavity “below”

Glu-242 is also devoid of water molecules in the 1V54 structure, so that
there actually does not seem to be protonic contact between the D-
pathway and Gludown. However, prolonged MD simulations filled this
void with four water molecules [26]. Interestingly, these latter water
molecules are present in the X-ray structure of the Rh. sphaeroides
enzyme [28], which increases our confidence in the MD results. Our
recent simulations with hydrated cavities both above and below Glu-
242 revealed a “down/up” equilibrium constant ranging between ca. 20
and 1 for the protonated side chain, depending on the redox state of
heme a and the binuclear site. However, the behaviour of the anionic,
deprotonated side chain was drastically different. In this case Gludown

was favoured by a factor of at least 104, and the rate of “downflip” was
very fast (~1 ps−1), being at least in part coupled to electrostatic
repulsion from the hemepropionate groups.We believe that this kinetic
and thermodynamic asymmetry in thepositioningof the side chainmay
be an essential property that minimises proton leakage, as summarised
below.

3. Glu-242 is a valve that prevents proton leakage

The asymmetric dynamics and energetics of the Glu-242 side chain
isomerisation described above has two consequences, kinetic and
thermodynamic. After proton transfer from Gluup to the binuclear site,
amicrostate vulnerable to leakage is encounteredwhere theanionicGlu-
242 is in the up position. This is the situation described above,where the
protonpreviously pumped into the PLS should be ejected towards the P-
side of the membrane due to the lowered pKa of the PLS, but where the
anionic Gluup is an alternative acceptor of the proton. If Glu-242 indeed
accepts theproton in this situation, thepumpwill be compromised since
the chemistry at the binuclear site has been completed without proton
translocation across the membrane. For this reason it is essential that
Gluup− will rotate to the down position at a rate that is at least two orders
of magnitude faster than back-transfer of the proton from the PLS to
Gluup− , in order to outcompete the latter and to secure a H+/e− proton
translocation stoichiometryof at least 0.99.Webelieve that theobserved
very fast downflip (~1 ps−1) achieves this purpose.

However, the fast downflip of the anionic side chain is not
sufficient to prevent leakage, except transiently. In the steady state,
where flux through the system is determined by the relatively slow
release of the proton from the PLS (ca. 2.5 ms−1, see Ref. [7]),
thermodynamic equilibrium will be approached between the micro-
states prior to this rate-limiting step, among them the vulnerable state
with a proton at the PLS and the Glu-242 anion in the up position. For
this reason the relative steady state population of this state must be
low enough tominimise the rate of backflux, which is where the down/
up equilibrium constant of N104 for Glu− becomes essential. This
thermodynamic property of the side chain isomerisation ensures that
the actual rate of leakage will be at least 10,000 times slower than the
rate constant of back-transfer of the proton from the PLS to Glu-242.

It has not escaped our attention that the above analysis is strictly
valid only for states in which the protonmotive force is relatively low
across themembrane. A high protonmotive forcewillmodulate the local
pKa values of Glu-242 and will also change the equilibrium distribution
between the “up” and “down” states of Glu−, albeit the latter effect is
expected tobe relatively small due to theshort distancebetween the two
states relative to the membrane dielectric. A high protonmotive force
will obviously tend to enhance proton leakage of the pumpmechanism,
and such leakage has been reported [29,30], possibly directly affecting
the “Glu-242 switch”. However, careful measurements of the proton-
pumping stoichiometry in actively phosphorylating mitochondria [31]
provide noevidence for such leakageunder conditions (“State 3”),where
the protonmotive force approaches values near 170 mV (see Ref. [32]).
Whether leakage occurs at higher protonmotive force is very difficult to
assess experimentally (but see Refs. [29,30]).

Finally, Prutsch et al. [33] ruled out a gating function of Glu-242,
presumablyon thebasis that this residue is absent in certain thermophilic
heme-copper oxidases that nevertheless pump protons. However, such
proton-pumping experiments are typically performed at zero proto-
nmotive force where the tendency to leak is minimal. Our notion of the
role of Glu-242 as a valve would suggest that these outlying oxidases
might not sustain proton pumping at higher protonmotive forces.
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4. Conclusion

The basic rationale for the function of Glu-242 as a valve that
prevents proton backflux is based on the observation that the Glu-242
side chain is in contact with the P-side of the membrane (via the D-
propionate of heme a3) only in its “up” position, and in contact with
the N-side (via the D-pathway) only in the “down” position. Hence, a
key role of Glu-242 is to ensure that there will at no point in time be
continuous proton conductivity across the entire dielectric, which is
an essential property of the proton pump. Whilst this more general
description has been obvious for some time, the asymmetric kinetic
and thermodynamic properties of the side chain isomerisation in its
protonated and deprotonated states completes the picture and
specifically explains how backflux of the proton in the PLS is
prevented, relative to its ejection towards the P-side.
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