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The bending stress in the root fillets of gear teeth having convex, circular-arc 
profiles has been calculated using a new analytic model for variable surface pressure 
distribution. The gear tooth is modeled as a wedge with the load applied at the 
apex. Graphs of the nondimensional bending stress variation along the tooth length 
are presented for 14.5”, 22.5, and 30” normal pressure angle; 5”, 25”, and 45” helix 
angle, and 16, 32, and 80 normal diametral pitch. Tables of the nondimensional 
maximum root-fillet stress variation are presented for the variation of normal 
pressure angle, helix angle, and normal diametral pitch. It is shown that gears with 
larger helix angles or normal diametral pitches or lower normal pressure angles 
have higher bending stresses for the same value of allowalble surface stress. :r‘ 1992 
Academic Press, Inc. 

The earliest attempt to analyze the stresses at the root of a gear tooth 
was the method originated by W. Lewis [l] in 1892 for spur gears. Lewis 
considered the gear tooth to be a cantilever beam and assumed that the 
critical section was located at the point where the tooth root fillet is 
tangent to an inscribed parabola representing a beam of uniform strength. 

In the German Standard DIN 3990 [2], a nominal bending stress is 
used as a basis for computing the tooth strength; the dependence of the 
dedendum strength on the size of the fillet radius is represented by a 
notch-effect factor that is dependent on the material and the surface finish. 
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It was later realized that the abrupt changes in tooth contour that occur 
in the root fillet area cause stress concentration effects, which increase the 
actual stress above that predicted by the Lewis equation. To count for the 
stress concentration, Dolan and Broghamer [3] used photoelastic models 
of gear teeth in order to determine the stress correction factor to be used 
with the Lewis formula. 

The classical approach to the problem of stress determination in gear 
teeth rests on the cantilever beam theory, with the addition of semi-empiri- 
cal “stress concentration factors” taking account of the radii of curvature 
in the tooth fillet [4-93. 

The development of finite element techniques [l&12] now permits an 
exact computation of stresses. The stresses measured by Winter and Hirt 
[13] were compared with the stresses that had been determined 
photoelastically and analytically according to the method of the finite 
elements and the integral equation method. 

Recently, however, predictions of current stress formulas were found to 
be inaccurate when applied to high-strength tooth forms [14]. Basically, 
the discrepancy arises when the gear tooth is short in height but wide in 
depth or thickness. This geometry violates Saint Vanant’s principle, which 
states that elementary beam theory applies only to sections of a beam that 
are at large distances from both the load and the support in comparison to 
the depth of the beam. 

Mention should be made of conformal mapping as used by Aida and 
Terauchi 11151. In contrast, Albert and Obenaus [ 16) and Errichello [17 J 
determine by computation the stresses occurring in an equivalent wedge 
profile. 

In this work, the bending stress in a high-strength toothform employing 
circular-arc profiles is analyzed using a model suggested by Shotter [14]. 
These gears are of “pitch-point” contact type; i.e., the maximum tooth load 
is concentrated near the pitch point or the middle of the tooth height. 
Thus, if the Lewis model were to be applied to this type of profile, it would 
result in a short thick beam, and it would be expected to give an inaccurate 
prediction of the bending stresses. 

GEOMETRY OF GEAR TOOTH 

Figure 1 shows the coordinate system and the important reference 
planes. The x-axis lies along the intersection of the surface of action and 
the tangent plane. The XI-axis lies along the intersection of the pitch plane 
and the tangent plane. The origin of both coordinate frames is located at 
the intersection of the pitch element and the tangent plane, which is also 
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Pitch Plane 

FIG. 1. Coordinate system. 

the pitch point P. The y-axis and the $-axis lie in the tangent plane. 
From Fig. 1 

Z, = x sin II/‘, (1) 

where Z, is the distance along the line of action to a general contact point. 
The pitch radii are 

R,= n2 
2P, cos *’ (2) 

The profile radii are less than the radius of curvature at the pitch point 
P, of corresponding involute profiles, i.e., 

r, = K1 R, sin 4; 

where K, < 1, K2 < 1. 

rz = K, R, sin 4, (3) 

Figure shows a section taken along the line of action and the maximum 
boundaries of the zone of action, From Fig. 2 

FIG. 2. Zone of action. 

(4) 
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where Z, is the length of the recess portion of the line of action expressed 

Z,=,/wcl-R,sincr, 

where 
Tol=R,+h 

tan *‘= 
tan + cos $ 
cos( 4 - a) 

tan6(=KsWcos# 
1 - K sin2 q5 

tan qSn = tan q5 cos 1(1 

tan ~1, = tan c1 cos $. 

The geometry of the circular-arc profile is shown in Fig. 3. 

PI=R, Jl- K,(2- K,) sin* 4 

sin CI, = 
ICI sin ij cos 4 

41 - K, (2 - K,) sin* 4 

tan c1 = 4 sin 4 ~0s 4 
1 I-K,sin*qb 

where 
KJGK,U + G). 

K, +GK, ’ 
G=n2/nl. 

It is customary to let 

h = l/P, and y1=7c/2nl. 

(I-K,) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

FIG. 3. Geometry of circular-arc prolile. 
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The normal radii of profile curvature at the pitch point are 

r,(l-sin”$sin’$)” 
Y n, = cos II/ 

r2 
r nz =-r,,. 

r1 

The relative radius or normal profile curvature is 

L=L+L 
rn r nl r n* 

i.e., 

’ 
ml rn2 rn, (r2/rI 1 rn,(&&IKIRI) 

n =-= 1 + (r2/rI)= 1 + (K,R,/K, R,) rn, + rnz 

rn,W2~21KI~I) 4 Gr,, 
= 1 +(&n,/K,n,)=K, +K,G’ 

(16) 

(17) 

(18) 

(19) 

Figure 4 is a view of the hob tooth in the normal plane. The distance 
h, is chosen to be slightly larger than the addendum height to avoid 
interference between the gear tooth fillet and the tip of the mating gear 
tooth. Let 

(20) 

from Fig. 4 

sin 4, = 
rnh sin 4, - hk 

r nh 

rnh cos $b, + n/dP, 
ret = 

cm 4% 
- rnh 

(21) 

(22) 

hb = h, + rct( 1 - sin d,), (231 

Hob Tooth 

FIG. 4. Normal profile of hob. 
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where rnb is the normal radius of the hob profile, and 

The generated gear tooth fillet radius is nearly circular and may be 
approximated [ 181 by 

(hb - rd2 
rnf = R, + (hb - ret) + ret, 

where R, is the apparent or equivalent radius of curvature of the 
generating pitch circle of a helical gear tooth when viewed in the normal 
plane, and 

RI R,=- 
cos2 l+b' (26) 

BENDING STRESS MODEL 

Figure 5 shows the model used for this analysis. The gear tooth is 
considered to be a wedge loaded at its apex. The tensile stress at tangent 
point B and the compressive stress at tangent point C are expressed [ 191, 
respectively, 

6, = 
2w,(sin q cos qc - rj cos qt) 

1,(q2 - sin* q) (27) 

2w,(sin 4 cos qt - q cos q,) 
UC= 

lc(v2 - sin2 fj) (28) 

where 

?=?t-vc (Radians). 

Actual Tooth 

Equival 
-of ile 

(29) 

ent 

FIG. 5. Gear tooth with an inscribed wedge loaded at the apex. 
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These stress equations pertain to the two-dimensional case; i.e., the line 
load W, is assumed to be uniformly distributed along the tip of the wedge 
in the thickness direction. For the circular-arc gearing considered here, 
both the magnitude and the position of the load on the profile change with 
position along the tooth length. 

The theoretical contact pattern is a point where the gear teeth are 
unloaded, but under load the elastic deformation of the mating tooth sur- 
faces causes the contact area to expand into a long narrow ellipse. Since the 
relative radius of lengthwise curvature Y, is much larger than the relative 
radius of normal profile curvature rnr the contact ellipse is long and 
narrow. Seely and Smith [20] show that for rI/rn > 50, the area of contact 
is nearly a long narrow rectangle. Thus, we can assume the area of contact 
is a rectangle as shown in Fig. 6. 

An increment of the load is equal to an increment of the volume as 
shown in Fig. 6, i.e., 

dW= 2bq dx, (30) 

from which the load per unit length may be found 

(31) 

FIG. 6. Contact pattern and surface pressure distribution. 
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where q is the Hertzian contact stress and n 
q=qol-x . c 01 a 

(i) Triangular surface pressure distribution: 

q=q() l- x 
[ 01 

) n= 1. 
a 

section A-A 

189 

(32) 

(33) 

Section B- B 

FIG. 7. Typical contact point. 

409/167/l-13 
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(ii) Convex parabolic surface pressure distribution: 

y=q,,[l-(~)li. n=2. 

(iii) Concave parabolic surface pressure distribution: 

q=q,[l -(y*J; ,,=;. 

The half-width b of a rectangular area [19] is 

q\ 

(34) 

(35) 

(36) 

FIG. 8. Profile geometry. 
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Substituting Eqs. (32) and (36) into Eq. (31), we obtain 

w, = 4qir, 
[ 

!A+!gq[l-(y]. 

From Fig. 7 

1 
11-7 

un4 = Z:+2Z,R, sinu+RT 

From Fig. 8 

P n, = (RT - 2Rlr,, sin 4, + ri,)‘j2 

sin an, = r,, cos 4, 
P n1 

cos fi”, = rf, + d, - 4, 
2Y”, Pn, 

cos c(“q = uiq + PZ, - ri, 
2u”y P”, 

4q = P”, + a,, - 5. 

From Figs. 9 and 10 

4 = R,, + rnr 
R nr = (R, - hb) sin y1 cos +/sin y,, 

Y Ill = Y 1 cm II/. 

Gear Axis 
h 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

FIG. 9. Root radius in the normal plane. 
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FIG. 10. Geometry of inscribed wedge model. 

From Fig. 10 

d, = [Z: + uf, - 21runy cos(y,, - a,, + cQ]“* 

d, = [l: + ufi, - 211unq cos(3y,, - a,, + a,,)] “2 

1, = (df - r;,)“‘, I, = (dz - r$)“* 

4 cos 5, = 2, 
t 

L 
cos 5, = a 

c 

q,=;+a,,-a nq - 4, + 1.1 - 5, 

RESULTS OF COMPUTER ANALYSIS 

(47) 

(48) 

(49) 

(51) 

(52) 

(53) 

The geometry of the wedge model shown in Fig. 10 is now fully defined. 
The stresses on the tension and compression side of the gear tooth may be 
found at any position along the tooth length. The stresses are calculated at 
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a, E’ 

QZ 

@A = 14.50 

@I. = 22.50 

@A =30" 

n=2 

n=l 

n=l 
2 

a 

FIG. 11. Nondimensional tensile stress for P, = 32 and IJ = 45”. 

intervals along the x-axis. The contact rectangle is assumed to be tangent 
to the tip of the pinion tooth and to be symmetrical about the y-axis as 
shown in Figs. 1 and 6. At each position x, the magnitude of the load and 
the geometry of the wedge vary which causes the stresses also to vary with 
position along the tooth length. 

0,E’ 
2 qo 

100 

80 

60 

40 

20 

0 

n=2 

n=l 

n=l 
2 

-1 0 x 1 
a 

FIG. 12. Nondimensional tensile stress for P, = 32 and (, = 14.5” 
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1 0 I 
x 
a 

FIG. 13. Nondimensional compressive stress for P, = 32 and IJ = 45”. 

A total of 27 computer runs were made to calculate the bending stress 
geometries for various gear tooth for each value of n, i.e., n = 1,2, and $. 
Three values of.normal pressure angle, helix angle, and normal diametral 
pitch, respectively, were chosen as being representative of a range of 
practical, values as shown here: 

Normal pressure angle +,, = 14.5, 22.5, 30”. 
Helix angle $ = 5, 25, 45”. 
Normal diametral pitch P, = 16, 32, 80. 

The pitch radius of the pinion was arbitrarily chosen to be equal to 1 in. 
and the gear ratio was made equal to 2 : 1 in each case. The profile radius 
coefficients, Kr and K2, were selected arbitrarily for the purposes of this 
analysis. The allowable surface stress, qO, is based upon the weaker of the 
two gear materials. 

n=Z 

-.__ n=l 

-_----- “:$ 

O$= 45” 

(2, * = 25” 

c3\ $ = 5c 

-1 0 1 x 
a 

FIG. 14. Nondimensional compressive stress for P, = 32 and (. = 14.5”. 
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: I’. = 80 

: P. = 32 

: P. = 16 

: ‘#. = 22.5” 

-1 0 x 1 
a 

FIG. 15. Nondimensional tensile stress for I(/ = 5”. 

As shown, the stress equations are nondimensionalized in order to make 
the graphical results applicable to any combination of material and 
allowable surface stress. To make the analysis, the computed stresses were 
nondimensionalized as follows. 

Define an effective modulus 

1 1-v; 1-v; -=- - 
E’ E, •I- E2 ’ 

60 
U,E’ 
QoZ 

40 

(54) 

:: 80 

= 32 

= 16 

= 22.5” 

-1 0 x 1 
a 

FIG. 16. Nondimensional compressive stress for $ = 5”. 
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120 

60 

40 

20 

0 
-1 0 x 1 

a 

0,E’ 
90* 

60 

40 

20 

0 

FIG. 17. Nondimensional tensile stress for 4, = 14.5”. 

-1 0 x 1 - 
a 

P. = 80 

:P.=32 

:P.=16 

$=45O 

: $=25" 

: $=50 

FIG. 18. Nondimensional compressive stress for (, = 14.5”. 
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TABLE I 

Maximum Tensile and Compressive Streses in the Fillet at the Root of 
the Tooth Affected by the Value of $ and q%, for P, = 32 

IL 5” 25” 45” 

4” 14.5” 22.5” 30” 14.5” 22.5” 30” 14.5” 22.5” 30” 
~tmax 51.8 39.5 31.0 59.3 44.0 33.4 85.6 57.4 38.9 
~cmax 29.3 26.3 25.2 33.9 29.7 27.4 50.5 39.9 32.5 

Substituting this value of E’ into Eq. (37) gives 

w,AL[l-(~)‘]. (55) 

Substituting Eq. (55) into Eqs. (27) and (28) gives the nondimensional 
stresses 

c E’ -=~(sing~~~~~~~““[‘-(~~], 
4: 

where q, ylt, qC, l,, and 1, vary with position x. 
Figs. 11-18 show graphs of typical results for the theoretical stress dis- 

tribution as a function of position X. The maximum tensile and compressive 
stresses in the fillet at the root of the tooth affected by the variation of II/, 
#,, and P,, respectively, are presented in Tables I-III. 

DISCUSSION OF RESULTS 

(1) The distribution of stress (TV and rrC into the fillet at the root of 
the tooth is similar to the form of the contact surface pressure q. 

TABLE II 

Maximum Tensile and Compressive Stresses in ghe Fillet at the Root of 
the Tooth Affected by the Value of P, and 4, for $ = 5” 

P” 80 32 16 

4” 14.5” 22.5” 30” 14.5” 22.5” 30” 14.5” 22.5” 30” 
~tmax 107.8 84.6 68.2 51.8 39.5 31.0 36.7 26.2 19.5 
ulnar 64.5 59.8 58.5 29.3 26.3 25.2 18.8 15.8 14.4 
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TABLE III 

Maximum Tensile and Compressive Stresses in the Fillet at the Root of 
the Tooth Affected by the Value of P, mand $ Value for 4, = 14.5“ 

P” 80 32 16 

4” 14.5” 22.5” 30” 14.5” 22.5” 30” 14.5” 22.5’ 30” 
~wnar 107.8 126.1 184.6 51.8 59.3 85.6 36.7 40.4 54.3 
~cnmx 64.5 75.9 113.1 29.3 33.9 50.5 18.8 21.2 30.3 

(2) The larger the value of P,, the higher the distribution of stress. 

The larger the value of P,, the smaller the values of h and h,, the larger 
the values of +,, ret, rnf, and the smaller the values of I, and I,. Thus it 
leads to higher stress distribution. 

(3) The lower the value of 4,, the higher the distribution of stress. 
Since the smaller the value of d,, the narrower the tooth width, it results 
in higher stress distribution. 

(4) The larger the value of $, the higher the distribution of stress. 
(i) Since the larger $ makes the larger T,,, higher stress distribu- 

tion results. 
(ii) The larger $ makes the larger ret, and results in larger rnT, 

while the smaller I, and I, are achieved; therefore it leads to higher stress 
distribution. 

(5) As $ increases, the contact pair of teeth will increase; hence the 
transmitted torque will increase too. 

(6) (i) As P, = 32, the value of 4, decreases from 30” to 22.5” and 
14.5”, respectively, the stress distribution increases from 1.27 to 1.48 times 
and from 1.67 to 2.20 times, respectively. 

(ii) As P, = 32, the value of IJ increases from 5” to 25” and 45” 
respectively, the stress distribution also increases from 1.08 to 1.14 times 
and from 1.25 to 1.65 times respectively. It is obvious that the stress dis- 
tribution is affected more greatly by the variation of 4, then by that of $. 

(7) (i) As $ = 5”, the value of P, increases from 16 to 32 and 80 
respectively, the stress distribution also increases from 1.41 to 1.59 times 
and from 2.94 to 3.50 times respectively. 

(ii) As 4” = 14.5”, the value of P, increases from 16 to 32 and 80 
respectively, the stress distribution also increases from 1.41 to 1.58 times 
and from 2.94 to 3.50 times respectively. 
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(8) (i) Setting P, = 32, when 4” = 14.5” then otrnax = 1.70 N 1.77 cCmax 
when 4, = 22.5” then gtrnax = 1.44 - 1.50 crcmax 
when 4,, = 30” then etmax = 1.20 - 1.23 B,,,, 

(ii) Setting rl/ = 5”, when 4” = 14.5” then etmas = 1.67 - 1.95 ccmax 
when c$” = 22.5 then ctmax = 1.41 - 1.66 ecmax 
when 4, = 30” then dtmax = 1.17 - 1.35 ccrnax. 

CONCLUSIONS 

(1) The distribution of stress (T, and rrC are similar to the form of the 
contact surface pressure q. 

(2) The tensile stress in the fillet at the root of the tooth has a maxi- 
mum value for the variation of Ic/, d,, and P, at about x = -0.2a, while the 
maximum compressive stress occurs at about x = +0.2a. 

(3) The larger the value of P,, the higher the distribution of stress. 
(4) As I,+ increases, both the distribution of stress (TV and crC and the 

transmitted torque increases. 
(5) As 4, increases, there wil be higher distribution of stress CJ~ 

and oC. 
(6) The stress distribution is affected more greatly by the variation of 

4, than by that of $. 

APPENDIX: NOMENCLATURE 

Z active portion of line of action 
Z, distance along the line of action 

to a general contact point 
Z, recess portion of the line of 

action 
a semi-major axis of contact 

ellipse 
b semi-minor axis of contact 

ellipse 
A area of rectangular contact 
E’ effective modulus of elasticity 

of gear pair 

E, modulus of elasticity of pinion 
E, modulus of elasticity of gear 
F face width 
G gear ratio 
K effective profile radius 

coefficient 
K, profile radius coefficient of 

pinion 
K, profile radius coefficient of gear 
P pitch point 
P, normal diametral pitch 
R, pitch radius of pinion 



R, pitch radius of gear cc 
R, equivalent radius of curvature 

of generating pitch circle 
R,, gear tooth root radius in (Jr 

normal plane (Jt 
R,, outside radius of pinion 
R,, outside radius of gear 

distance from contact point to W 
center of fillet radius on n1 
compression side of tooth n2 

distance from contact point to 4 
center of fillet radius on 40 
tension side of tooth 

adendum height r 
dedendum height r1 
distance from hob pitch-line to 

tangent point of hob tip r2 
radius 

total load per contact ellipse 
number of teeth in pinion 
number of teeth in gear 
Hertzian contact stress 
maximum Hertzian contact 

stress 
radial coordinate 
transverse radius of pinion 

tooth profile 
transverse radius of gear tooth 

profile 
distance from wedge apex to 

tangent point on 
compression fillet 

radius from pinion center to 
center of tooth fillet radius 

distance from wedge apex to 
tangent point on tension 
fillet 

angle between line unq and 
line d, 

angle between line u,, and 
line d, 

r ct 
rn 

r n, 

r n2 

rnf 

rnh 

U w 

radius of hob tip 
relative radius of normal profile 

curvature 
normal radius of pinion tooth 

profile 
normal radius of gear tooth 

profile 
normal radius of pinion tooth 

fillet 
normal radius of hob profile 
normal radius vector of point 

of contact 
Poisson’s ratio of pinion 

material 
w inclination angle of helical 

contact line 
Poisson’s ratio of gear material W.X 

angle between side of wedge X 

and line from apex to 
compression-fillet center X’ 

angle between side of wedge Y 
and line from apex to 
tension-fillet center Y’ 

transverse radius from pinion 
center to profile arc center 

normal radius from pinion Z 

center to profile arc center tangent plane 

load per inch of contact 
abscissa along major axis of 

contact ellipse 
abscissa along pitch helix 
ordinate along minor axis of 

contact ellipse 
ordinate in the tangent plane 

and perpendicular to pitch 
helix 

ordinate perpendicular to 

200 CHEN AND WU 

compressive stress at tangent 
point of inscribed wedge and 
tooth fillet 

radial stress in wedge 
tensile stress at tangent point of 

inscribed wedge and tooth 
fillet 
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a transverse angle between pitch 
plane and surface of action. 
Wedge half-angle. 

a1 transverse angle between line of 
centers and line from pinion 
center to profile arc center 

a2 transverse angle between line of 
centers and line from gear 
center to profile arc center 

B angle between load vector and 
wedge center line 

B ,,y angle between normal pressure 
line and line pn, 

y1 half-angle between tooth center 
line and tooth space center 
line 

Y nt 
il 
4c 

Ylt 

angle y1 in normal plane 
included angle of wedge 
angle between load vector and 

compression side of wedge 
angle between load vector and 

tension side of wedge 
transverse pressure angle 
normal pressure angle 
normal pressure angle at point 

of contact 
normal pressure angle at 

tangent point of the hob tip 
radius and hob profile radius 

helix angle in the pitch plane 
helix angle in the surface of 

action 
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