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Abstract

Let B,(f,q;x), n=1,2,... be g-Bernstein polynomials of a function f:[0,1]—>C. The
polynomials B,(f,1;x) are classical Bernstein polynomials. For ¢#1 the properties of g-
Bernstein polynomials differ essentially from those in the classical case. This paper deals with
approximating properties of ¢g-Bernstein polynomials in the case ¢>1 with respect to both n
and ¢g. Some estimates on the rate of convergence are given. In particular, it is proved that for
a function f analytic in {z: |z] <g + ¢} the rate of convergence of {B,(f,q;x)} to f(x) in the
norm of C[0, 1] has the order ¢~" (versus 1/n for the classical Bernstein polynomials). Also
iterates of g-Bernstein polynomials {B/"(f, ¢; x)}, where both n— oo and j, - oo, are studied.
It is shown that for g€ (0, 1) the asymptotic behavior of such iterates is quite different from the
classical case. In particular, the limit does not depend on the rate of j, —» co.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1912 Bernstein [2] found his famous proof of the Weierstrass Approximation
Theorem. Using probability theory he defined polynomials called nowadays
Bernstein polynomials as follows.

Definition (Bernstein [2]). Let f': [0, 1] > R. The Bernstein polynomial of f is
& K\ [ n -
B,(f;x) = - K1—x)""* n=1,2, ...
(73 gf(n)@x( S

“Fax: +90-312-586-80-91.
E-mail address: ostrovskasofiya@yahoo.com.

0021-9045/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0021-9045(03)00104-7


https://core.ac.uk/display/81931811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S. Ostrovska | Journal of Approximation Theory 123 (2003) 232-255 233

Bernstein proved that if /'€ C[0, 1], then the sequence {B,( f; x)} converges uniformly
to f(x) on [0, 1].

Later it was found that Bernstein polynomials possess many remarkable
properties, which made them an area of intensive research. A systematic treatment
of the theory of Bernstein polynomials as it was until 1990s is presented, for example,
in [8,19]. New papers are constantly coming out (cf. e.g. [3]), and new applications
and generalizations are being discovered (cf. e.g. [7,13]). A generalization of
Bernstein polynomials involving g-integers was proposed by Lupas in 1987 (cf. [9]).
However, the g-analogue of the Bernstein operator considered by Lupas gives
rational functions rather than polynomials.

Generalized Bernstein polynomials based on the g¢-integers, or g-Bernstein
polynomials were introduced by Phillips in 1997. In the case ¢ = 1 these polynomials
coincide with the classical ones. For ¢# 1 one gets a new class of polynomials having
interesting properties. g-Bernstein polynomials have been studied by Phillips et al.
([4,11,12,14-17]), who obtained a great number of results related to various
properties of these polynomials.

It should be mentioned that results of these papers deal mostly with the case
q€(0,1). This is because in this case g-Bernstein polynomials generate positive linear
operators B, : f+— B,(f, q; x); the fact that is used in investigation significantly. The
case ge (1, o0), where positivity fails, has not been studied in detail. However, the
results of this paper show that in this case approximating properties of g-Bernstein
polynomials may be better than in the case ¢<1.

In Sections 3 and 4, we discuss convergence properties of g-Bernstein polynomials
with respect to both # and ¢ in the case ¢>1.

In Sections 5 and 6, we study the rate of approximation of analytic functions by ¢-
Bernstein polynomials in the case ¢ > 1. In particular, for entire functions the rate of
convergence has the order ¢~ (¢>1) versus 1/n for the classical polynomials. We
also discuss approximation by g-Bernstein polynomials in case the value of
parameter ¢ varies.

It should be emphasized that the results of the paper are the first ones showing that
approximation properties of ¢-Bernstein polynomials can be better than of the
classical ones.

Sections 7-9 are dedicated to iterates of the g-Bernstein operator. By the definition
the kth iterate of B, is

B, =By B, =Bu(B,"), k=23, ...

Iterates of the classical Bernstein operator B, = B, ; have been studied in many
papers starting from [6]. In [6], Kelisky and Rivlin studied the convergence of the
iterates BX(f') as k— oo if nis fixed, and of the iterates BJ*(p) as n— oo, where p is a
polynomial and { j,/n} — o, 0<a< 00. They proved that in both cases the iterates are
convergent, and found an explicit formula of the limit function. From a different
point of view the iterates of the Bernstein operator were studied by Micchelli [10],
who considered them using semigroup methods. Recently, Cooper and Waldron [3]
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investigated iterates of the Bernstein operator using properties of eigenvalues and
eigenvectors of the operator. In [3] one can also find other references on the subject.

Iterates of the ¢g-Bernstein operator B§7 , With fixed n and k — oo were considered in
[12], where it was proved that these iterates have the same behavior as in the classical
case ¢ = 1.

In this paper we consider iterates of the g-Bernstein operator of the form B,{:;[,
where both 7 and j, tend to infinity. We consider in detail the behavior of iterates of
the g-Bernstein operator for ge (0, 1). Our results show that in this case the behavior
of iterates is essentially different from the classical case ¢ = 1 considered by Kelisky
and Rivlin [6, Theorem 2]. In particular, the limit does not depend on the rate of
Jjn— o0 (cf. Theorem 8). For ge (1, co) the situation is very similar to the classical
case. Corresponding results and their proofs can be obtained by almost verbatim
extension of reasoning given in [3, Theorems 4.1, 4.20, Corollary 5.15]. Therefore, we
present them without proofs.

To formulate our results we need the following definitions.

Let ¢>0. For any n =0, 1,2, ... the g-integer [n], is defined by

(], =1+q+ - +¢"7" (n=1,2,..), 0], =0
and the g-factorial [n],! by
[n],! = [1],12],...[n], (n=1,2,...), [0],!=1.

For integers 0<k <n the g-binomial, or the Gaussian coefficient is defined by

V]_ n],!
kqfﬂHJm—kbr

Clearly, for g = 1,

n], = n, M”:m’[ZL:(Z>

In the sequel we always assume that f:[0,1]>C. We denote by C[0,1] (or
C"[0,1], I<n< o) the space of all continuous (correspondingly, n times con-
tinuously differentiable) complex-valued functions on [0,1] equipped with the
uniform norm. The expression g,(x)3¢g(x) means uniform convergence of a

sequence {g,(x)} to g(x).

Definition (Phillips [14]). Let f:[0,1]— C, ¢>0. The g-Bernstein polynomial of f is
n—1-k

1 k
Bn(f7Q§X) = ;f(%) |}Z] XX H (1 —q“'x), n=12 ... (1)
- q

s=0

(From here on an empty product is taken to be equal 1.)

Note that for ¢ =1, the polynomials B,(f,1;x) are classical Bernstein
polynomials. Recall that the famous theorem of Bernstein states:
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Theorem (Bernstein [2]). If '€ C[0, 1], then
B,(f,1;x)3f(x) for xe[0,1] as n— o0.

For ¢e(0, 1) convergence of the sequence {B,(f,¢;x)} was investigated in [5].

Theorem (Il'inskii and Ostrovska [5]). Given qe(0,1) and f e C|0,1], there exists a
continuous function B, (f,q; x) such that

B,(f,q;x)3 B (f,q;x) for xel0,1] as n— o0. (2)

An explicit formula for B, (f, ¢; x) is given by (16). It follows from (16) that the
equality B, (f,q;x) =f(x) holds if and only if f(x) = ax + b, i.e. f(x) is a linear
function.

Therefore, in the case g (0, 1) the sequence {B,(f,¢;x)} is not an approximating
sequence for a function f unless f is linear. This is in contrast to the case ¢ = 1, when
the sequence {B,(f, 1;x)} approximates f for any f'e C[0, 1].

In this paper we show that in the case ¢>1 approximating properties of the
sequence {B,(f,q;x)} are in some sense intermediate between the cases mentioned
above. We prove that for ¢>1 the sequence {B,(f,q;x)} is approximating for
functions analytic in a suitable domain, and, moreover, we may achieve a fast rate of
convergence. At the same time the sequence may be divergent for some infinitely
differentiable functions. We also discuss approximating properties of g-Bernstein
polynomials related to the dependence on the value of g.

Equality (1) defines the linear operator

qu :f'_)Bn(f, q; )C),
which is called the g-Bernstein operator. Clearly,
B,,:C[0,1]>2,,
where £, denotes the set of polynomials of degree <n. To study iterates of ¢-
Bernstein polynomials it is convenient to present them in the form of linear
operators, i.e. Bﬁ(ﬁ q,x) = Bﬁﬁq(f ). In the sequel, we use polynomial and operator
notation interchangeably. We prove that for g€ (0, 1) and any function f € C|0, 1] the
sequence {B/'(f,q,x)}, where n— oo and j, — oo, converges uniformly to the linear
function interpolating f at 0 and 1 regardless the rate of j, — 0.
For ¢ (0, 1) the limit function appeared in (2) defines a linear operator on CJ[0, 1]
By S Bs(f,q;x).

It was observed in [5] that B, ,(CI0, 1]) # C[0, 1]. We also consider the behavior of
the iterates of B, .

2. Preliminaries

In this section we state some general properties of ¢g-Bernstein polynomials which
will be used throughout the paper.
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It follows directly from the definition that g-Bernstein polynomials possess the
end-point interpolation property, i.e.

B,(f,4;0) =£(0), B,(f,q;1)=f(1) for all g>0 and all n=1,2,... . (3)

The following representation of ¢-Bernstein polynomials, called the g-difference
form, was obtained in [15, Theorem 1, formula (12)]:

" |\n
Bu(f qix) =) l k] Do (4)
k=0
q
where Z¥f; is expressed as
[£],! 1 [k]
Txf; :_qqk(k—l)/2f 0;——; ooyt 5
o= T ®
By f[x0; x1; ...; xx] we denote the usual divided difference, i.e.

flol =), Sl =TEL L0
flxis s ] = flxos o G-1]

Xj — X0

SIxosx15..5x] =

Using (4) and (5), we write

k
oo o B
where
w |7 Kt Ly [ k=1
Hea H[n] o) w, ) 7

In Section 8 (Lemma 5) we show that /; ")

B, 4. Note that
A==, (8)

are eigenvalues of the g-Bernstein operator

and it is clear from (7) that

0<A <1, k=0,1,....n. 9)

o
L

This estimate will be used in the sequel.
It follows immediately from (6) and (8) that g-Bernstein polynomials leave
invariant linear functions, that is

B,(at+b,q;x) =ax+b for all g>0 and all n=1,2... . (11)

Therefore,

|Bu(f 43 %) Z

k=

x[*. (10)




S. Ostrovska | Journal of Approximation Theory 123 (2003) 232-255 237

If f/ is a polynomial of degree m, then all its divided differences of order >m
vanish, and (6) implies that B,(f, ¢; x) is a polynomial of degree min(m, n). In other
words, this means that the g-Bernstein operator is degree reducing.

We set

n—1—k
DPuic(q; x) = [ ] k H (1—¢'x), k=0,1,....n; n=1,2,... . (12)
s=0
Taking a =0, b =1 in (11), we conclude that
n
Zp,,k(q;x)zl; for all ¢g>0 and all n=1,2,... . (13)
Obviously,

[k]
B.(f,q;x) Zf(n >pnk% X).

The behavior of the sequence {B,(f,¢;x)} for ge(0,1) and n— oo is described in
[5] as follows.
Consider the entire functions

xk =
i) =—  TT =g, k=01,... 14
Pook(q; x) (1fq)"[k]q!g( 7'x) (14)

By Euler’s identity (cf. [1, Chapter 2, Corollory 2.2]) we have
Z Pok(g;x) =1 for all xe0,1). (15)
k=0

Clearly, for ge(0,1) we have
[K]

lim —¢=1—¢" forall k=0,1,... .
n— oo [n]q

For f:[0,1]->C, ¢e(0,1) we set

3 _ ok )
Bo(f,q:x) = gof(l EWorlq;x) if xe[0,1), o

f() if x=1.
It can be readily seen that the function B, (f, g; x) is well defined on [0, 1] whenever

a function f'(x) is bounded on the interval. We note that (16) gives the limit function
defined in (2). It follows from (2) and (11) that

By (at+b,q,x) = ax+b. (17)

In the following section we investigate the behavior of the sequence {B,(f,q;x)}
in the case ¢>1.
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3. Convergence of g-Bernstein polynomials in the case ¢>1
Our main result on convergence is the following theorem.

Theorem 1. Let ge(1, c0), and let [ be a function analytic in an e-neighborhood of
[0,1]. Then for any compact set K< D, = {z: |z|<e},

B.,(f,q;2)3f(z) for zeK as n— 0.

Corollary 1. If f is a function analytic in a disk Dg, R>1, then for any compact set
KcDp_y,

B,(f,q;2)3f(z) forzeK as n— .

In particular, if R>2, then B,(f,q;x)3f(x) for xe[0,1] as n— 0.

Corollary 2. If f is an entire function, then for any compact set K <C,

B,(f,q;2)3f(z) for zeK as n— 0.

Remark. A particular case f being a polynomial and K = [0, 1] was considered in
[12].

The condition of analyticity is essential for convergence, and it cannot be dropped
completely as the following theorem shows.

Theorem 2. Let ge(1, o0).

(i) There exists f € C*[0, 1] such that {B,(f,q;x)} does not converge to any finite
Sfunction on [0, 1].
(il) There exists feC®[0,1] such that {B,(f,q;x)} converges to a (finite
discontinuous function on [0, 1].
(i) There exists f€ C*[0, 1] such that {B,(f,q;x)} converges uniformly on [0, 1] to
9(x) £/ ().

The following theorem describes the behavior of the polynomials B,(f,¢;x) as
g— + oo under certain smoothness conditions for f.

Theorem 3. Let f'e C"~'[0,1]. Then for any compact set K =C,

n=1 r(k) n=1 (k)
Bulf,4:2)3BlS 032) = fkfo)zk“"{f<1>—2fkfm}

k=0 k=0

for zeK as g— + 0.
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Corollary 3. If f is analytic in a disk Dg, R>1, then
B,(f,00;2)3f(z) for |z|<1 as n— 0.
That is, quite unexpectedly, we get good approximating properties of the sequence
{B.(f,q;x)} taking the value of ¢ infinite. The corollary below can be derived from
Theorem 3 immediately.

Corollary 4. If p is a polynomial of degree <n, then
By(p, o052) = p(z).
Therefore, we may approximate p(x) with its g-Bernstein polynomials of the same
degree n taking the limit with respect to g.
4. Proofs of Theorems 1-3
We need the following lemma, which is also of interest for its own sake.
Lemma 1. Let ge(1, o). If f € C[0, 1], then

1 1
lim B,,(f,q;q—m) :f(ﬁ) for all m=0,1,2,... .

Proof. Let the polynomials p,(g; x) be defined by (12). Obviously,
L (In—K]
Bn(fa q; X) = Z f - pn,nfk((]; x)-
k=0 1],

We note that

1
Pnn—k (q,q_m> =0 for m<k<n

1 n 1 1 qkfl
pl1,n—k<q7qm> = k]qW<l ql’i’l> <1 _ qm >

=0(¢"*™)50 as n— oo for k<m.

and

For k = m we have

i Y g n 1 L] AN
nLn; Pnp-m\ 4; q_m = HLH;O nem qm(n—m) — q_m — 5 - 1.
q

Since € C[0, 1] and

n—m
lim [ L{ = L
n—ow [n], q"
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it follows that
1 n—m 1 1
lim Bn(f,q;—> i (P, <q;—) =f(—). 0
n=co q") - [, ' q" q"

Proof of Theorem 1. Let /" be analytic in an ¢-neighborhood U, of [0, 1]. Take any
compact set K < D,. Then for some ¢; € (0,¢) we have |z|<e¢| for all zeK.

Let us choose a contour L in U, in such a way that the distance between L and
[0,1] equals p, 0<g <p<e.

Since (cf. [8, Chapter II, Section 2.7])

1.1 @ _ b S dt
S lo, oA ""[n]j 2mi /LC<C o ) ..(g_ m:)

and |{ — x|=p for all {e L and x€]0, 1], it follows that
k
’f[o,[l & < [ M.

n]q7 7[7’1}‘] \% pk+1’

where / is the length of L, and M} = max¢cr | f({)|. Substituting (18) into (10), we
obtain

IML |Z‘
Bu(f,q;2)
Bl < 3 L

(18)

If ze D,,, then |z|<¢ <p, sO

S ) < (8) e

k=0 k=0 a

and hence the sequence {B,(f,¢;z)} is uniformly bounded in the disk D,,. Besides,
by Lemma 1 the sequence converges to the function f analytic in D, on the set
{1/¢"}," having an accumulation point in D,,. By the Vitali Theorem (cf. e.g. [18,
Chapter V, Section 5.2]) the sequence converges to f on any compact set in D,,, and
thus on K. 0O

Proof of Theorem 2. Consider the polynomials p,x(g; x) defined by (12).
Specifically, we have

Pun(g; x) = X"
and
_ ' =1
Pan-1(g;x) = [n] ¥~ (1 = x) = - X1 = x).
Obviously,

0 for 0<x<l,
1 forx=1

lim  py(q; X) = {
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and
0 for0<x<l/gand x=1,
lim py,_1(g;x) =< 1 for x=1/q (19)
n— oo
oo for I/g<x<l.
(i) Consider a function e C*|[0, 1] satisfying
0 for 0<x<1/g%,
o(x)=< 1 fora<x<l/g,
0 for x=1,
where ae(1/¢* 1/q). Since
[n — k]

[l

q

1 ! as o0
il n— oo,
7

we obtain that

[n — k] .
® o 91 =0 for k#1 and sufficiently large n.
q

Therefore
[n—1]

],

B.(¢,q;x) = ¢ ( q)[’n,nl (4;:X) = Pun—1(q; x)

for n large enough.
Let g(x) be an entire function. We set

S(x) = g(x) + o(x).
Then B,(f.q;x) = Bu(g,4; X) + Ba(¢,q;x). By Theorem 1, B,(g,¢;x)3g(x) on
[0, 1]. Hence

lim B,(f,q;x) = g(x) + lim pyu-i1(g; x).

n— oo

By (19) the limit is infinite for xe(1/q, 1).
(i) In this case we take pe C*|0, 1] to satisfy

0 for 0<x<l1/g,
p(x) =
1 forx=1.

Similar to (i) we take an entire function g(x) and set f(x) := g(x) + ¢@(x). Since
B,(9,q;x)3g(x) and B,(¢,q;x) = pm(q; x) = x", we are done.

(i) Consider 0#¢@(x)e C*[0,1] such that ¢(x)=0 for xe0,1/q]u{l}.
Obviously, B,(¢,q;x) =0 for all n = 1,2, ... . For any entire function g(x) we set
as above f(x) = g(x) + ¢(x) and get B,(f,q;x)3g(x)#f(x). O
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Proof of Theorem 3. Using (6) and (7) we write

S Y T VO PO (e A P PR S A
Bn<f’%>k0<1 [n]) <1 i, )f [O’[n]q"“’[nlj |

so all factors in the parentheses tend to 1 as ¢g— + oo.
Now, since f e C"~'[0, 1], for k<n — 1 we get

This allows us to evaluate the limit of the coefficients of 1,z, ..., 2"~ in B,(f,¢; x) as
q— + oo. To find the limit of the coefficient of z* we must evaluate

lim flo,i,... n 1, 1].

We will use the following lemma.

Lemma 2. Let e C"[0,1] and 0<xo<x) <+ <xp,<1. Then

m (k)
Km £[Xo, X1, ..., X, 1] = £(1) — Zf k!(O)'

Xm = =0

Proof. We prove the lemma by induction on m.
For m = 0, we have

o, 1] =D 2L 0)
— X0
and, clearly,

lim flx0, 1] = /(1) = f(0).

x0—0

Assume that the statement is true if the number of points x; does not exceed m.
Consider the divided difference with (m + 1) points x;:

f[xla ooy Xy 1] _\f[XOaxla ...,Xm]
l_xm

f[x()yxla ceey Xy 1} =

By the induction assumption we have

lim f[xy, ..., xm, 1] =f(1) —

Xm—0
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On the other hand, since /'€ C"[0, 1], we get

(m)
lim_ f[xo, X1, ..o\ X 0
Xm—0 m'
Thus,
m (k) O
lim f[X(),xh cees Xmy 1] :f(l) - f ( ) u
Y30 y k!

Applying Lemma 2 we obtain
RS A
li 2 1 =£(1) — .

q—+0 ]q

Finally, we get for fe C"~1[0, 1],
—1 k) n—1 (k)
lim B,(f,q;z (0 {f(l) — / (0)} O

:

g+ — k!

5. Rate of convergence of g-Bernstein polynomials in the case ¢ > 1

The following is a Voronovskaya-type theorem for monomials. It shows that in
the case ¢>1 the polynomials B,(f",q;z) converge to z” essentially faster than the
classical ones.

Theorem 4. Let =1 be fixed. Then for any zeC,

Jim (1] {Bu(1",q:2) = 2"} = (14 2], + - + [m - )" =2,

(From here on an empty sum is taken to be equal 0.)
The following theorem provides a uniform estimate of the difference between z™”
and its g-Bernstein polynomial in a circle of radius R> 1.

Theorem 5. Let g=1 be fixed. Then for R>1 and all m=1,2,...; n=1,2,... we
have

(m — 1)m — 1]

|B(t",q;2) — 2" <2 IR"  for |z|<R.

Corollary 5. Let g=1 be fixed. Then for any compact set K <C,
B,(1",q;z)32z" for zeK as n— o0,

and

Cn )
IBn(t"’,q;z)—z’”l<W"‘K foralln=1,2,....
q
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If we consider ¢g-Bernstein polynomials of z” in the closed unit disk {z: |z| <1}, we
can get a more particular estimate.

Corollary 6. For allm=0,1,2,..., n=1,2, ..., we have

|Ba(1",q32) — 2"|<2 Sor |z|<1.

[, (¢ —1)
Using the latter estimate we obtain the following statement, which shows that for
a wide class of analytic functions their g-Bernstein polynomials provide exponen-

tially fast approximation in the closed unit disk, and, in particular, on the interval
[0, 1].

Theorem 6. Let g=1 be fixed If a function f(z) is analytic in a disk Dg =
{z: |z| <R}, R>gq, then

|B.(f,q;2) —f(z)|<5{]’q Jor |z|<1 and all n=1,2... .
q

That is, if a function is analytic in a disk of radius R>g, then its g-Bernstein
polynomials form an approximating sequence on [0,1] with the rate of convergence
of order ¢~". Therefore, in the case ¢ > | approximation of an analytic function with
g-Bernstein polynomials is essentially faster than with the classical ones.

It turns out that in the case ¢ > 1, ¢g-Bernstein polynomials of an analytic function
form an approximating sequence in the closed unit disk {z: |z| <1} even if we do not
keep the value of ¢ fixed.

Theorem 7. If a function f(z) is analytic in a disk Dgr, R>1, then for all g=1 the
following estimate holds uniformly with respect to q:

|B.(f,q;2) —f(z)|<% for |z|<1 and all n=1,2... .

The following corollary can be regarded as an analogue for ¢,>1 of Phillips’
convergence theorem [15, Theorem 2].

Corollary 7. If a function f(z) is analytic in a disk Dg, R> 1, then for any sequence
{qu}; qn> 1 we have

Bu(f4n2)3/() for 2I<1 as n— oo,

6. Proofs of Theorems 4-7

The following lemma is needed for the sequel.
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Lemma 3. Let f =", m>=1. Then
B,(",q;z) = a1z 4+ - + og/z-j, j = min(m,n), (20)

where
(i) all ;20 (i=1,....)).
@) oy + - +oj = 1.
Besides, for n=m we have

(iif)
Ci,m _
% m—i’ =1 ) ,m
[l
(iv)

w 12+ m 1]
m—1,q

Om = j-,(;Z)qa Om—1 = )

Proof. It was already noticed in the Preliminaries that B,(#", ¢; z) is a polynomial of
degree min(m, n). The end-point interpolation property (3) implies that for m>1, the
free term of B, (", q;z) equals 0. Therefore, (20) is justified.

(i) Representation (6) of g-Bernstein polynomials gives the following values of the
coefficients in (20):

],

I
a,-if.j;)flo,l,... H"] i=1,..,m, (1)

where OS)LI(Z) <1 are given by (7).
Since for f = "

f[o; i] -0,

]y ],

the statement is proved.
(i1) This follows readily from (3), if we put x = 1 in (20).
(ii1) Using (21) and (9), we get

w<f [0,1, [l]q] :'f<i>i('éi), where &€ <0,[Ei]]q>.

],
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as required.
(iv) Obviously,

and, therefore o, = i,(?’;)q.

To calculate

1 [m—1]

i, ]

we use the representation (cf. [8, Chapter II, Section 2.7]):

Ty eeey

A /6t
flo’[n]q,...,[n]j WAC(C—@)"'(C—%)’

where L is a contour around [0,1]. Hence for f({) = (" we get

Lo m-1] ¢l dg
bR g

Direct calculation of the integral implies

[m—l]q

1
f[o,@, ceesy [I’[L]

and (iv) is proved. [

Proof of Theorem 4. For m = 0,1 there is nothing to prove, because by (11)
g-Bernstein polynomials leave invariant linear functions.
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For m>2 using (iii) and (iv) of Lemma 3, we get

lim - [n] {B,(", ¢q;2) — 2"}

n— oo

= lim [n}q{ocmzm + oy 2" = "}
n— oo

= lim [n], {(zf;;}q — 12"+

n— oo

)7
- L S m=10N
+z nlirrolc[n]q{<1 i, (1 i, ) 1}

q+ +[ 1] )( m—1 Zm) O

|
—
=
_|_
)

Proof of Theorem 5. For m = 0,1 the statement is obvious.
First we consider the case n=>m>2. Applying Lemma 3, we get for |z] <R, R>1:

m—1

Z ez + (1 - ii??q)zm
k=1

m—1
< (; o+ (1 - Aﬁ,’,’?q))R’” =2(1 - R, (22)

|Bu(1",¢52) = 2| =

Now, by (7)

5 L T P
L= (1 [nL,> (1 [n]q>

Using (22), we get that for n=m,

1]

[m—1],
|By(1", q:2) — 2" <2(m — 1)———2 R™.
[],

To complete the proof, we note that statements (i) and (ii) of Lemma 3 yield that
|B, (1", q;z) — 2| <2R™. Therefore, the estimate is also true for n<m. O

Proof of Theorem 6. Let f(z) =", a,z" be a function analytic in a disk Dg,
R>q. Evidently,

fa q;z Z am n 7q, for ‘Z|<R
m=0
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Hence applying Corollary 6 of Theorem 5, we have for |z|<1:

. X 0 0 2|am|mq”’ Cf(
|B.(f,q:2) —f(2)|< |am||Bn (27, q;2) — 2| < o e S £
’ Zo o ,;) [l (g = 1)~ T,

because Y . [am|mg™ < oo. O

Proof of Theorem 7. First, we prove that forallg>=1andallm=0,1,...n=1,2,...
the following estimate holds uniformly with respect to g¢:

2 2
B, (" q;z) — 2" <i for |z|<1.
q
n

If n<m, the inequality is true, because | B, (1", ¢;z) — z""| <2 for |z| < 1. For n=m, we
have by (22)

1B, (1", q;2) — 2"|<2(1 = A")  for |z|<1.

m,gq

If g>=1, then
for j=0,1,...,n,
and hence

2 = (1 ﬁ) (1 - [m[n] 1]q> N (1 %) (1 E 1) _,
q q

Therefore, for all g=1 we get

B2, q2) — 2| < 2(1 = 200

-1 m—1 _12 2
<2[1_<1_m) ]sz(m)gzm for |z|<1.
n n n

Now, let f(z) = >_,7_, amz" be a function analytic in a disk Dg, R> 1. Then for any
q=1,

g g - m m - dn m2 C
Bi(f4:2) RIS Y lanllBa(7:2) — )< 30 21 G
m=0 m=0

since > |am|m?* < oo. Clearly, C; does not depend on ¢. [

Remark. The statement remains true if /(z) = >, a,z™ is a function analytic in
the open unit disk and >, |a,|m* < oo.
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7. Iterates of g-Bernstein polynomials

We recall that the g-Bernstein operator B, ,: C[0,1]— 2, is defined by

Bnq fHBn f q, X Zf( )pnk q;x )a

where px(g; x) are given by (12).

For ge(0,1) equality (16) defines the limit operator B, , on C[0, 1] as
Soicof (1= )pair(g;x) if xe(0,1),
S(1) it x=1,
where entire functions p, x are given by (14).

It can be readily seen that for ge(0,1), both polynomials p,(g;x) and entire

functions p.,x(g; x) are non-negative on the interval [0, 1]. Therefore, we get from
(13) and (15) that

1Bugll = [[Bogl| =1 for qe(0,1). (24)
By L we denote the operator of linear interpolation at 0 and 1, i.e.,

L(f;x) = (1 =x)7(0) + x/(1).

Boc,q:f'_’Boo(fvfﬁx): { (23)

Theorem 8. Let g€ (0, 1) and {j,} be a sequence of positive integers such that j, — 0.
Then for any f e C[0, 1],

B (f,q:x)3L(f;x) for xe[0,1] as n—co.

The following theorem describes the behavior of iterates of the limit operator
By 4.

Theorem 9. Let qe(0,1), and the operator B, , be defined by (23). If {j.} is a
sequence of positive integers such that j, — oo, then for any f'e C[0,1],

Bl (f,q;x)3L(f;x) for xe[0,1] as n— 0.

The statement below (proved in [5]) follows from Theorem 9 immediately.

Corollary 8. Let qe(0,1). Then B, 4(f ) =f if and only if f = L(f ), i.e. f is a linear
Sfunction.

For ge (1, c0) we restrict ourselves to the case when f is a polynomial. This is
because in contrast to the case ge (0, 1], the sequence {B,(f,¢; x)} may be divergent
even for an infinitely differentiable function f (cf. Theorem 2.) However, behavior of
the operators B, , for ge (1, o0) on the space of polynomials 2 = | J,,_, 2., is rather
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similar to the classical case. In particular, for any pe 2 the sequence {B,(p,q; x)}
converges to p uniformly on [0,1]. Behavior of iterates B,{fq on # resembles the
situation with ¢ = 1. More precisely, the following statement holds.

Theorem 10. Let ge(1, o) and {j,} be a sequence of positive integers such that
Jn/ln],—t as n—oo. Then for any polynomial p and any 0<i< oo the sequence

{BJ(p,q;x)} converges uniformly on [0, 1]. In particular, for t =0,
B/ (p,q;x)3p(x) for xe0,1],

and for t = o
B (p,q;x)3 L(p;x) for xe[0,1].

We omit the proof of Theorem 10 since it repeats verbatim the reasoning of [3],
where the classical case ¢ = 1 was considered.

8. Some auxiliary results

Lemma 4. For all >0 the following identity holds:

B( yqi X _[ m— 12( ) _1)/B 71( qu;x)’

n=23 .., m=12 ... (25)

Proof. Let p,x(q; x) be defined by (12). Then

n k m
B, (1", q;x) = Z(%) Pk (¢ %)

I

g

1 S

T

E‘ =

= B

v
3
|

=

X m—
= [n]mfl [k + 1} lpnflyk(q; X)
q k=0
n—1
X m—
= [l/l]m71 1+ Q[k}q) 1pn—hk(Q; X)
q k=0

0w, ) |
—\[n—1], Pn-1k(q; x)

= ff,_lA (m,1)([n]q_1)13n_1(ﬂ,q;x). 0

Il
=
Q§‘ =
-~ 3
I 3
S) _
N
3
~
—
~—
—~
=
S
|
=
PRy
=~ )
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Lemma 5. For all q>0 the operator B,, has (n+ 1) linearly independent monic

eigenvectors pS,',l)(x), degp,(ﬁ) (x)=m, (m=0,1,...,n), corresponding to the eigen-
values
(n) (n)
;Lo‘q = ;Ll,q = 1,

(1] 2] [m — 1]
(m _ -1 1. — 4 orm=2,....n.
. (1 M,) <1 [n]q> (1 o ) f 2, ..., (26)

Remark. For ¢ = 1, (26) coincides with formula (2.5) in [3].

Proof. For m = 0,1 the statement is obvious due to (11). For n=m>2, using
Lemma 3 we write

B, q;x) = A X"+ P (), (27)
where P,g’fll(x) €?,_1 and Af,f)q are given by (26).
To find an eigenvector p,(,? €?, of the operator B,,, we write pﬁ,'f) =x" 4+
A1 X'+ ... + a;x and solve a linear system in unknowns aj, ..., a,_1:

Bug(X" + @ X" ax) = A (XM 4 X ar).

m,q

After we apply B,, in the left-hand side and equate the coefficients of x* (s =
l,...m—1), we get a triangular system whose determinant equals

(A = Ay G =2y () = 2y 0.

q “m,q/ \""m—2.,q m,q

Hence there exists a unique monic polynomial of degree 2<m<n which is an
eigenvector of B, , with the eigenvalue ix’?q. O

Corollary 9. For 2<m<n, the operator if;”q] — By, 4, where I is the identity operator,
is invertible on 2,,_1.

Lemma 6. The following equality holds:

m(m-1) ”
lim 0 — 47 (m=0,1,2,...) if qe(0,1),
" 1 if gel[l, ).

n— oo

Proof. The statement follows from formula (26) after we notice that

; < [JL,)_{qf (j=0,1,2,...) if ge(0,1),
m|l—-——+]= .
[n], 1 if ge[l, ). O



252 S. Ostrovska | Journal of Approximation Theory 123 (2003) 232-255

Lemma 7. Let ge(0,1). Then for every m=0,1,2... the operator By , has an
eigenvector py(x) which is a monic polynomial of degree m, corresponding to the
eigenvalue 1, , = ¢" " /2.

Proof. For m = 0, 1 the statement follows immediately from (17).
Taking the limit as n— oo in (25) and noting that for ¢ge(0, 1) one has

(I, — 1)’

]! —q/(1—q)" 7,
q
we get
m—1
-1\ . , .
Boc(t’”,q;X)xZ<mj )qf(l—q)m“Boo(t%qm)-
j=0

Hence the coefficient 4,,, of x™ in B, (", q; x) equals q" o 1,4, and recursively,

m(mfl)/2‘

m—1_m—2

dmg =4q" 4" qhg = ¢
We have shown that

B (1", ¢;X) = 2mgX" + Om-1,  Om-1€Pm-1.
The statement now follows from considering the equations

Boc,q(pm(X)) :/lm,qpm(x)y m:2,3, e ]

Corollary 10. For m=2, the operator Amql — By, 4 is invertible on 2,,_;.

9. Proofs of Theorems 8 and 9

In this section = means uniform convergence on [0, 1].

Proof of Theorem 8. Because of (3) it suffices to prove that BJ (f)3ax + b for
some a and b as n— oo.

(1) First we consider the case f = x™.

We will use induction on m. For m = 0, 1 the statement is obvious due to (11).

Assume that B) (x')3 ¢,€ 2 for t =0,1,...,m — 1. Consider

Byg(x") = A+ P

m,q m—1> (28)
where /15,’,’7)4 is given by (26), and P,(q’:)_] €2,,_1. Then
Bl (") = ()5 + (G ) T+ G2 Bug + - + Bl (PO,

m.g
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where I denotes the identity operator. It follows from Lemma 6 that
(25;‘,)(1)-/” -0 asn- 0.

The expression in the brackets is a linear operator on the space 2,,_;.
Consider the sequence of polynomials in 2, 1,

Pl = W) T+ ) By + o+ BRI ). (29)
Then
(;‘i(;:)ql - B"-,ll)yl(s)—l = (/lgnmq)]nP( i BI{an}(’Vl) 1

It follows from (24) and (28) that ||Pm (1]<2. Since (4,, ) )”’ —0 as n— oo, we have

(Zﬁn) )/”P("z1 30 asn—o 0.

,q m

It can be readily seen from (28) and Lemma 6 that
annzl(x)?» B y(x") — "V = 0, (X)€Py 1 as n— 0,
le.

Pm 1( ) Qm 1( ) (X),

where Q,,_1€%,,_1, and J,(x)30 as n— 0.
Thus,

i ( p(n) B n
Bn] (P ) B] (mel)"_B;{‘q(én)’

nq
where || nq( 2)||<1]0x]|, because of (24). This means that B,{fq(én)jo as n— 0.
By the induction assumption

Bn’”q(Qm,l)Ii cx+de?, asn— .

Therefore,

()L ol — B,q)y() Sex+d asn— o

m—1

or

(Amr— Bn,q)y(") = cx +d + w,(x),

m,q m—1 —
where w,(x)30 as n— .
By Corollary 8 the operators )m ql B, , are invertible on #,,_; for n>m and

lim (21 — By q) = ¢ — By = A,

n— oo

where by Corollary 10 4, , is also invertible on Z,,_;. Hence
()Lﬁ,i)ql - B,,Yq)f1 —>A;]‘q as n— oo

and it follows that

(- B,,)~ "|<M for some M >0.

“m g
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Therefore,
v = (0T = By N(ex +d) + (AT — Bug) ().

Since ||()»£,’1”)ql— Bn,q)_ ()| < M||wy|| >0 as n— oo, and ( iy - Bnq) — Ay 4 as

m,q
n— oo, we conclude that

y;(n)l—’A Jex+d)=ax+be?.

Thus, B, (x") 3 ax +b.
The induction is completed and it follows that for any polynomial p,

B/ (p,q;x)3 L(p;x) for xe[0,1] as n— oo.

(2) Let f € C[0, 1], and let >0 be given. Then f(x) = p(x) 4+ d(x), where pe 2, and
[|6(x)|] <e. We have

Bl (f) = Bi,(p) + B}, (9).

Since B/" (p) =3 L(p), there exists ngeN such that ||BJ(p) — L(p)||<e for all n> ny.

nq
Obviously, ||L(0)||<]|d]|<e, and finally we obtain
1B, (f) = LUOII< B, (p) = L) + |1B(9)]] + [16]]<3e for all n>no.

Thus, B)"(f,q;x)3L(f;x) for xe[0,1] asn—>co. O
Proof of Theorem 9. (1) First we prove the statement in the case f € #,,. For f €2,
by Lemma 7 we have

f = %opPo + a1 p1 + -+ mPmy

where po, p1, ..., pnm are eigenvectors of B, , corresponding to the eigenvalues Zg g,
Alygs - ~mg- Obviously,

Bﬁcq(f) = oco/lj" Do+ oq/l/”pl 4o 4 ozmi,{;’ﬂpm.
Since Aoy = A1y =1, Ai4€(0,1) for i>2, we obtain
B (f)Boopo +aupre?.

Taking into account (3), we derive the statement.
(2) For f € C|0, 1], the statement follows from the density of the set of polynomials
in C[0,1] and the fact that || B, 4|| =1 (cf. (24)). O
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