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Abstract

Let Bnð f ; q; xÞ; n ¼ 1; 2;y be q-Bernstein polynomials of a function f : ½0; 1�-C: The
polynomials Bnð f ; 1; xÞ are classical Bernstein polynomials. For qa1 the properties of q-

Bernstein polynomials differ essentially from those in the classical case. This paper deals with

approximating properties of q-Bernstein polynomials in the case q41 with respect to both n

and q: Some estimates on the rate of convergence are given. In particular, it is proved that for

a function f analytic in fz: jzjoq þ eg the rate of convergence of fBnð f ; q; xÞg to f ðxÞ in the

norm of C½0; 1� has the order q�n (versus 1=n for the classical Bernstein polynomials). Also

iterates of q-Bernstein polynomials fB jn
n ð f ; q; xÞg; where both n-N and jn-N; are studied.

It is shown that for qAð0; 1Þ the asymptotic behavior of such iterates is quite different from the

classical case. In particular, the limit does not depend on the rate of jn-N:
r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1912 Bernstein [2] found his famous proof of the Weierstrass Approximation
Theorem. Using probability theory he defined polynomials called nowadays
Bernstein polynomials as follows.

Definition (Bernstein [2]). Let f : ½0; 1�-R: The Bernstein polynomial of f is

Bnð f ; xÞ :¼
Xn

k¼0
f

k

n

� �
n

k

 !
xkð1� xÞn�k; n ¼ 1; 2;y :

ARTICLE IN PRESS

�Fax: +90-312-586-80-91.

E-mail address: ostrovskasofiya@yahoo.com.

0021-9045/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0021-9045(03)00104-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81931811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bernstein proved that if fAC½0; 1�; then the sequence fBnð f ; xÞg converges uniformly
to f ðxÞ on ½0; 1�:

Later it was found that Bernstein polynomials possess many remarkable
properties, which made them an area of intensive research. A systematic treatment
of the theory of Bernstein polynomials as it was until 1990s is presented, for example,
in [8,19]. New papers are constantly coming out (cf. e.g. [3]), and new applications
and generalizations are being discovered (cf. e.g. [7,13]). A generalization of
Bernstein polynomials involving q-integers was proposed by Lupa-s in 1987 (cf. [9]).
However, the q-analogue of the Bernstein operator considered by Lupa-s gives
rational functions rather than polynomials.
Generalized Bernstein polynomials based on the q-integers, or q-Bernstein

polynomials were introduced by Phillips in 1997. In the case q ¼ 1 these polynomials
coincide with the classical ones. For qa1 one gets a new class of polynomials having
interesting properties. q-Bernstein polynomials have been studied by Phillips et al.
([4,11,12,14–17]), who obtained a great number of results related to various
properties of these polynomials.
It should be mentioned that results of these papers deal mostly with the case

qAð0; 1Þ: This is because in this case q-Bernstein polynomials generate positive linear
operators Bn;q : f/Bnð f ; q; xÞ; the fact that is used in investigation significantly. The
case qAð1;NÞ; where positivity fails, has not been studied in detail. However, the
results of this paper show that in this case approximating properties of q-Bernstein
polynomials may be better than in the case qp1:
In Sections 3 and 4, we discuss convergence properties of q-Bernstein polynomials

with respect to both n and q in the case q41:
In Sections 5 and 6, we study the rate of approximation of analytic functions by q-

Bernstein polynomials in the case q41: In particular, for entire functions the rate of
convergence has the order q�n ðq41Þ versus 1=n for the classical polynomials. We
also discuss approximation by q-Bernstein polynomials in case the value of
parameter q varies.
It should be emphasized that the results of the paper are the first ones showing that

approximation properties of q-Bernstein polynomials can be better than of the
classical ones.
Sections 7–9 are dedicated to iterates of the q-Bernstein operator. By the definition

the kth iterate of Bn;q is

B1
n;q :¼ Bn;q; Bk

n;q :¼ Bn;qðBk�1
n;q Þ; k ¼ 2; 3;y :

Iterates of the classical Bernstein operator Bn :¼ Bn;1 have been studied in many

papers starting from [6]. In [6], Kelisky and Rivlin studied the convergence of the

iterates Bk
nð f Þ as k-N if n is fixed, and of the iterates B jn

n ðpÞ as n-N; where p is a

polynomial and f jn=ng-a; 0papN: They proved that in both cases the iterates are
convergent, and found an explicit formula of the limit function. From a different
point of view the iterates of the Bernstein operator were studied by Micchelli [10],
who considered them using semigroup methods. Recently, Cooper and Waldron [3]
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investigated iterates of the Bernstein operator using properties of eigenvalues and
eigenvectors of the operator. In [3] one can also find other references on the subject.

Iterates of the q-Bernstein operator Bk
n;q with fixed n and k-N were considered in

[12], where it was proved that these iterates have the same behavior as in the classical
case q ¼ 1:

In this paper we consider iterates of the q-Bernstein operator of the form B jn
n;q;

where both n and jn tend to infinity. We consider in detail the behavior of iterates of
the q-Bernstein operator for qAð0; 1Þ: Our results show that in this case the behavior
of iterates is essentially different from the classical case q ¼ 1 considered by Kelisky
and Rivlin [6, Theorem 2]. In particular, the limit does not depend on the rate of
jn-N (cf. Theorem 8). For qAð1;NÞ the situation is very similar to the classical
case. Corresponding results and their proofs can be obtained by almost verbatim
extension of reasoning given in [3, Theorems 4.1, 4.20, Corollary 5.15]. Therefore, we
present them without proofs.
To formulate our results we need the following definitions.
Let q40: For any n ¼ 0; 1; 2;y the q-integer ½n�q is defined by

½n�q :¼ 1þ q þ?þ qn�1 ðn ¼ 1; 2;yÞ; ½0�q :¼ 0

and the q-factorial ½n�q! by
½n�q! :¼ ½1�q½2�qy½n�q ðn ¼ 1; 2;yÞ; ½0�q! :¼ 1:

For integers 0pkpn the q-binomial, or the Gaussian coefficient is defined by

n

k

" #
q

:¼
½n�q!

½k�q!½n � k�q!
:

Clearly, for q ¼ 1;

½n�1 ¼ n; ½n�1! ¼ n!;
n

k

" #
1

¼
n

k

 !
:

In the sequel we always assume that f : ½0; 1�-C: We denote by C½0; 1� (or
Cn½0; 1�; 1pnpN) the space of all continuous (correspondingly, n times con-
tinuously differentiable) complex-valued functions on [0,1] equipped with the
uniform norm. The expression gnðxÞ4gðxÞ means uniform convergence of a
sequence fgnðxÞg to gðxÞ:

Definition (Phillips [14]). Let f : ½0; 1�-C; q40: The q-Bernstein polynomial of f is

Bnð f ; q; xÞ :¼
Xn

k¼0
f

½k�q
½n�q

 !
n

k

" #
q

xk
Yn�1�k

s¼0
ð1� qsxÞ; n ¼ 1; 2;y : ð1Þ

(From here on an empty product is taken to be equal 1.)

Note that for q ¼ 1; the polynomials Bnð f ; 1; xÞ are classical Bernstein
polynomials. Recall that the famous theorem of Bernstein states:
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Theorem (Bernstein [2]). If fAC½0; 1�; then

Bnð f ; 1; xÞ4f ðxÞ for xA½0; 1� as n-N:

For qAð0; 1Þ convergence of the sequence fBnð f ; q; xÞg was investigated in [5].

Theorem (Il’inskii and Ostrovska [5]). Given qAð0; 1Þ and fAC½0; 1�; there exists a

continuous function BNð f ; q; xÞ such that

Bnð f ; q; xÞ4BNð f ; q; xÞ for xA½0; 1� as n-N: ð2Þ

An explicit formula for BNð f ; q; xÞ is given by (16). It follows from (16) that the
equality BNð f ; q; xÞ ¼ f ðxÞ holds if and only if f ðxÞ ¼ ax þ b; i.e. f ðxÞ is a linear
function.
Therefore, in the case qAð0; 1Þ the sequence fBnð f ; q; xÞg is not an approximating

sequence for a function f unless f is linear. This is in contrast to the case q ¼ 1; when
the sequence fBnð f ; 1; xÞg approximates f for any fAC½0; 1�:
In this paper we show that in the case q41 approximating properties of the

sequence fBnð f ; q; xÞg are in some sense intermediate between the cases mentioned
above. We prove that for q41 the sequence fBnð f ; q; xÞg is approximating for
functions analytic in a suitable domain, and, moreover, we may achieve a fast rate of
convergence. At the same time the sequence may be divergent for some infinitely
differentiable functions. We also discuss approximating properties of q-Bernstein
polynomials related to the dependence on the value of q:
Equality (1) defines the linear operator

Bn;q : f/Bnð f ; q; xÞ;

which is called the q-Bernstein operator. Clearly,

Bn;q : C½0; 1�-Pn;

where Pn denotes the set of polynomials of degree pn: To study iterates of q-
Bernstein polynomials it is convenient to present them in the form of linear

operators, i.e. Bk
nð f ; q; xÞ ¼ Bk

n;qð f Þ: In the sequel, we use polynomial and operator

notation interchangeably. We prove that for qAð0; 1Þ and any function fAC½0; 1� the
sequence fB jn

n ð f ; q; xÞg; where n-N and jn-N; converges uniformly to the linear

function interpolating f at 0 and 1 regardless the rate of jn-N:
For qAð0; 1Þ the limit function appeared in (2) defines a linear operator on C½0; 1�

BN;q : f/BNð f ; q; xÞ:

It was observed in [5] that BN;qðC½0; 1�ÞaC½0; 1�: We also consider the behavior of

the iterates of BN;q:

2. Preliminaries

In this section we state some general properties of q-Bernstein polynomials which
will be used throughout the paper.
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It follows directly from the definition that q-Bernstein polynomials possess the
end-point interpolation property, i.e.

Bnð f ; q; 0Þ ¼ f ð0Þ; Bnð f ; q; 1Þ ¼ f ð1Þ for all q40 and all n ¼ 1; 2;y : ð3Þ
The following representation of q-Bernstein polynomials, called the q-difference

form, was obtained in [15, Theorem 1, formula (12)]:

Bnð f ; q; xÞ ¼
Xn

k¼0

n

k

" #
q

Dkf0 xk; ð4Þ

where Dkf0 is expressed as

Dkf0 ¼
½k�q!
½n�kq

qkðk�1Þ=2f 0;
1

½n�q
;?;

½k�q
½n�q

" #
: ð5Þ

By f ½x0; x1;y; xk� we denote the usual divided difference, i.e.

f ½x0� ¼ f ðx0Þ; f ½x0; x1� ¼
f ðx1Þ � f ðx0Þ

x1 � x0
;y;

f ½x0; x1;y; xj � ¼
f ½x1;y; xj � � f ½x0;y; xj�1�

xj � x0
:

Using (4) and (5), we write

Bnð f ; q; xÞ ¼
Xn

k¼0
lðnÞk;q f 0;

1

½n�q
;y;

½k�q
½n�q

" #
xk; ð6Þ

where

lðnÞk;q :¼
n

k

" #
q

½k�q!
½n�kq

qkðk�1Þ=2 ¼ 1� 1

½n�q

 !
? 1�

½k � 1�q
½n�q

 !
: ð7Þ

In Section 8 (Lemma 5) we show that lðnÞk;q are eigenvalues of the q-Bernstein operator

Bn;q: Note that

lðnÞ0;q ¼ lðnÞ1;q ¼ 1; ð8Þ

and it is clear from (7) that

0plðnÞk;qp1; k ¼ 0; 1;y; n: ð9Þ

Therefore,

jBnð f ; q; xÞjp
Xn

k¼0
f 0;

1

½n�q
;y;

½k�q
½n�q

" #					
					 jxjk: ð10Þ

This estimate will be used in the sequel.
It follows immediately from (6) and (8) that q-Bernstein polynomials leave

invariant linear functions, that is

Bnðat þ b; q; xÞ ¼ ax þ b for all q40 and all n ¼ 1; 2y : ð11Þ
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If f is a polynomial of degree m; then all its divided differences of order 4m

vanish, and (6) implies that Bnð f ; q; xÞ is a polynomial of degree minðm; nÞ: In other
words, this means that the q-Bernstein operator is degree reducing.
We set

pnkðq; xÞ :¼
n

k

" #
q

xk
Yn�1�k

s¼0
ð1� qsxÞ; k ¼ 0; 1;y; n; n ¼ 1; 2;y : ð12Þ

Taking a ¼ 0; b ¼ 1 in (11), we conclude that

Xn

k¼0
pnkðq;xÞ ¼ 1; for all q40 and all n ¼ 1; 2;y : ð13Þ

Obviously,

Bnð f ; q; xÞ ¼
Xn

k¼0
f

½k�q
½n�q

 !
pnkðq; xÞ:

The behavior of the sequence fBnð f ; q; xÞg for qAð0; 1Þ and n-N is described in
[5] as follows.
Consider the entire functions

pNkðq; xÞ :¼ xk

ð1� qÞk½k�q!

YN
s¼0

ð1� qsxÞ; k ¼ 0; 1;y : ð14Þ

By Euler’s identity (cf. [1, Chapter 2, Corollory 2.2]) we have

XN
k¼0

pNkðq; xÞ ¼ 1 for all xA½0; 1Þ: ð15Þ

Clearly, for qAð0; 1Þ we have

lim
n-N

½k�q
½n�q

¼ 1� qk for all k ¼ 0; 1;y :

For f : ½0; 1�-C; qAð0; 1Þ we set

BNð f ; q;xÞ ¼
PN
k¼0

f ð1� qkÞpNkðq; xÞ if xA½0; 1Þ;

f ð1Þ if x ¼ 1:

8><
>: ð16Þ

It can be readily seen that the function BNð f ; q; xÞ is well defined on ½0; 1� whenever
a function f ðxÞ is bounded on the interval. We note that (16) gives the limit function
defined in (2). It follows from (2) and (11) that

BNðat þ b; q; xÞ ¼ ax þ b: ð17Þ

In the following section we investigate the behavior of the sequence fBnð f ; q; xÞg
in the case q41:
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3. Convergence of q-Bernstein polynomials in the case q41

Our main result on convergence is the following theorem.

Theorem 1. Let qAð1;NÞ; and let f be a function analytic in an e-neighborhood of

[0,1]. Then for any compact set KCDe :¼ fz: jzjoeg;

Bnð f ; q; zÞ4f ðzÞ for zAK as n-N:

Corollary 1. If f is a function analytic in a disk DR; R41; then for any compact set

KCDR�1;

Bnð f ; q; zÞ4f ðzÞ for zAK as n-N:

In particular, if R42; then Bnð f ; q; xÞ4f ðxÞ for xA½0; 1� as n-N:

Corollary 2. If f is an entire function, then for any compact set KCC;

Bnð f ; q; zÞ4f ðzÞ for zAK as n-N:

Remark. A particular case f being a polynomial and K ¼ ½0; 1� was considered in
[12].

The condition of analyticity is essential for convergence, and it cannot be dropped
completely as the following theorem shows.

Theorem 2. Let qAð1;NÞ:

(i) There exists fACN½0; 1� such that fBnð f ; q; xÞg does not converge to any finite

function on ½0; 1�:
(ii) There exists fACN½0; 1� such that fBnð f ; q; xÞg converges to a finite

discontinuous function on ½0; 1�:
(iii) There exists fACN½0; 1� such that fBnð f ; q; xÞg converges uniformly on ½0; 1� to

gðxÞaf ðxÞ:

The following theorem describes the behavior of the polynomials Bnð f ; q; xÞ as
q-þN under certain smoothness conditions for f :

Theorem 3. Let fACn�1½0; 1�: Then for any compact set KCC;

Bnð f ; q; zÞ4Bnð f ;N; zÞ :¼
Xn�1
k¼0

f ðkÞð0Þ
k!

zk þ zn f ð1Þ �
Xn�1
k¼0

f ðkÞð0Þ
k!

( )

for zAK as q-þN:
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Corollary 3. If f is analytic in a disk DR; R41; then

Bnð f ;N; zÞ4f ðzÞ for jzjp1 as n-N:

That is, quite unexpectedly, we get good approximating properties of the sequence
fBnð f ; q; xÞg taking the value of q infinite. The corollary below can be derived from
Theorem 3 immediately.

Corollary 4. If p is a polynomial of degree pn; then

Bnðp;N; zÞ ¼ pðzÞ:

Therefore, we may approximate pðxÞ with its q-Bernstein polynomials of the same
degree n taking the limit with respect to q:

4. Proofs of Theorems 1–3

We need the following lemma, which is also of interest for its own sake.

Lemma 1. Let qAð1;NÞ: If fAC½0; 1�; then

lim
n-N

Bn f ; q;
1

qm

� �
¼ f

1

qm

� �
for all m ¼ 0; 1; 2;y :

Proof. Let the polynomials pnkðq; xÞ be defined by (12). Obviously,

Bnð f ; q; xÞ ¼
Xn

k¼0
f

½n � k�q
½n�q

 !
pn;n�kðq; xÞ:

We note that

pn;n�k q;
1

qm

� �
¼ 0 for mokpn

and

pn;n�k q;
1

qm

� �
¼

n

k

" #
q

1

qmðn�kÞ 1� 1

qm

� �
? 1� qk�1

qm

� �

¼Oðqnðk�mÞÞ-0 as n-N for kom:

For k ¼ m we have

lim
n-N

pn;n�m q;
1

qm

� �
¼ lim

n-N

n

n � m

" #
q

1

qmðn�mÞ 1� 1

qm

� �
? 1� 1

q

� �
¼ 1:

Since fAC½0; 1� and

lim
n-N

½n � m�q
½n�q

¼ 1

qm
;
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it follows that

lim
n-N

Bn f ; q;
1

qm

� �
¼ lim

n-N

f
½n � m�q
½n�q

 !
pn;n�m q;

1

qm

� �
¼ f

1

qm

� �
: &

Proof of Theorem 1. Let f be analytic in an e-neighborhood Ue of ½0; 1�: Take any
compact set KCDe: Then for some e1Að0; eÞ we have jzjpe1 for all zAK :
Let us choose a contour L in Ue in such a way that the distance between L and

½0; 1� equals r; 0oe1oroe:
Since (cf. [8, Chapter II, Section 2.7])

f 0;
1

½n�q
;y;

½k�q
½n�q

" #
¼ 1

2pi

Z
L

f ðzÞ dz

z z� 1
½n�q

� �
? z� ½k�q

½n�q

� �
and jz� xjXr for all zAL and xA½0; 1�; it follows that

f 0;
1

½n�q
;y;

½k�q
½n�q

" #					
					p l

2p
� ML

rkþ1; ð18Þ

where l is the length of L; and ML ¼ maxzAL j f ðzÞj: Substituting (18) into (10), we
obtain

jBnð f ; q; zÞjplML

2pr

Xn

k¼0

jzjk

rk
:

If zADe1 ; then jzjoe1or; soXn

k¼0

jzjk

rk
p
Xn

k¼0

e1
r

� �k

o
XN
k¼0

e1
r

� �k

¼ 1

1� e1
r

;

and hence the sequence fBnð f ; q; zÞg is uniformly bounded in the disk De1 : Besides,
by Lemma 1 the sequence converges to the function f analytic in De1 on the set

f1=qmgN0 having an accumulation point in De1 : By the Vitali Theorem (cf. e.g. [18,

Chapter V, Section 5.2]) the sequence converges to f on any compact set in De1 ; and
thus on K : &

Proof of Theorem 2. Consider the polynomials pnkðq; xÞ defined by (12).
Specifically, we have

pnnðq; xÞ ¼ xn

and

pn;n�1ðq; xÞ ¼ ½n�qxn�1ð1� xÞ ¼ qn � 1

q � 1
xn�1 ð1� xÞ:

Obviously,

lim
n-N

pnnðq; xÞ ¼
0 for 0pxo1;

1 for x ¼ 1

(
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and

lim
n-N

pn;n�1ðq; xÞ ¼
0 for 0pxo1=q and x ¼ 1;

1 for x ¼ 1=q

N for 1=qoxo1:

8><
>: ð19Þ

(i) Consider a function jACN½0; 1� satisfying

jðxÞ ¼
0 for 0pxp1=q2;

1 for apxp1=q;

0 for x ¼ 1;

8><
>:

where aAð1=q2; 1=qÞ: Since
½n � k�q
½n�q

m
1

qk
as n-N;

we obtain that

j
½n � k�q
½n�q

 !
¼ 0 for ka1 and sufficiently large n:

Therefore

Bnðj; q; xÞ ¼ j
½n � 1�q
½n�q

 !
pn;n�1ðq; xÞ ¼ pn;n�1ðq; xÞ

for n large enough.
Let gðxÞ be an entire function. We set

f ðxÞ :¼ gðxÞ þ jðxÞ:

Then Bnð f ; q; xÞ ¼ Bnðg; q; xÞ þ Bnðj; q; xÞ: By Theorem 1, Bnðg; q; xÞ4gðxÞ on
½0; 1�: Hence

lim
n-N

Bnð f ; q; xÞ ¼ gðxÞ þ lim
n-N

pn;n�1ðq; xÞ:

By (19) the limit is infinite for xAð1=q; 1Þ:
(ii) In this case we take jACN½0; 1� to satisfy

jðxÞ ¼
0 for 0pxp1=q;

1 for x ¼ 1:

(

Similar to (i) we take an entire function gðxÞ and set f ðxÞ :¼ gðxÞ þ jðxÞ: Since
Bnðg; q; xÞ4gðxÞ and Bnðj; q; xÞ ¼ pnnðq; xÞ ¼ xn; we are done.
(iii) Consider 0cjðxÞACN½0; 1� such that jðxÞ ¼ 0 for xA½0; 1=q�,f1g:

Obviously, Bnðj; q; xÞ 
 0 for all n ¼ 1; 2;y : For any entire function gðxÞ we set
as above f ðxÞ :¼ gðxÞ þ jðxÞ and get Bnð f ; q; xÞ4gðxÞaf ðxÞ: &
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Proof of Theorem 3. Using (6) and (7) we write

Bnð f ; q; zÞ ¼
Xn

k¼0
1� 1

½n�q

 !
? 1�

½k � 1�q
½n�q

 !
f 0;

1

½n�q
;y;

½k�q
½n�q

" #
zk:

Note that for jon;

lim
q-þN

½ j�q
½n�q

¼ 0;

so all factors in the parentheses tend to 1 as q-þN:

Now, since fACn�1½0; 1�; for kpn � 1 we get

lim
q-þN

f 0;
1

½n�q
;y;

½k�q
½n�q

" #
¼ f ðkÞð0Þ

k!
:

This allows us to evaluate the limit of the coefficients of 1; z;y; zn�1 in Bnð f ; q; xÞ as
q-þN: To find the limit of the coefficient of zn we must evaluate

lim
q-þN

f 0;
1

½n�q
;y;

½n � 1�q
½n�q

; 1

" #
:

We will use the following lemma.

Lemma 2. Let fACm½0; 1� and 0px0ox1o?oxmo1: Then

lim
xm-0

f ½x0; x1;y; xm; 1� ¼ f ð1Þ �
Xm

k¼0

f ðkÞð0Þ
k!

:

Proof. We prove the lemma by induction on m:
For m ¼ 0; we have

f ½x0; 1� ¼
f ð1Þ � f ðx0Þ

1� x0

and, clearly,

lim
x0-0

f ½x0; 1� ¼ f ð1Þ � f ð0Þ:

Assume that the statement is true if the number of points xi does not exceed m:
Consider the divided difference with ðm þ 1Þ points xi:

f ½x0; x1;y; xm; 1� ¼
f ½x1;y; xm; 1� � f ½x0; x1;y; xm�

1� xm

:

By the induction assumption we have

lim
xm-0

f ½x1;y; xm; 1� ¼ f ð1Þ �
Xm�1

k¼0

f ðkÞð0Þ
k!

:
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On the other hand, since fACm½0; 1�; we get

lim
xm-0

f ½x0; x1;y; xm� ¼
f ðmÞð0Þ

m!
:

Thus,

lim
xm-0

f ½x0; x1;y; xm; 1� ¼ f ð1Þ �
Xm

k¼0

f ðkÞð0Þ
k!

: &

Applying Lemma 2 we obtain

lim
q-þN

f 0;
1

½n�q
;y;

½n � 1�q
½n�q

; 1

" #
¼ f ð1Þ �

Xn�1
k¼0

f ðkÞð0Þ
k!

:

Finally, we get for fACn�1½0; 1�;

lim
q-þN

Bnð f ; q; zÞ ¼
Xn�1
k¼0

f ðkÞð0Þ
k!

zk þ zn f ð1Þ �
Xn�1
k¼0

f ðkÞð0Þ
k!

( )
: &

5. Rate of convergence of q-Bernstein polynomials in the case q41

The following is a Voronovskaya-type theorem for monomials. It shows that in
the case q41 the polynomials Bnðtm; q; zÞ converge to zm essentially faster than the
classical ones.

Theorem 4. Let qX1 be fixed. Then for any zAC;

lim
n-N

½n�qfBnðtm; q; zÞ � zmg ¼ ð1þ ½2�q þ?þ ½m � 1�qÞðzm�1 � zmÞ:

(From here on an empty sum is taken to be equal 0.)
The following theorem provides a uniform estimate of the difference between zm

and its q-Bernstein polynomial in a circle of radius R41:

Theorem 5. Let qX1 be fixed. Then for R41 and all m ¼ 1; 2;y; n ¼ 1; 2;y we

have

jBnðtm; q; zÞ � zmjp2
ðm � 1Þ½m � 1�q

½n�q
Rm for jzjpR:

Corollary 5. Let qX1 be fixed. Then for any compact set KCC;

Bnðtm; q; zÞ4zm for zAK as n-N;

and

jBnðtm; q; zÞ � zmjpCm;q;K

½n�q
for all n ¼ 1; 2;y :
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If we consider q-Bernstein polynomials of zm in the closed unit disk fz: jzjp1g; we
can get a more particular estimate.

Corollary 6. For all m ¼ 0; 1; 2;y; n ¼ 1; 2;y; we have

jBnðtm; q; zÞ � zmjp2
mqm

½n�qðq � 1Þ for jzjp1:

Using the latter estimate we obtain the following statement, which shows that for
a wide class of analytic functions their q-Bernstein polynomials provide exponen-
tially fast approximation in the closed unit disk, and, in particular, on the interval
½0; 1�:

Theorem 6. Let qX1 be fixed. If a function f ðzÞ is analytic in a disk DR :¼
fz: jzjoRg; R4q; then

jBnð f ; q; zÞ � f ðzÞjpCf ;q

½n�q
for jzjp1 and all n ¼ 1; 2y :

That is, if a function is analytic in a disk of radius R4q; then its q-Bernstein
polynomials form an approximating sequence on [0,1] with the rate of convergence
of order q�n: Therefore, in the case q41 approximation of an analytic function with
q-Bernstein polynomials is essentially faster than with the classical ones.
It turns out that in the case qX1; q-Bernstein polynomials of an analytic function

form an approximating sequence in the closed unit disk fz: jzjp1g even if we do not
keep the value of q fixed.

Theorem 7. If a function f ðzÞ is analytic in a disk DR; R41; then for all qX1 the

following estimate holds uniformly with respect to q:

jBnð f ; q; zÞ � f ðzÞjpCf

n
for jzjp1 and all n ¼ 1; 2y :

The following corollary can be regarded as an analogue for qnX1 of Phillips’
convergence theorem [15, Theorem 2].

Corollary 7. If a function f ðzÞ is analytic in a disk DR; R41; then for any sequence

fqng; qnX1 we have

Bnð f ; qn; zÞ4f ðzÞ for jzjp1 as n-N:

6. Proofs of Theorems 4–7

The following lemma is needed for the sequel.
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Lemma 3. Let f ¼ tm; mX1: Then

Bnðtm; q; zÞ ¼ a1z þ?þ ajz
j; j ¼ minðm; nÞ; ð20Þ

where

(i) all aiX0 ði ¼ 1;y; jÞ:
(ii) a1 þ?þ aj ¼ 1:

Besides, for nXm we have

(iii)

aip
Ci;m

½n�m�i
q

; i ¼ 1;y;m

(iv)

am ¼ lðnÞm;q; am�1 ¼ lðnÞm�1;q
1þ ½2�q þ?þ ½m � 1�q

½n�q
:

Proof. It was already noticed in the Preliminaries that Bnðtm; q; zÞ is a polynomial of
degree minðm; nÞ: The end-point interpolation property (3) implies that for mX1; the
free term of Bnðtm; q; zÞ equals 0. Therefore, (20) is justified.
(i) Representation (6) of q-Bernstein polynomials gives the following values of the

coefficients in (20):

ai ¼ lðnÞi;q f 0;
1

½n�q
;y;

½i�q
½n�q

" #
; i ¼ 1;y;m; ð21Þ

where 0plðnÞi;q p1 are given by (7).

Since for f ¼ tm:

f 0;
1

½n�q
;y;

½i�q
½n�q

" #
X0;

the statement is proved.
(ii) This follows readily from (3), if we put x ¼ 1 in (20).
(iii) Using (21) and (9), we get

aipf 0;
1

½n�q
;y;

½i�q
½n�q

" #
¼ f ðiÞðxiÞ

i!
; where xiA 0;

½i�q
½n�q

 !
:
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Hence

aip
m

i

 !
xm�i

i p
m

i

 !
½i�q
½n�q

 !m�i

¼:
Cm;i

½n�m�i
q

;

as required.
(iv) Obviously,

f 0;
1

½n�q
;y;

½m�q
½n�q

" #
¼ 1;

and, therefore am ¼ lðnÞm;q:

To calculate

f 0;
1

½n�q
;y;

½m � 1�q
½n�q

" #
;

we use the representation (cf. [8, Chapter II, Section 2.7]):

f 0;
1

½n�q
;y;

½k�q
½n�q

" #
¼ 1

2pi

Z
L

f ðzÞ dz

z z� 1
½n�q

� �
? z� ½k�q

½n�q

� �;

where L is a contour around [0,1]. Hence for f ðzÞ ¼ zm we get

f 0;
1

½n�q
;y;

½m � 1�q
½n�q

" #
¼ 1

2pi

Z
L

zm�1 dz

z� 1
½n�q

� �
y z� ½m�1�q

½n�q

� �:

Direct calculation of the integral implies

f 0;
1

½n�q
;y;

½m � 1�q
½n�q

" #
¼
1þ ½2�q þ?þ ½m � 1�q

½n�q

and (iv) is proved. &

Proof of Theorem 4. For m ¼ 0; 1 there is nothing to prove, because by (11)
q-Bernstein polynomials leave invariant linear functions.
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For mX2 using (iii) and (iv) of Lemma 3, we get

lim
n-N

½n�qfBnðtm; q; zÞ � zmg

¼ lim
n-N

½n�qfamzm þ am�1z
m�1 � zmg

¼ lim
n-N

½n�q ðlðnÞm;q � 1Þzm þ
1þ ½2�q þ?þ ½m � 1�q

½n�q
zm�1

( )

¼ ð1þ ½2�q þ?þ ½m � 1�qÞzm�1

þ zm lim
n-N

½n�q 1� 1

½n�q

 !
y 1�

½m � 1�q
½n�q

 !
� 1

( )

¼ ð1þ ½2�q þ?þ ½m � 1�qÞðzm�1 � zmÞ: &

Proof of Theorem 5. For m ¼ 0; 1 the statement is obvious.
First we consider the case nXmX2: Applying Lemma 3, we get for jzjpR; R41:

jBnðtm; q; zÞ � zmj ¼
Xm�1

k¼1
akzk þ ð1� lðnÞm;qÞzm

					
					

p
Xm�1

k¼1
ak þ ð1� lðnÞm;qÞ

 !
Rm ¼ 2ð1� lðnÞm;qÞRm: ð22Þ

Now, by (7)

1� lðnÞm;q ¼ 1� 1� 1

½n�q

 !
? 1�

½m � 1�q
½n�q

 !

p 1� 1�
½m � 1�q
½n�q

 !m�1

pðm � 1Þ
½m � 1�q
½n�q

:

Using (22), we get that for nXm;

jBnðtm; q; zÞ � zmjp2ðm � 1Þ
½m � 1�q
½n�q

Rm:

To complete the proof, we note that statements (i) and (ii) of Lemma 3 yield that
jBnðtm; q; zÞ � zmjp2Rm: Therefore, the estimate is also true for nom: &

Proof of Theorem 6. Let f ðzÞ ¼
P

N

m¼0 amzm be a function analytic in a disk DR;

R4q: Evidently,

Bnð f ; q; zÞ ¼
XN
m¼0

amBnðtm; q; zÞ for jzjpR:
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Hence applying Corollary 6 of Theorem 5, we have for jzjp1:

jBnð f ; q; zÞ � f ðzÞjp
XN
m¼0

jamjjBnðtm; q; zÞ � zmjp
XN
m¼0

2jamjmqm

½n�qðq � 1Þ ¼:
Cf ;q

½n�q
;

because
P

N

m¼0 jamjmqmoN: &

Proof of Theorem 7. First, we prove that for all qX1 and all m ¼ 0; 1;y n ¼ 1; 2;y
the following estimate holds uniformly with respect to q:

jBnðtm; q; zÞ � zmjp2m2

n
for jzjp1:

If nom; the inequality is true, because jBnðtm; q; zÞ � zmjp2 for jzjp1: For nXm; we
have by (22)

jBnðtm; q; zÞ � zmjp2ð1� lðnÞm;qÞ for jzjp1:

If qX1; then

½ j�q
½n�q

p
j

n
for j ¼ 0; 1;y; n;

and hence

lðnÞm;q ¼ 1� 1

½n�q

 !
? 1�

½m � 1�q
½n�q

 !
X 1� 1

n

� �
? 1� m � 1

n

� �
¼ lðnÞm;1:

Therefore, for all qX1 we get

jBnðtm; q; zÞ � zmjp 2ð1� lðnÞm;1Þ

p 2 1� 1� m � 1

n

� �m�1
" #

p2
ðm � 1Þ2

n
p2

m2

n
for jzjp1:

Now, let f ðzÞ ¼
P

N

m¼0 amzm be a function analytic in a disk DR; R41: Then for any

qX1;

jBnð f ; q; zÞ � f ðzÞjp
XN
m¼0

jamjjBnðtm; q; zÞ � zmjp
XN
m¼0

2
jamjm2

n
¼:

Cf

n
;

since
P

N

m¼0 jamjm2oN: Clearly, Cf does not depend on q: &

Remark. The statement remains true if f ðzÞ ¼
P

N

m¼0 amzm is a function analytic in

the open unit disk and
P

N

m¼0 jamjm2oN:
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7. Iterates of q-Bernstein polynomials

We recall that the q-Bernstein operator Bn;q : C½0; 1�-Pn is defined by

Bn;q : f/Bnð f ; q; xÞ ¼
Xn

k¼0
f

½k�q
½n�q

 !
pnkðq; xÞ;

where pnkðq; xÞ are given by (12).
For qAð0; 1Þ equality (16) defines the limit operator BN;q on C½0; 1� as

BN;q : f/BNð f ; q; xÞ ¼
P

N

k¼0 f ð1� qkÞpNkðq; xÞ if xA½0; 1Þ;
f ð1Þ if x ¼ 1;

(
ð23Þ

where entire functions pN;k are given by (14).

It can be readily seen that for qAð0; 1Þ; both polynomials pnkðq; xÞ and entire
functions pNkðq; xÞ are non-negative on the interval ½0; 1�: Therefore, we get from
(13) and (15) that

jjBn;qjj ¼ jjBN;qjj ¼ 1 for qAð0; 1Þ: ð24Þ
By L we denote the operator of linear interpolation at 0 and 1, i.e.,

Lð f ; xÞ :¼ ð1� xÞf ð0Þ þ xf ð1Þ:

Theorem 8. Let qAð0; 1Þ and f jng be a sequence of positive integers such that jn-N:
Then for any fAC½0; 1�;

B jn
n ð f ; q; xÞ4Lð f ; xÞ for xA½0; 1� as n-N:

The following theorem describes the behavior of iterates of the limit operator
BN;q:

Theorem 9. Let qAð0; 1Þ; and the operator BN;q be defined by (23). If f jng is a

sequence of positive integers such that jn-N; then for any fAC½0; 1�;
B jn
N
ð f ; q;xÞ4Lð f ; xÞ for xA½0; 1� as n-N:

The statement below (proved in [5]) follows from Theorem 9 immediately.

Corollary 8. Let qAð0; 1Þ: Then BN;qð f Þ ¼ f if and only if f ¼ Lð f Þ; i.e. f is a linear

function.

For qAð1;NÞ we restrict ourselves to the case when f is a polynomial. This is
because in contrast to the case qAð0; 1�; the sequence fBnð f ; q; xÞg may be divergent
even for an infinitely differentiable function f (cf. Theorem 2.) However, behavior of

the operators Bn;q for qAð1;NÞ on the space of polynomials P ¼
S

N

m¼0Pm is rather
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similar to the classical case. In particular, for any pAP the sequence fBnðp; q; xÞg
converges to p uniformly on [0,1]. Behavior of iterates B jn

n;q on P resembles the

situation with q ¼ 1: More precisely, the following statement holds.

Theorem 10. Let qAð1;NÞ and f jng be a sequence of positive integers such that

jn=½n�q-t as n-N: Then for any polynomial p and any 0ptpN the sequence

fB jn
n ðp; q; xÞg converges uniformly on ½0; 1�: In particular, for t ¼ 0;

B jn
n ðp; q; xÞ4pðxÞ for xA½0; 1�;

and for t ¼ N;

B jn
n ðp; q; xÞ4Lðp; xÞ for xA½0; 1�:

We omit the proof of Theorem 10 since it repeats verbatim the reasoning of [3],
where the classical case q ¼ 1 was considered.

8. Some auxiliary results

Lemma 4. For all q40 the following identity holds:

Bnðtm; q; xÞ ¼ x

½n�m�1
q

Xm�1

j¼0

m � 1

j

 !
ð½n�q � 1Þ j

Bn�1ðt j; q; xÞ;

n ¼ 2; 3;y; m ¼ 1; 2;y : ð25Þ

Proof. Let pn;kðq; xÞ be defined by (12). Then

Bnðtm; q; xÞ ¼
Xn

k¼0

½k�q
½n�q

 !m

pnkðq; xÞ

¼
Xn

k¼1

½k�q
½n�q

 !m�1
n � 1

k � 1

" #
q

xk
Yn�k�1

s¼0
ð1� qsxÞ

¼ x

½n�m�1
q

Xn�1
k¼0

½k þ 1�m�1
q pn�1;kðq; xÞ

¼ x

½n�m�1
q

Xn�1
k¼0

ð1þ q½k�qÞ
m�1

pn�1;kðq;xÞ

¼ x

½n�m�1
q

Xm�1

j¼0

m � 1

j

 !
ðq½n � 1�qÞ

j
Xn�1
k¼0

½k�q
½n � 1�q

 ! j

pn�1;kðq; xÞ
 !

¼ x

½n�m�1
q

Xm�1

j¼0

m � 1

j

 !
ð½n�q � 1Þ j

Bn�1ðt j ; q; xÞ: &

ARTICLE IN PRESS
S. Ostrovska / Journal of Approximation Theory 123 (2003) 232–255250



Lemma 5. For all q40 the operator Bn;q has ðn þ 1Þ linearly independent monic

eigenvectors p
ðnÞ
m ðxÞ; deg p

ðnÞ
m ðxÞ ¼ m; ðm ¼ 0; 1;y; nÞ; corresponding to the eigen-

values

lðnÞ0;q ¼ lðnÞ1;q ¼ 1;

lðnÞm;q ¼ 1�
½1�q
½n�q

 !
1�

½2�q
½n�q

 !
? 1�

½m � 1�q
½n�q

 !
; for m ¼ 2;y; n: ð26Þ

Remark. For q ¼ 1; (26) coincides with formula (2.5) in [3].

Proof. For m ¼ 0; 1 the statement is obvious due to (11). For nXmX2; using
Lemma 3 we write

Bnðtm; q; xÞ ¼ lðnÞm;qxm þ P
ðnÞ
m�1ðxÞ; ð27Þ

where P
ðnÞ
m�1ðxÞAPm�1 and lðnÞm;q are given by (26).

To find an eigenvector p
ðnÞ
m APm of the operator Bn;q; we write p

ðnÞ
m ¼ xm þ

am�1x
m�1 þ?þ a1x and solve a linear system in unknowns a1;y; am�1:

Bn;qðxm þ am�1x
m�1 þ?þ a1xÞ ¼ lðnÞm;qðxm þ am�1x

m�1 þ?þ a1xÞ:

After we apply Bn;q in the left-hand side and equate the coefficients of xs ðs ¼
1;ym � 1Þ; we get a triangular system whose determinant equals

ðlðnÞm�1;q � lðnÞm;qÞðl
ðnÞ
m�2;q � lðnÞm;qÞyðlðnÞ1;q � lðnÞm;qÞa0:

Hence there exists a unique monic polynomial of degree 2pmpn which is an

eigenvector of Bn;q with the eigenvalue lðnÞm;q: &

Corollary 9. For 2pmpn; the operator lðnÞm;qI � Bn;q; where I is the identity operator,

is invertible on Pm�1:

Lemma 6. The following equality holds:

lim
n-N

lðnÞm;q ¼ q
mðm�1Þ

2 ðm ¼ 0; 1; 2;yÞ if qAð0; 1Þ;
1 if qA½1;NÞ:

(

Proof. The statement follows from formula (26) after we notice that

lim
n-N

1�
½ j�q
½n�q

 !
¼

q j ð j ¼ 0; 1; 2;yÞ if qAð0; 1Þ;
1 if qA½1;NÞ: &

(
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Lemma 7. Let qAð0; 1Þ: Then for every m ¼ 0; 1; 2y the operator BN;q has an

eigenvector pmðxÞ which is a monic polynomial of degree m; corresponding to the

eigenvalue lm;q ¼ qmðm�1Þ=2:

Proof. For m ¼ 0; 1 the statement follows immediately from (17).
Taking the limit as n-N in (25) and noting that for qAð0; 1Þ one has

ð½n�q � 1Þ j

½n�m�1
q

-q jð1� qÞm�j�1;

we get

BNðtm; q; xÞ ¼ x
Xm�1

j¼0

m � 1

j

 !
q jð1� qÞm�j�1

BNðt j; q; xÞ:

Hence the coefficient lm;q of xm in BNðtm; q; xÞ equals qm�1lm�1;q; and recursively,

lm;q ¼ qm�1qm�2
yql1q ¼ qmðm�1Þ=2:

We have shown that

BNðtm; q; xÞ ¼ lm;qxm þ Qm�1; Qm�1APm�1:

The statement now follows from considering the equations

BN;qðpmðxÞÞ ¼ lm;qpmðxÞ; m ¼ 2; 3;y : &

Corollary 10. For mX2; the operator lm;qI � BN;q is invertible on Pm�1:

9. Proofs of Theorems 8 and 9

In this section 4 means uniform convergence on ½0; 1�:

Proof of Theorem 8. Because of (3) it suffices to prove that B jn
n;qð f Þ4ax þ b for

some a and b as n-N:
(1) First we consider the case f ¼ xm:
We will use induction on m: For m ¼ 0; 1 the statement is obvious due to (11).

Assume that B jn
n;qðxtÞ4 jtAP1 for t ¼ 0; 1;y;m � 1: Consider

Bn;qðxmÞ ¼ lðnÞm;qxm þ P
ðnÞ
m�1; ð28Þ

where lðnÞm;q is given by (26), and P
ðnÞ
m�1APm�1: Then

B jn
n;qðxmÞ ¼ ðlðnÞm;qÞ

jn xm þ ½ðlðnÞm;qÞ
jn�1I þ ðlðnÞm;qÞ

jn�2Bn;q þ?þ B jn�1
n;q �ðPðnÞ

m�1Þ;
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where I denotes the identity operator. It follows from Lemma 6 that

ðlðnÞm;qÞ
jn-0 as n-N:

The expression in the brackets is a linear operator on the space Pm�1:
Consider the sequence of polynomials in Pm�1;

y
ðnÞ
m�1 :¼ ½ðlðnÞm;qÞ

jn�1I þ ðlðnÞm;qÞ
jn�2Bn;q þ?þ B jn�1

n;q �ðPðnÞ
m�1Þ: ð29Þ

Then

ðlðnÞm;qI � Bn;qÞyðnÞ
m�1 ¼ ðlðnÞm;qÞ

jn P
ðnÞ
m�1 � B jn

n;qP
ðnÞ
m�1:

It follows from (24) and (28) that jjPðnÞ
m�1jjp2: Since ðlðnÞm;qÞ

jn-0 as n-N; we have

ðlðnÞm;qÞ
jn P

ðnÞ
m�140 as n-N:

It can be readily seen from (28) and Lemma 6 that

P
ðnÞ
m�1ðxÞ4 BN;qðxmÞ � qmðm�1Þ=2xm ¼: Qm�1ðxÞAPm�1 as n-N;

i.e.

P
ðnÞ
m�1ðxÞ ¼ Qm�1ðxÞ þ dnðxÞ;

where Qm�1APm�1; and dnðxÞ40 as n-N:
Thus,

B jn
n;qðP

ðnÞ
m�1Þ ¼ B jn

n;qðQm�1Þ þ B jn
n;qðdnÞ;

where jjB jn
n;qðdnÞjjpjjdnjj; because of (24). This means that B jn

n;qðdnÞ40 as n-N:

By the induction assumption

B jn
n;qðQm�1Þ4 cx þ dAP1 as n-N:

Therefore,

ðlðnÞm;qI � Bn;qÞyðnÞ
m�14cx þ d as n-N

or

ðlðnÞm;qI � Bn;qÞyðnÞ
m�1 ¼ cx þ d þ onðxÞ;

where onðxÞ40 as n-N:

By Corollary 8 the operators lðnÞm;qI � Bn;q are invertible on Pm�1 for nXm and

lim
n-N

ðlðnÞm;qI � Bn;qÞ ¼ q
mðm�1Þ

2 I � BN;q ¼: AN;q;

where by Corollary 10 AN;q is also invertible on Pm�1: Hence

ðlðnÞm;qI � Bn;qÞ�1-A�1
N;q as n-N

and it follows that

jjðlðnÞm;qI � Bn;qÞ�1jjpM for some M40:
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Therefore,

y
ðnÞ
m�1 ¼ ðlðnÞm;qI � Bn;qÞ�1ðcx þ dÞ þ ðlðnÞm;qI � Bn;qÞ�1ðonÞ:

Since jjðlðnÞm;qI � Bn;qÞ�1ðonÞjjpMjjonjj-0 as n-N; and ðlðnÞm;qI � Bn;qÞ�1-AN;q as

n-N; we conclude that

y
ðnÞ
m�14A�1

N;qðcx þ dÞ :¼ ax þ bAP1:

Thus, B jn
n;qðxmÞ4ax þ b:

The induction is completed and it follows that for any polynomial p;

B jn
n ðp; q; xÞ4Lðp; xÞ for xA½0; 1� as n-N:

(2) Let fAC½0; 1�; and let e40 be given. Then f ðxÞ ¼ pðxÞ þ dðxÞ; where pAP; and
jjdðxÞjjoe: We have

B jn
n;qð f Þ ¼ B jn

n;qðpÞ þ B jn
n;qðdÞ:

Since B jn
n;qðpÞ4LðpÞ; there exists n0AN such that jjB jn

n ðpÞ � LðpÞjjoe for all n4n0:

Obviously, jjLðdÞjjpjjdjjoe; and finally we obtain

jjB jn
n;qð f Þ � Lð f ÞjjpjjB jn

n;qðpÞ � LðpÞjj þ jjB jn
n ðdÞjj þ jjdjjo3e for all n4n0:

Thus, B jn
n ð f ; q; xÞ4Lð f ; xÞ for xA½0; 1� as n-N: &

Proof of Theorem 9. (1) First we prove the statement in the case fAPm: For fAPm

by Lemma 7 we have

f ¼ a0p0 þ a1p1 þ?þ ampm;

where p0; p1;y; pm are eigenvectors of BN;q corresponding to the eigenvalues l0;q;
l1;q;y; lm;q: Obviously,

B jn
N;qð f Þ ¼ a0l

jn
0;qp0 þ a1l

jn
1;qp1 þ?þ aml

jn
m;qpm:

Since l0;q ¼ l1;q ¼ 1; li;qAð0; 1Þ for iX2; we obtain

B jn
N;qð f Þ4a0p0 þ a1p1AP1:

Taking into account (3), we derive the statement.
(2) For fAC½0; 1�; the statement follows from the density of the set of polynomials

in C½0; 1� and the fact that jjBN;qjj ¼ 1 (cf. (24)). &
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