
Journal of Combinatorial Theory, Series A 95, 349�359 (2001)

Parent-Identifying Codes

Noga Alon1

Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv, Israel

E-mail: noga�math.tau.ac.il

Eldar Fischer

NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540; and DIMACS
E-mail: fischer�research.nj.nec.com

and

Mario Szegedy

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

E-mail: szegedy�ias.edu

Communicated by the Managing Editors

Received May 12, 2000; published online June 18, 2001
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1. INTRODUCTION

Let |N |=n and C�N4. For a, b # C define the set D(a, b) of all
descendants of a, b as

D(a, b)=[x # N4 | xi # [ai , b i] for 1�i�4 ].

We say that the code C has the Identifiable Parent Property (IPP) if for
every descendant one can always identify at least one of the parents, that
is, for every x # �a, b # C D(a, b) there is a p # C such that if a, b # C and
x # D(a, b) then p # [a, b]. Equivalently, as mentioned in [3], C has the
IPP if and only if:

(IPP1) For every distinct a, b, c # C there is an 1�i�4 such that
ai , bi , ci are all distinct, and

(IPP2) for every a, b, c, d # C with [a, b] & [c, d ]=< there is an
1�i�4 such that [ai , bi] & [ci , di]=<.

Define

f (n)=max[ |C |: C�N4 has IPP].

The study of f (n) is motivated by questions about schemes that protect
against piracy of software. The authors of [3] proved that

(1+o(1)) n3�2� f (n)�n2 (1)

and raised the problem of closing the gap between the upper and lower
bounds. Here we show that for every =>0 there is an n0=n0(=) such that
for every n>n0 ,

f (n)�=n2 (2)

and yet

f (n)�n2&=. (3)

2. THE UPPER BOUND

It is convenient to distinguish the alphabets that are used in each coor-
dinate. Let Ni be the alphabet used in coordinate i (1�i�4). |Ni |=n, and
Ni are pairwise disjoint. Thus C�N1_N2_N3_N4 . By omitting all
members of C that have a coordinate that does not belong to any other
code word we omit at most 4n words, and may assume now that:
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(V) Each letter l # N1 _ N2 _ N3 _ N4 appears in at least two
members of C (or does not appear at all).

Fact 2.1. No two members of C have three common coordinates.

Proof. If a, b # C with a1=b1 , a2=b2 , a3=b3 , then by assumption (V)
there is a c # C, c{a such that c4=a4 . But then [a, b, c] violate
(IPP1). K

Fact 2.2. If there are distinct i1 , i2 # [1, 2, 3, 4] and two distinct words
a, c # C with ai1=ci1 , ai2=ci2 , then there are no distinct words b, d # C such
that bj1

=dj1 , bj2=dj2 , where [ j1 , j2]=[1, 2, 3, 4]"[i1 , i2].

Proof. Assume the opposite. Then a, b, c, d violate (IPP2) if all words
are distinct. If, say, a=b, then [a, c, d ] violate (IPP1). K

Fact 2.3. For every distinct i1 , i2 # [1, 2, 3, 4],

|[x # C | (_y # C)(( y{x) 7 ( yi1=xi1) 7 ( yi2
=x i2))]|�2n&1.

Proof. Assume the fact does not hold for say, i1=1, i2=2. Construct
a bipartite graph G with color classes N3 and N4 as follows: for each
x # [x # C | (_y # C)(( y{x) 7 (x1= y1) 7 (x2= y2))] the pair x3x4 is an
edge of G. By assumption and Fact 2.2, G has more than 2n&1 edges,
hence it has a cycle. Therefore, since it is bipartite, it contains a path of
length 3. Let x4(x3= y3)( y4=z4) z3 be that path, where these coordinates
arise from appropriate x, y, z # C. Let x$ # C be such that x$1=x1 , x$2=x2 ,
x${x. If x$=z then [x, y, z] violate (IPP1), otherwise [x$, y, x, z] violate
(IPP2) with the grouping [x, z], [x$, y]. K

To prove the upper bound, we also need the following result, proved in
Alon et al. [1] by applying the regularity lemma of Szemere� di [5].

Lemma 2.4 [1, Proposition 4.4]. For every #>0 and every integer k
there exists a $=$(k, #)>0 such that every graph G on n vertices containing
less than $nk copies of the complete graph Kk on k vertices, contains a set
of less than #n2 edges whose deletion destroys all copies of Kk in G.

We can now prove the required upper bound for f (n).

Theorem 2.5. For every =>0 there exists n0=n0(=) such that f (n)<=n2

for every n>n0 .
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Proof. Let C�N1_N2_N3_N4 have the IPP, |C|= f (n), with Ni

being pairwise disjoint and satisfying |N1 |=|N2 |= |N3 |=|N4 |=n. By
Facts 2.1 and 2.3 we can omit from C at most 6 } 2n+4n=16n members to
get a code C$, |C$|� f (n)&16n that has IPP in which no two code words
share more than one coordinate. Let H be the 4-partite graph on the
classes of vertices N1 , N2 , N3 , N4 obtained by taking the edge-disjoint
union of all K4 copies [x1 , x2 , x3 , x4] for every x # C$.

This graph has at least ( f (n)&16n) 6 edges, and as it is the edge-disjoint
union of f (n)&16n copies of K4 , one has to delete at least f (n)&16n of its
edges to destroy all copies of K4 contained in the graph. If we assume that
f (n)>=n2, this implies, for sufficiently large n, that we have to delete at
least =

2n2 edges of H to destroy all copies of K4 .
By Lemma 2.4 (with k=4, #==�2), this implies that H contains at least

$n4 distinct copies of K4 for a constant $=$(=)>0. Among these K4 copies,
only f (n)�n2 correspond each to one x # C. Similarly, the number of K4

copies that contain at least two edges arising from the same x # C is at
most O(n3), since there are at most n2 ways to choose x, at most 15 ways
to choose two of its edges, and this determines already at least three ver-
tices of the K4 . It follows that H contains a copy of K4 in which every edge
comes from a different x # C. In particular, if a1 , a2 , a3 , a4 are the vertices
of this K4 , then there exist distinct x, y, z, w # C such that

x1=a1 , y3=a3 , z2=a2 , w1=a1 ,

x2=a2 , y4=a4 , z3=a3 , w4=a4 .

But then x, y, z, w violate (IPP2), contradicting the fact that C has IPP.
Thus f (n)�=n2 for n>n0(=), completing the proof. K

Remark 2.6. The proof and the known bounds in the proof of the
regularity lemma actually show that

f (n)=O \ n2

(log* n)1�5+ ,

where

log* n=min[k | log2 log2 } } } log2

k times

n�1].

3. THE LOWER BOUND

Our main tool here is an arithmetic lemma proven using the method of
Behrend [2], and its extension by Ruzsa [4], with some modifications.
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A linear equation with integer coefficients

: ai xi=0 (4)

in the unknowns x i is homogeneous if � ai=0. If X�N=[1, 2, ..., n], we
say that X has no non-trivial solution to (4), if whenever xi # X and
� ai xi=0, it follows that all xi are equal.

Note that if X has no non-trivial solution to (4), then the same holds for
any shift (X+u) & N (where u is positive, negative or zero).

We need the following simple fact, which follows from the convexity of
the function g(t)=t2.

Fact 3.1. Let p1 , p2 , ..., pk be k strictly positive reals whose sum is 1,
and suppose �k

i=1 pi ri=r, where r1 , r2 , ..., rk are reals. Then

:
k

i=1

pir2
i �r2,

and the inequality is strict unless r1=r2= } } } =rk=r.

Proof. Put ri=r+=i , then

:
k

i=1

pi (r+= i)=r+ :
k

i=1

pi=i=r

and hence �k
i=1 pi =i=0. It thus follows that

:
k

i=1

p ir2
i = :

k

i=1

pi (r+=i)
2= :

k

i=1

pir2+2r :
k

i=1

pi =i

+ :
k

i=1

pi =2
i =r2+ :

k

i=1

pi=2
i �r2,

and the last inequality is strict unless all numbers =i are 0. K

Lemma 3.2 (Main Lemma). For q=W2- log n X there exist:

(1) a set X1 �N, |X1 |�n�2O(log3�4 n) with no non-trivial solution to

2x+3y+qz&(q+5) w=0; (5)

(2) a set X2 �N, |X2 |�n�2O(log3�4 n) with no non-trivial solution to

5x+(q+3) y&3z&(q+5) w=0; (6)
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(3) a set X3 �N, |X3 |�n�2O(log3�4 n) with no non-trivial solution to

5x+qy&2z&(q+3) w=0. (7)

Proof. To prove part (1) we apply the method of Behrend [2]. Let d
be an integer (to be chosen later) and define

X1={ :
k

i=0

x i d i | x i<
d

q+5
(0�i�k) 7 :

k

i=0

x2
i =B= ,

where k=wlog n�log dx&1 and B is chosen to maximize the cardinality of
X1 . If x, y, z, w # X1 satisfy (5) and

x= :
k

i=0

xi d i, y= :
k

i=0

y i d i, z= :
k

i=0

zi d i, w= :
k

i=0

wi d i,

then

2xi+3yi+qzi=(q+5) wi

for every 0�i�k. But then, by Fact 3.1 (with k=3, p1= 2
q+5 , p2= 3

q+5 ,
and p3= q

q+5),

2x2
i +3y2

i +qz2
i �(q+5) w2

i

for every 0�i�k, and each such inequality is strict unless x i= yi=zi=wi .
As � x2

i =� y2
i =� z2

i =� w2
i , this implies that xi= yi=zi=wi for

0�i�k, showing that X1 has no non-trivial solution to (5). The size of X1

satisfies

|X1 |�
n

d 2(q+5)k+1 (k+1)(d 2�(q+5)2)
�

n
(q+5) log n� log d d 4 log n

.

Take d=w2- log n log qx (>>q) to conclude that

|X1 |�
n

2O(- log n log q)
. (8)

In order to prove Part (2) we apply the method of Ruzsa [4]. By
Behrend's method (that is, by an obvious modification of the constants in
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the argument given in the proof of Part (1) above) there exists Q�
[1, 2, ..., q�5] satisfying |Q|�q�2O(- log q) with no non-trivial solution to
5x= y+3z+w. Define

X2={ :
k

i=0

x i (q+4) i | xi # Q= ,

where k=wlog n� log(q+4)x&1. Note that

|X2 |=|Q| k+1�
n

2O(log n�- log q)
. (9)

Suppose now that there is a non-trivial solution x, y, z, w # X2 of (6),
where

x= :
k

i=0

xi (q+4) i, y= :
k

i=0

yi (q+4) i,

z= :
k

i=0

zi (q+4) i, w= :
k

i=0

wi (q+4) i.

Then

:
k

i=0

5x i (q+4) i+(q+3) :
k

i=0

yi (q+4) i

= :
k

i=0

3zi (q+4) i+(q+5) :
k

i=0

wi (q+4) i.

Let j be the minimum index such that not all [xi , yi , zi , wi] are equal.
Then

:
k

i= j

5xi (q+4) i+(q+3) :
k

i= j

yi (q+4) i

= :
k

i= j

3zi (q+4) i+(q+5) :
k

i= j

wi (q+4) i.

Reducing modulo (q+4) j+1 we conclude that

5xj (q+4) j#yj (q+4) j+3zj (q+4) j+wj (q+4) j (mod (q+4) j+1).

But both sides are less than (q+4) j+1, as x j , y j , zj , wj�
1
5q, hence this is

an equality (and not only a modular equality):

5xj (q+4) j= yj (q+4) j+3zj (q+4) j+wj (q+4) j.

355PARENT-IDENTIFYING CODES



Dividing by (q+4) j we get 5x j= yj+3zj+wj , contradicting the assump-
tion that Q has no non-trivial solution to this equation. Thus X2 has no
non-trivial solution to (6), as needed.

The proof of Part (3) is analogous to that of Part (2). Here we start with
Q/[1, 2, ..., 1

5q] having no non-trivial solution to 5x= y+2z+2w and
satisfying |Q|�q�2O(- log q). Then we take X3=[�k

i=0 xi (q+1) i | x i # Q]
where k=wlog n� log(q+1)x&1.

As before,

|X3 |�
n

2O(log n�- log q)
. (10)

If we assume that x, y, z, w # X3 form a non-trivial solution to (7), and
define xi , yi , zi , wi and j as before, we conclude, by reducing modulo
(q+1) j+1, that

5xj (q+1) j#yj (q+1) j+2zj (q+1) j+2wj (q+1) j (mod (q+1) j+1).

As before, this is actually an equality, implying that 5xj= yj+2zj+2wj and
supplying the desired contradiction.

This completes the proof of the lemma. Since

q=W2- log nX

we obtain, from (8), (9), and (10), that

|X1 |, |X2 | , |X3 |�
n

2O((log n)3�4)
. K

Corollary 3.3. There exists a set X/[1, ..., n] satisfying

|X |�
n

2O((log n)3�4)

such that X has no non-trivial solution to (5), no non-trivial solution to (6),
and no non-trivial solution to (7).

Proof. Take two integers &n�u2�n and &n�u3�n randomly,
uniformly and independently. X=X1 & (X2+u2) & (X3+u3) has no non-
trivial solution to any of the above equations, and each x # X1 has prob-
ability 0(2&O((log n)3�4)) to lie in the intersection. The result thus follows
from the linearity of the expectation. K
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Theorem 3.4. The function f (n) satisfies

f (n)�
n2

2O((log n)3�4)
. (11)

Proof. It is more convenient to show that

f (n2- log n+6n)�
n2

2O((log n)3�4)
,

which clearly gives (11).
Put q=W2- log nX and let X be as in the corollary. Define

C=[( p, p+2x, p+5x, p+(q+5) x) | 1�p�n, x # X].

Then C/N 4 for N=[1, 2, ..., (q+6) n]. Clearly

|C|�
n2

2O((log n)3�4)
.

We claim that C has the IPP. Indeed, no two words in C share more
than one coordinate. Thus, if a, b, c # C are distinct they cannot violate
(IPP1) since otherwise for every 1�i�4 there exists a pair among a, b, c
sharing the same coordinate in place i, implying by the pigeonhole prin-
ciple that some pair of words shares at least 2 coordinates, which is
impossible.

It remains to check (IPP2). Suppose that

a=( p1 , p1+2x, p1+5x, p1+(q+5) x),

b=( p2 , p2+2y, p2+5y, p2+(q+5) y),

c=( p3 , p3+2z, p3+5z, p3+(q+5) z),

d=( p4 , p4+2w, p4+5w, p4+(q+5) w)

satisfy [a, b] & [c, d ]=< and yet [ai , bi] & [ci , di]{< for all 1�i�4.
Choose gi # [ai , bi] & [ci , di] for each i. No word can share 3 coordinates
with g=(g1 , g2 , g3 , g4). Indeed, if for example, a1= g1 , a2= g2 and
a3= g3 then, as gi # [ci , di] for every i, either c or d have to agree with a
on at least 2 coordinates, which is impossible.

Since gi # [ai , bi] and gi # [ci , d i] for every i, each of the 4 words
a, b, c, d agrees with g=(g1 , g2 , g3 , g4) on exactly 2 coordinates. More-
over, the indices of those common coordinates of a and g, and those of b
and g, are disjoint (as together they have to cover all 4 coordinates); and
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the same occurs with those of c and g with respect to those of d and g. It
follows that up to symmetry there are 3 possible cases.

Case 1.

a1= g1 , b3= g3 , c2= g2 , d1= g1 ,

a2= g2 , b4= g4 , c3= g3 , d4= g4 .

Case 2.

a1= g1 , b2= g2 , c2= g2 , d1= g1 ,

a3= g3 , b4= g4 , c3= g3 , d4= g4 .

Case 3.

a1= g1 , b2= g2 , c1= g1 , d3= g3 ,

a3= g3 , b4= g4 , c2= g2 , d4= g4 .

In Case 1, by noting that

(g2& g1)+(g3& g2)+(g4& g3)&(g4& g1)=0

and that

g2& g1=a2&a1=2x, g3& g2=c3&c2=3z,

g4& g3=b4&b3=qy, g4& g1=d4&d1=(q+5) w,

we conclude that

2x+3z+qy&(q+5) w=0.

Thus x= y=z=w by the construction of X that has no non-trivial
solution to (5). But then it follows that a=d, in contradiction to [a, b] &

[c, d ]=<.
Similarly, Case 2 leads by the fact that X has no non-trivial solution to

(6), to the fact that x= y=z=w and hence again to the contradiction
a=d. Case 3 leads to x= y=z=w as X has no non-trivial solution to (7),
giving the contradiction a=c. This completes the proof. K
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Note added in proof. As observed by S. Konyagin, the lower bound given in Theorem 3.4
can be slightly improved to

f (n)�
n2

2O((log n)2�3)

by proving the first part of Lemma 3.2 using the method applied in the proofs of its second
and third part.
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