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Abstract

In 1858 Cayley considered a particular kind of tridiagonal determinants (or continuants). By a
direct inspection of the first cases, he conjectured an identity expressing these determinants in terms
of certain other determinants considered by Sylvester in 1854. Then Cayley proved the conjectured
identity by induction but, as he wrote, he felt unsatisfied with his proof. The main aim of this paper is
to give a straightforward proof of Cayley’s identity using the method of formal series. Moreover we
use this method and umbral calculus techniques to obtain several other identities.

Cayley continuants appear in several contexts and in particular in enumerative combinatorics.
Mittag–Leffler polynomials, Meixner polynomials of the first kind, the falling and the raising factorials
are just few instances of these continuants. They can be interpreted in terms of weighted permutations.
Moreover, as we prove in this paper, they also appear in the context of Hankel determinants generated
by certain Catalan-like numbers.
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1. Introduction

In 1854, in a brief communication [30] entirely reported in [21] (Vol. 2, pp. 425–426)
and in [31], Sylvester considered the n × n tridiagonal determinants Hn(�) given by

1 , |�| ,

∣∣∣∣ � 1
1 �

∣∣∣∣ ,

∣∣∣∣∣∣
� 1
2 � 2

1 �

∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣
� 1
3 � 2

2 � 3
1 �

∣∣∣∣∣∣∣∣ , . . .

stating, without proof, that

Hn(�) =
n∏

k=1

(� + n − 2k + 1) = (� − n + 1)(� − n + 3) · · · (� + n − 1). (1)

This identity can be easily obtained by a process due to Mazza (see [21, Vol. 2, p. 442])
which uses only elementary operations on the lines. Other proofs can be found in [31,10].

Notice that for � = 0 the matrices underling Sylvester’s determinants appear in several
contexts as Clement matrices or as Kac matrices. For instance they appear in numerical
analysis [8,18], in the study of roots of random polynomials [10], in connection to the
Ehrenfest Urn Model of diffusion [20], in a problem of random walks on a hypercube [17],
in linear algebra and representation theory [15,31], in the theory of association schemes
and distance regular graphs [6].

Some years after Sylvester’s communication, in 1858, Cayley [7] considered the more
general determinants Un(�, x) defined by

1 , |�| ,

∣∣∣∣ � 1
x �

∣∣∣∣ ,

∣∣∣∣∣∣
� 1
x � 2

x − 1 �

∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣
� 1
x � 2

x − 1 � 3
x − 2 �

∣∣∣∣∣∣∣∣ , . . . .

All these determinants are particular cases of continuants [21,32]. Therefore, from now on,
we will refer to them as Cayley continuants.

In his paper Cayley observed that Sylvester’s determinants can be obtained setting � = �
and x = n − 1 in his continuants. Then by a direct inspection of the first cases he found an
identity that can be rewritten as

Un(�, x) =
�n/2�∑
k=0

(
n

2k

)
(2k)!
2kk! (−1)kpk(x − n)Hn−2k(�), (2)

where pk(x) = (x + 1)(x + 3) · · · (x + 2k − 1), and finally he proved this identity using a
rather laborious proof by induction. However he was not satisfied with his proof and wrote:
“I have not been able to find an easier demonstration than the following one, which, it must
be admitted, is somewhat complicated” [7] (see also [21, Vol. 2, p. 430]).

The principal aim of this paper is to give a straightforward proof of Cayley’s identity using
the method of formal series and to obtain several other identities in the same spirit. The
paper is organized in as follows. In the next section we give some basic properties of Cayley
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continuants, such as a recurrence relation, the exponential generating series and an explicit
formula. In Section 3, we give a combinatorial interpretation of Cayley continuants in terms
of weighted permutations where the odd cycles have weight � and the even cycles have
weight −x. Moreover we show that Cayley continuants admit several well known instances
such as the factorial numbers, the Delannoy numbers, the Mittag–Leffler polynomials, the
Pidduck polynomials, the Meixner polynomials of the first kind, the falling and the rising
factorial powers. In Section 4, we prove Cayley’s identity using, as we have already said,
the method of formal series. In particular we apply Cauchy’s integral theorem to obtain
non-trivial series in a single indeterminate as diagonals of bivariate series of simple form.
In Section 5, we consider a particular kind of weighted lattice paths and the associated
Catalan-like numbers. As well known these numbers can be completely characterized in
terms of associated Hankel determinants. We prove that these determinants, in the present
case, can be expressed in terms of Cayley continuants. In Sections 6 and 7 we obtain some
connection identities for Cayley continuants using Rota’s operational method (or umbral
calculus). Finally, in Sections 8 and 9, we obtain some other identities concerning Cayley
continuants.

2. Basic properties

A Cayley continuant is a n × n tridiagonal determinant

Un(�, x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� 1
x � 2

x − 1 � 3
x − 2 � 4

. . .
. . .

� n − 1
x − n + 2 �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant along the last column it is easy to obtain the following recurrence,
already known to Cayley [7]:

Un+2(�, x) = �Un+1(�, x) − (n + 1)(x − n)Un(�, x). (3)

Now consider the exponential generating series for Cayley continuants:

U(�, x; t) = ∑
n�0

Un(�, x)
tn

n! .

To obtain a closed form for this series multiply both sides of (3) by tn+1/(n + 1)! and sum
for n�0. Since U0(�, x) = 1 and U1(�, x) = �, it follows that recurrence (3) becomes the
differential equation

(1 − t2) U ′(�, x; t) = (� − xt) U(�, x; t) ,
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whose solution, for U(�, x, 0) = 1, is

U(�, x; t) = (1 − t2)x/2
(

1 + t

1 − t

)�/2

= (1 + t)(�+x)/2

(1 − t)(�−x)/2
. (4)

The second form of U(�, x; t) in (4) implies the following explicit form for Cayley
continuants

Un(�, x) =
n∑

k=0

(
n

k

)(
� + x

2

)k(� − x

2

)n−k

, (5)

where xn = x(x − 1)(x − 2) · · · (x − n + 1) are the falling factorial polynomials and
xn = x(x + 1)(x + 2) · · · (x + n − 1) are the rising factorial polynomials. Another useful
property which can be derived from (4) is the identity

Un(−�, x) = (−1)nUn(�, x). (6)

Finally, considering � as an indeterminate and x as a parameter, Cayley continuants form
a section sequence [22], that is

U(�1, x1; t) U(�2, x2; t) = U(�1 + �2, x1 + x2; t)

or equivalently

n∑
k=0

(
n

k

)
Uk(�1, x1)Un−k(�2, x2) = Un(�1 + �2, x1 + x2).

3. Combinatorial interpretation and examples

Let S be any set of size n. Let w denote the weight function defined on the set S! of all
permutations on S so that each cycle of odd length has weight � and each cycle of even
length has weight −x. Finally let wn = w(S!) = ∑

�∈S!
w(�). Then Cayley continuants have

the following combinatorial interpretation

Un(�, x) = wn = ∑
i,j�0

un(i, j)�i (−x)j , (7)

where un(i, j) is the number of n-permutations with i odd cycles and j even cycles. To see
this, consider a set S of size n + 2 and choose an element s ∈ S. Then observe that in any
permutation � of S, s either is a fixed point, or belongs to a 2-cycle, or belongs to a longer
cycle. If s is a fixed point, the weight of � is accounted for by �wn+1 once x is deleted. If s

belongs to a 2-cycle, say (s, s′), the weight of � is accounted by −(n+ 1)x wn when (s, s′)
is deleted. If s belongs to a longer cycle, say (s, s′, s′′, . . .), the weight of � is accounted by
n(n + 1)wn once s and s′ are deleted. Hence wn+2 = �wn+1 − (n + 1)(x − n)wn which
agrees the form of (3). Finally, since w0 = 1 and w1 = �, it follows (7).
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This interpretation can be used to obtain combinatorial proofs for other identities con-
cerning Cayley continuants. For instance, the above argument can be generalized in the
following way. Let S be a set of size n+1 and fix one point s ∈ S. Since any permutation of
S can be decomposed in the cycle containing the element s and in the permutation obtained
by deleting that cycle, it follows the identity

Un+1(�, x) = �
∑

k�0
n2kUn−2k(�, x) − x

∑
k�0

n2k+1Un−2k−1(�, x).

Identity (7) can be proved more directly using the theory of weighted species [19,5]. Let
Cay be the species of w-weighted permutations as defined above. Similarly, let Cycw be the
species of w-weighted cycles. Finally let Exp be the exponential species, i.e. the uniform
species. Since any permutation of species Cay is equivalent to a set partition in which each
block is endowed with a cycle of weight � or −x according to the parity of its length, it
follows that Cay = Exp ◦ Cycw. Then the cardinality of Cay is the exponential series

Card(Cay, t) = Card(Exp; t) ◦ Card(Cycw; t)

= et ◦
(

� ln

√
1 + t

1 − t
− x ln

1√
1 − t2

)
.

Now identity (4) implies Card(Cay, t) = U(�, x; t) and (7) is reobtained.
We conclude this section with some particular instances of Cayley continuants.

(1) Mittag–Leffler polynomials [22, p. 75]: Mn(�) = Un(2�, 0),

∑
n�0

Mn(�)
tn

n! =
(

1 + t

1 − t

)�

= U(2�, 0; t).

(2) Pidduck polynomials [22, p. 126]: Pn(�) = Un(2� + 1, −1),

∑
n�0

Pn(�)
tn

n! = 1

1 − t

(
1 + t

1 − t

)�

= U(2� + 1, −1; t).

(3) Meixner polynomials of the first kind [22, p. 125,13]: mn(�; �, −1) = Un(2�+�, −�),

∑
n�0

mn(�; �, −1)
tn

n! = 1

(1 − t)�

(
1 + t

1 − t

)�

= U(2� + �, −�; t).

(4) Falling and raising factorials [22, p. 56]: �n = Un(�, �) and �n = Un(�, −�),

∑
n�0

�n tn

n! = (1 + t)� = U(�, �; t) ,
∑

n�0
�n tn

n! = 1

(1 − t)�
= U(�, −�; t).

Factorial numbers: Un(1, −1) = n!,
∑

n�0
n! t

n

n! = 1

1 − t
= U(1, −1; t).
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(5) Let an be the number of all permutations with odd cycles on an n-set [26, sequence
#A000246] and let bn be the number of all permutations with even cycles on an n-set.
Then∑

n�0
an

tn

n! =
√

1 + t

1 − t
= U(1, 0; t) ,

∑
n�0

bn

tn

n! = 1√
1 − t2

= U(0, −1; t)

and hence Un(1, 0) = an and Un(0, −1) = bn.
(6) Letdn,k be the Delannoy numbers [9, p. 81], [28, p. 185], [4,29,26, sequence #A008288].

They are usually defined as the number of lattice paths from (0, 0) to (n, k) with hori-
zontal steps (1, 0), vertical steps (0, 1) and diagonal steps (1, 1). From their generating
series (1 − t − u − tu)−1 it follows that

∑
n�0

dn,kt
n = 1

1 − t

(
1 + t

1 − t

)k

.

Consider now the polynomials Dn(x) defined by the series

D(x; t) = ∑
n�0

Dn(x)tn = 1

1 − t

(
1 + t

1 − t

)x

.

Then Dn(k) = dn,k , for every k ∈ N, and Dn(x) = Pn(x)/n! where the Pn(x)’s are
the Pidduck polynomials considered in example 2. Hence

Dn(x) = 1

n!Un(2x + 1, −1)

and in particular

dn,k = 1

n!Un(2k + 1, −1).

4. Cayley’s identity

As we saw in the introduction, Cayley’s identity (2) expresses Cayley continuants in
terms of Sylvester’s determinants. To prove Cayley’s identity we first rewrite (2) in the
following equivalent form

Un(�, x + n) =
�n/2�∑
k=0

(
n

2k

)
(2k)!
2kk! (−1)k pk(x)Hn−2k(�), (8)

where pk(x) = (x + 1)(x + 3) · · · (x + 2k − 1). Then considering the generating series

U(0,1)(�, x; t) = ∑
n�0

U(0,1)
n (�, x)

tn

n! = ∑
n�0

Un(�, x + n)
tn

n!
(the choice of this notation will be explained in Section 8),

p(x; t) = ∑
n�0

pn(x)
tn

n! , H(�; t) = ∑
n�0

Hn(�)
tn

n!
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identity (8) becomes

U(0,1)(�, x; t) = p(x; −t2/2)H(�; t). (9)

Our aim now is to prove this identity. To obtain such a proof it is sufficient to have an
explicit form for each of the three series appearing in (9). The first series U(0,1)(�, x; t) will
be obtained as the diagonal series of the following mixed bivariate series∑

m,n�0
Un(�, x + m)

tn

n!u
m.

First, from (4), we find that U(�, x + m; t) = U(�, x; t) (1 − t2)m/2, and hence∑
m,n�0

Un(�, x + m)
tn

n!u
m = ∑

m�0
U(�, x + m; t)um = U(�, x; t)

1 − √
1 − t2u

.

Then, by Cauchy’s integral theorem [9, p. 42], [16], [28, p. 182], it follows that

U(0,1)(�, x; t) = 1

2�i

∮
U(�, x; z)

1 − √
1 − z2t/z

dz

z

= 1

2�i

∮
U(�, x; z)

z + t
√

1 − z2

(1 + t2)z2 − t2
dz.

Since z1 = t/
√

1 + t2 is the only pole (of the first order) tending to 0 as t �→ 0, then from
the residue theorem it follows that

U(0,1)(�, x; t) = lim
z→z1

U(�, x; z)

1 + t2

z + t
√

1 − z2

z + t/
√

1 + t2

that is

U(0,1)(�, x; t) = 1

1 + t2
U

(
�, x; t√

1 + t2

)
.

Finally, after some simplifications, we obtain

U(0,1)(�, x; t) = 1

1 + t2

(t + √
1 + t)�

(1 + t2)x/2
. (10)

For the second series it is easy to find that

p(x; t) = 1

(1 − 2t)(x+1)/2
and p(x; −t2/2) = 1

(1 + t2)(x+1)/2
. (11)

For the third series we have Hn(�) = Un(�, n − 1) = U
(0,1)
n (�, −1). Then

H(�; t) = U(0,1)(�, −1; t) = (t + √
1 + t2)�√

1 + t2
. (12)

Now, substituting series (10), (11) and (12) in (9), it follows that (9) is identically satisfied.
This proves Cayley’s identity.
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Notice that this proof allows us to obtain immediately the inverse relation of Cayley’s
identity. Indeed identity (9) implies that

H(�; t) = (1 + t2)(x+1)/2U(0,1)(�, x; t),

which yields the identity

Hn(�) =
�n/2�∑
k=0

(
n

2k

)
(2k)!
k!

(
x + 1

2

)k

Un−2k(�, x + n − 2k).

Finally notice also that the exponential generating series for the polynomials at the right-
hand side of (1) can be obtained in a very similar way and coincides with (12). This gives
another proof of identity (1).

5. Catalan-like paths and Hankel determinants

The aim of this section is to prove that Cayley continuants appear also in the theory of
counting of particular weighted lattice paths. First of all we recall some definitions. Let � =
(s0, s1, s2, . . .) and � = (t0, t1, t2, . . .). A (�, �)-Catalan-like path of length n [2,3,11,12,14]
is a weighted lattice path in N × Z which starts at (0, 0) and ends at (n, 0), has steps (1, 1),
(1, 0), (1, −1), never falls below y = 0, where the horizontal steps (n, k)�(n + 1, k) have
weight sk and the falling steps (n, k +1)�(n+1, k) have weight tk . The weight of a path is
the product of the weights of all its steps. The Catalan-like number C

�,�
n is the total weight

(that is the sum of the weights) of all (�, �)-Catalan-like paths of length n. Similarly C
�,�
n,k

is the total weight of all (�, �)-Catalan-like paths starting at (0, 0) and ending at (n, k).
Finally we denote with (C

�,�
n,k )∗ the total weight of all (�, �)-Catalan-like paths starting at

(0, k) and ending at (n, 0).
The Hankel determinant of order n+ 1 of a sequence {an}n is defined as the determinant

det[ ai+j ]ni,j=0. Any sequence {an}n with invertible elements is completely characterized
by the two sequences {det[ ai+j ]ni,j=0}n and {det[ ai+j+1 ]ni,j=0}n of Hankel determinants.

Here we will consider the Catalan-like paths with horizontal steps of weight sk = � and
falling steps (n, k + 1)�(n + 1, k) of weight tk = (k + 1)(x − k). Let Cn(�, x), Cn,k(�, x)

and C∗
n,k(�, x) be the associated Catalan-like numbers. For instance, for n = 3 and k = 0

we have the paths

and hence C3(�, x) = �3 + 3x�. Since each path ends with a rising step, a horizontal step
or a falling step, it follows that the coefficients Cn,k(�, x) satisfy the recurrences

Cn+1,k+1(�, x) = Cn,k(�, x) + �Cn,k+1(�, x) + (k + 2)(x − k − 1)Cn,k+2(�, x),

Cn+1,0(�, x) = �Cn,0(�, x) + xCn,1(�, x)

with the initial value C0,0(�, x) = 1.
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Fig. 1. Catalan-like paths decompositions.

Our aim now is to characterize the Catalan-like numbers Cn(�, x) in terms of the
Hankel determinants det[Ci+j (�, x)]ni,j=0 and det[Ci+j+1(�, x)]ni,j=0. We will see that
these determinants can be expressed in terms of Cayley continuants.

Consider all the paths from (0, 0) to (0, i + j) (see the first picture in Fig. 1). Since each
path touches the line x = i in a point at a certain height k it follows that

Ci+j (�, x) = ∑
k�0

Ci,k(�, x)C∗
j,k(�, x).

This identity immediately implies that the Hankel matrix generated by the Cn(�, x) has the
decomposition

[Ci+j (�, x)]ni,j=0 = [Ci,j (�, x)]ni,j=0([C∗
i,j (�, x)]ni,j=0)T

where (−)T stands for transpose. In particular this decomposition yields the identity

det[Ci+j (�, x)]ni,j=0 = h(n)x
n
, (13)

where h(n) = n! · (n − 1)! · · · 2! · 1! is the hyperfactorial and x
n = xn · xn−1 · · · x1 is the

falling hyperfactorial.
Consider now all the paths from (0, 0) to (0, i + j + 1) (see the second picture in

Fig. 1). This time each path touches the line x = i at a point (i, k) and then the line
x = i + 1 at one of the points (i + 1, k − 1), (i + 1, k) or (i + 1, k + 1). This implies the
identity

Ci+j+1(�, x) = ∑
h,k�0

Ci,h(�, x)Dh,k(�, x)C∗
j,k(�, x),

where Dh,k(�, x) = (k+1)(x−k)�h−1,k+��h,k+�h+1,k . Then the Hankel matrix generated
by the Cn+1(�, x) has the decomposition

[Ci+j+1(�, x)]ni,j=0 = [Ci,j (�, x)]ni,j=0[Di,j ]ni,j=0([C∗
i,j (�, x)]ni,j=0)T.

In particular, since [Di,j (�, x)]ni,j=0 = Un(�, x), it yields the identity

det[Ci+j+1(�, x)]ni,j=0 = h(n) x
n
Un(�, x). (14)

In conclusion we have the following characterization: the polynomials Cn(�, x) form the
unique sequence for which identities (13) and (14) hold.
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6. A connection identity

Let Cn,k(x) be the connection constants such that

�n =
n∑

k=0
Cn,k(x)Uk(�, x), (15)

where the Uk(�, x) are considered as polynomials in �. To obtain a recurrence for these
coefficients write (15) as

�n+1 = �n� =
n∑

k=0
Cn,k(x)�Uk(�, x),

and then substitute �Uk(�, x) with the equivalent expression obtained by recurrence (3). It
follows that the connection constants Cn,k(x) satisfy the recurrences

Cn+1,k+1(x) = Cn,k(x) + (k + 2)(x − k − 1)Cn,k+2(x),

Cn+1,0(x) = xCn,1(x)

with the initial value C0,0(x) = 1. Hence Cn,k(x) = Cn,k(0, x), where the Cn,k(�, x)’s are
the weights associated to the Catalan-like paths without horizontal steps considered in the
preceding section.

Let Cn(�, x) = ∑n
k=0Cn,k(x) �n be the polynomials generated by the connection con-

stants Cn,k(x) and let

C(�, x; t) = ∑
n�0

Cn(�, x)
�n

n!
be their exponential generating series. To obtain a closed formula for this series we use
Rota’s operational method [1,22–24]. Consider the linear operator L : Z[x][�] → Z[x][�]
defined by setting

LUn(�, x) = �n (16)

and extending by linearity. Then from identity (15) we have

L�n = Cn(�, x). (17)

The operator L can be extended to formal series in a natural way. So identities (16) and (17)
become

L
(1 + t)(�+x)/2

(1 − t)(�−x)/2
= e�t , (18)

C(�, x; t) = Le�t . (19)

From identity (18) we have

Le
� ln

√
1+t
1−t = L

(
1 + t

1 − t

)�/2

= e�t

(1 − t2)x/2
.
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Setting u = ln
√

1+t
1−t

we have t = tanh u and hence

Le�u = e� tanh u

(1 − tanh2 u)x/2
= (cosh u)xe� tanh u.

Then (19) becomes

C(�, x; t) = (cosh t)xe� tanh t .

This result can be generalized to any Sheffer sequence {sn(�)}n∈N [22, p. 17]. In this case
there exist two exponential series g(t) and f (t), with g0 
= 0, f0 = 0 and f1 
= 0, such that

s(�; t) = ∑
n�0

sn(�)
tn

n! = g(t)e�f (t).

Then, using the same technique, it follows that the exponential series for the polynomials
Bn(�, x) = ∑n

k=0Bn,k(x) �n generated by the connection constants Bn,k(x) such that

sn(�) =
n∑

k=0
Bn,k(x)Uk(�, x)

is given by

B(�, x; t) = g(t)(cosh f (t))xe� tanh f (t).

7. Linearization coefficients

In this section, we will determine the linearization coefficients [33] for Cayley continu-
ants, that is the connection constants Cm,n,k(x) for which

Um(�, x) Un(�, x) = ∑
k�0

Cm,n,k(x)Uk(�, x).

To obtain these coefficients we will use the following theorem which can be obtained with
Rota’s operational method. Let {sn(�)}n be a Sheffer sequence with exponential generating
series ∑

n�0
sn(�)

tn

n! = g(t)e�f (t).

Let cm,n,k be the connection constants such that

sm(�)sn(�) = ∑
k�0

cm,n,k sk(�).

Then consider the polynomials

cm,n(�) = ∑
k�0

cm,n,k �k
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and their generating series

c(�; t, u) = ∑
m,n�0

cm,n(�)
tm

m!
un

n! .

Then it can be proved that

c(�; t, u) = g(t)g(u)
e�f̂ (f (t)+f (u))

g(f̂ (f (t) + f (u)))
,

where f̂ denotes the compositional inverse of f .
Cayley continuants are Sheffer polynomials with respect to �. Indeed their exponential

generating series can be written as

U(�, x; t) = (1 − t2)x/2e
� ln

√
1+t
1−t = g(t) e�f (t),

where g(t) = (1 − t2)x/2 and f (t) = ln
√

1+t
1−t

= arctanh t . Then f̂ (t) = tanh t and
consequently

f̂ (f (t) + f (u)) = t + u

1 + tu
,

g(f̂ (f (t) + f (u))) = (1 − t2)x/2(1 − u2)x/2

(1 + tu)x
.

This implies that

C(�, x; t, u) = (1 + tu)xe� t+u
1+tu . (20)

Finally expanding the right-hand side of (20) we obtain

Cm,n(�, x) = ∑
k�0

(
x − m − n + 2k

k

)
mknk �m+n−2k

and consequently

Um(�, x) Un(�, x) = ∑
k�0

(
x − m − n + 2k

k

)
mknk Um+n−2k(�, x). (21)

See the appendix for some instances of identity (21).

8. Perturbed continuants

To prove Cayley’s identity we used an explicit form for the exponential generating series

of U
(0,1)
n (�, x) = Un(�, x + n). This leads us to consider more generally the perturbed

continuants U
(a,b)
n (�, x) = Un(� + an, x + bn) and their exponential generating series

U(a,b)(�, x; t) = ∑
n�0

U(a,b)
n (�, x)

tn

n! . (22)
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Clearly U(0,0)(�, x; t) = U(�, x; t). Identity (5) gives an explicit formula for every per-
turbed continuants. However it could be useful to have an explicit formula also for the series
(22). As in Section 4 we can consider the bivariate series

∑
m,n�0

U(a,b)
m (�, x)

tm

m!u
n = U(�, x; t)

1 − U(a, b; t)u
.

Then, by Cauchy’s integral formula for diagonals, we have

U(a,b)(�, x; t) = 1

2�i

∮
U(�, x; z)

1 − U(a, b; z)t/z

dz

z
= 1

2�i

∮
U(�, x; z)

z − U(a, b; z)t
dz.

Explicit calculations are possible when the denominator of the integrand series, after sim-
plification, is a polynomial in z with degree at most 2. This is the case when (a, b) =
(0, 0), (0, 2), (±1, ±1), (±2, 0), (±2, 2), (±3, 1). For instance we have

U(1,1)(�, x; t) = 1

1 − t
U

(
�, x; t

1 − t

)
= 1

(1 − t)x+1(1 − 2t)(�−x)/2
,

U(2,2)(�, x; t) = 1√
1 − 4t

U

(
�, x; 1 − 2t − √

1 − 4t

2t

)

= 1√
1 − 4t

(
1 − 2t − √

1 − 4t

2t2

)x/2 (
1√

1 − 4t

)(�−x)/2

,

U(1,−1)(�, x; t) = 1 + √
1 − 4t

2
√

1 − 4t
U

(
�, x; 1 − √

1 − 4t

2

)

= 1 + √
1 − 4t

2
√

1 − 4t

(
1 − t − √

1 − 4t

t

)�/2 (
1 + 2t + √

1 − 4t

2

)x/2

.

However there are also other cases in which a closed form for series (22) can be obtained, as
for our starting example (a, b) = (0, 1). It would be interesting to find all the values of a and
b for which explicit calculations are possible. Notice that by (6) we have U

(−a,b)
n (�, x) =

(−1)nU
(a,b)
n (−�, x) and hence U(−a,b)(�, x; t) = U(a,b)(−�, x; −t). Then we can assume

a�0.
One reason to have explicit formulas for the series U

(a,b)
n (�, x; t) is that they can yield

identities. For instance all the three examples considered above appear as Riordan transforms
of U(�, x; t), considered as an ordinary formal power series. To be more precise let us recall
that a Riordan matrix [25] is an infinite lower triangular matrix (g(t), f (t)) ∼ [ rn,k ]n,k�0

whose columns have generating series of the form
∑

n�0rn,kt
n = g(t)f (t)k for given

formal power series g(t) and f (t) with g0 = 1, f0 = 0 and f1 
= 0. Any Riordan matrix
induces a transformation on the algebra of formal series defined by

a(t) = ∑
n�0

ant
n �→ g(t) a(f (t)) = ∑

n�0

(
n∑

k=0
rn,kak

)
tn.
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Then the series considered in the previous examples are the Riordan transform of U(�, x; t)

with respect to the Riordan matrices
(

1
1−t

, 1
1−t

)
∼ [(

n
k

)]
n,k

,
(

1√
1−4t

, 1−2t−√
1−4t

2t

)
∼[( 2n

n+k

)]
n,k

and
(

1+√
1−4t

2
√

1−4t
, 1−√

1−4t
2

)
∼
[(2n−k

n−k

)
n

2n−k

]
n,k

. Hence the following identities:

n∑
k=0

(
n

k

)
n!
k!Uk(�, x) = Un(� + n, x + n),

n∑
k=0

(
2n

n + k

)
n!
k!Uk(�, x) = Un(� + 2n, x + 2n),

n∑
k=0

(
2n − k

n − k

)
n

2n − k

n!
k!Uk(�, x) = Un(� + n, x − n).

9. Final formulas

In this final section we give two other explicit formulas for Cayley continuants. By
Cauchy’s integral formula we have

Un(�, x) = n! [tn] (1 + t)(�+x)/2

(1 − t)(�−x)/2
= n!

2�i

∮
(1 + z)(�+x)/2

(1 − z)(�−x)/2

dz

zn+1
.

Let z = w/(1 − sw). Then dz = dw/(1 − sw)2 and

Un(�, x) = n!
2�i

∮
(1 − (s − 1)w)(�+x)/2

(1 − sw)x−n+1(1 − (s + 1)w)(�−x)/2

dw

wn+1

= n! [tn] (1 − (s − 1)t)(�+x)/2

(1 − st)x−n+1(1 − (s + 1)t)(�−x)/2
.

For s = 1 we have

Un(�, x) = n! [tn] 1

(1 − t)x−n+1(1 − 2t)(�−x)/2

that is

Un(�, x) = n!
n∑

k=0

(
x − k

n − k

)((
(� − x)/2

k

))
2k,

where
((

x
n

)) = xn

n! = x(x+1)···(x+n−1)
n! . Similarly, for s = −1 we have

Un(�, x) = n! [tn] (1 + 2t)(�+x)/2

(1 + t)x−n+1

that is

Un(�, x) = n!
n∑

k=0

(
x − k

n − k

)((
(� + x)/2

k

))
(−1)n−k 2k.
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Appendix

(1) Using the same notations as in the examples in Section 3 we have the following
instances of identity (21):

�m �n = ∑
k�0

(
m

k

)(
n

k

)
k! �m+n−k,

�m �n = ∑
k�0

(
m

k

)(
n

k

)
(−1)kk! �m+n−k,

Mm(�) Mn(�) = ∑
k�0

(
m + n − 2k

k

)
mk nk Mm+n−2k(�),

Pm(�) Pn(�) = ∑
k�0

((
m + n − 2k + 1

k

))
(−1)k mk nk Pm+n−2k(�),

m! n! = ∑
k�0

(
m

k

)(
n

k

)
(−1)k k!(m + n − k)!,

am an = ∑
k�0

((
m + n − 2k

k

))
(−1)k mk nk am+n−2k,

bm bn = ∑
k�0

((
m + n − 2k + 1

k

))
(−1)k mk nk bm+n−2k,

Dm(x) Dn(x) = ∑
k�0

(
m + n − 2k

m − k

)((
m + n − 2k + 1

k

))
(−1)k Dm+n−2k(x),

dm,h dn,h = ∑
k�0

(
m + n − 2k

m − k

)((
m + n − 2k + 1

k

))
(−1)k dm+n−2k,h.

(2) The technique used to prove Cayley’s identity also yields the following series:

U(2,0)(�, x; t) = 1 + t + √
1 − 6t + t2

2
√

1 − 6t + t2
U

(
�, x; 1 − t − √

1 − 6t + t2

2

)

= 1 + t + √
1 − 6t + t2

2
√

1 − 6t + t2

(
1 − t − √

1 − 6t + t2

2t

)�/2

×
(

1 + 4t − t2 + (1 − t)
√

1 − 6t + t2

2

)x/2

,

U(0,2)(�, x; t) = 1√
1 + 4t2

U

(
�, x; −1 + √

1 + 4t2

2t

)

= 1√
1 + 4t2

(
2t +

√
1 + 4t2

)�/2
(

−1 + √
1 + 4t2

2t2

)x/2

,
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U(3,1)(�, x; t) = 1 + 4t + √
1 − 8t

2(1 + t)
√

1 − 8t
U

(
�, x; 1 − 2t − √

1 − 8t

2(1 + t)

)

= 1 + 4t + √
1 − 8t

2(1 + t)
√

1 − 8t

(
1 − √

1 − 8t

4t

)�/2

×
(

1 + 10t + (1 − 2t)
√

1 − 8t

2(1 + t)2

)x/2

.
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