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We have found a central polynomial of degree 13 for the 4 X 4 matrix algebra
over a field of characteristic 0. This result agrees with the conjecture that the
minimal degree of such polynomials for n X n matrices is (n* + 3n — 2)/2. The
polynomial has been obtained by explicitly exhibiting an essentially weak polyno-
mial identity of degree 9 for 4 X 4 matrices. © 1994 Academic Press, Inc

INTRODUCTION

Let K{(X) be the free associative algebra over a field K of characteristic
0. An element f(x|, x2, ..., x,) € K(X) is called a central polynomial for a
K-algebra R is f(ry, r2, ..., r,) lies in the centerof R for all r\, r», ..., r, €
R, and fis not a polynomial identity for R. The first central polynomials
for the matrix algebras M, = M,(K) for any n were constructed by For-
manek and Razmyslov in (3, 7] with two different methods. The construc-
tion of Formanek yields a central polynomial of degree n?. The original
Razmyslov polynomial was of higher degree but Halpin [6] showed that
the method of [7] also gives rise to a central polynomial of degree »n’. For a
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long time this value was thought to be the minimal value for the degree of
central polynomials for n X n matrices, and this is in fact the case for n =
I and n = 2. But Drensky and Kasparian in [1] found a central polynomial
of degree 8 for 3 x 3 matrices. Formanek in [4] stated the problem to
determine the minimal degree of the central polynomials for M,,(K). In [5]
he also conjectured that this minimal degree is (#2 + 31 — 2)/2. The main
result of this paper is that we determine a central polynomial for 4 x 4
matrices of degree 13. We have not established that 13 is the minimal
degree of the central polynomials for M (K). Nevertheless, since 13 =
(n* + 3n — 2)/2 for n = 4, this agrees with the conjecture. To obtain the
central polynomial of degree 13 we have explicitly given the following
essentially weak polynomial identity of degree 9 for 4 x 4 matrices,

— o (4
w(xy, X2, X3, X1, Xs) = $e(x7, X1, X2, X3, Xq, Xs)

5
2
+ D XSe(X T, Xiy Xay ey XXy oo, X5)
i=2
2
+ Z S(,(X], Xy X2y vuey XXy vuny .r,x;. ey 15),
I=i<j=S

where sq¢(x;, ..., X¢) is the standard polynomial of degree 6. By the Raz-
myslov approach in [7] this gives rise to a central polynomial of the right
degree. Initially we have found w(x|, x», x3, x4, x5) by computer. It turns
out that it has so simple a form that we have been able to prove directly
without using any computer that w(x|, x,, X3, X4, xs5) Is an essentially weak
polynomial identity for M,(K).

1. PRELIMINARIES

Let K be a field of characteristic zero. By K{x,, xa, ..., x,,) we mean the
subalgebra of rank m of K(X). We shall also use other variables, e.g., x,
¥, ..., Y&» to denote the free generators. The aim of the paper is to find a
new central polynomial for M4(K ), the algebra of 4 x 4 matrices. We refer
to {4, 8] for a background on polynomial identities for matrices. We recall
some basic facts.

() LetK[t, 12, ..., t+1] be the polynomial ring in & + | commuting
variables. To any polynomial

g(tl, vees tk+|) = 24 t’]” e ti‘.]‘ € Kity, ..., teal,
(4

we associate the polynomial
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d(g) = d(g)x, y1, s Vi)
= > apxPy Xy o xP X € K(x, yi, oo Yi)e

Suppose we start with an element f{x, yi, ..., »«) € K{(x, ¥, ..., yx) which
is multilinear in the y;’s. Then f may be written as

f(x, Vis oo yk) = Z arpxmyr‘xp:yrz SN x”‘y,‘x”"'
= 2 B, Yy oos V).

(B) Let n be fixed and let ¥, = e, y2 = €, ..., ¥k = €;,;, be matrix
units from M (K). We relate to the set {¥,, ¥, ..., i} an oriented graph
with n vertices 1, 2, ..., n and edges (i, j)), (iz, j»), ..., (ix, ji). In order to
decide whether ¢(g) is a polynomial identity or a central polynomial for
M (K), it is sufficient to set x = X = pjeyy + * - + pnenn, Where py, ..., p,
are commuting variablesand y, =¥, = ¢€,;,, Y2 = ¥2 = €ijp» -.s Yk = Y& = €,
for all pOSSible (i|,j|), (iz,jg), vies (ik,jk). Then f(’,'j = pi€ij and E’,‘jfz P;€ij,s
imply that

DENX, €js -.os €5) = (P05 Piys --os Piss P )€

where 8 equals 1 or 0, depending on whether (i}, j}), (i2, j2), ..., (ix, ji) is or
is not a path in the graph.

DEFINITION. A polynomial f(x;, ..., x,) € K(X) is called a weak
polynomial identity for M, if it is zero when evaluted on all elements of the
Lie algebra s/, of all traceless matrices of M,. An essentially weak polyno-
mial identity is a weak polynomial identity for M, which is not a polyno-
mial identity for M.

Keeping in mind the definition of weak identities and the previous
paragraphs, we can make this last observation.

(y) As in (8), in order to prove that f(x, y,, y2, ..., y«) is a weak
polynomial identity for M, it is sufficient to consider x = x = pye;; + ... +
prew, where py, ..., p; are commuting variables satisfying p; + ... + p; =
0. Let g.(t,, ..., &+1) € K1, ..., t;+1] be such that f(x, y,, ..., )
2 &g )X, Y,y ...y ¥,) is a polynomial identity for M,_,. Then f(X, ¥, ...,
¥ =0if y, = e, ..., ¥x = e,;, and in the related graph all the possible
paths go through k — 1 vertices only. Hence, if f(X, ¥, ..., ) # 0 then the
graph contains an oriented path (i, , j,), (i,,, j.), ..., (i, j,) going through
all the k vertices. Up to a permutation of the indices 1, ..., », this is one of
the paths (1,2), ..., (i + 1), o0, G~ L), G, ) (5, j + D ..y (k= 1, k),
where i < j. Now, if g,(¢,, ..., ti, i1, -y U, by L1, ..., ) 1s divisible by
H+ 6+ ...+ ¢t forall i <j, this means that f(x, y,, ..., ¥;) vanishes on

I



472 DRENSKY AND PIACENTINI CATTANEO

X € sl; and ¥, ..., yx € M,. ln particular, f(x, y;. ..., vi) is a weak
polynomial identity for M,.

2. THE WEAK PoLyNOMIAL IDENTITY

In order to obtain a central polynomial for 4 x 4 matrices, we looked for
essentially weak polynomial identities. In the beginning of our search we
followed the method used by Drensky and Rashkova in [2]. Using a
computer they found in [2] all the weak polynomial identities of degree 8
for M;. One of these weak identities gives rise to the central polynomial of
degree 8 from [1]. We sketch the way to find w(x, ..., x5) because it may
be used for other computations with polynomial identities. We refer to 2]
for details. We looked for a possible weak polynomial identity wix,, ...,
xs) of degree 9 which is a highest weight vector of an irreducible GL,(K)-
submodule W of K(x,, ..., x,.) corresponding to the partition (5, 14). For
each standard tableau of shape (5, 1%) we associated a highest weight
vector wix;, ..., xs), i = 1, ..., d, where d = 70 is the number of the
standard (5, 1%)-tableaux. Then the polynomial w(x,, ..., xs) can be written
uniquely as a linear combination &, éwdx,, ..., xs) with unknown coeffi-
cients &;.

To this end we wrote a computer program which calculated all 70
highest weight vectors wy, ..., wy corresponding to the given shape; we
then calculated w{(x,, xa, ..., Xs) for different values of x; € sl;. Since the
4? entries of the matrix f(x,, ..., Xs5) are equal to 0, we obtain a homoge-
neous linear system in the 70 unknowns &;. The number of equations
equals 42 - (number of ‘‘experiments’’), where by ‘*experiment’’ we mean
a complete set of replacements of the five variables with elements of si4.
By making eight experiments we obtained a system which gave a nontri-
vial solution, which was expressed as a combination of 38 heighest weight
vectors; hence it was intractable. So we tried to express this solution as a
consequence of the standard identity s¢(x;, x2, x3, X4, X5, X¢). We thus
looked at consequences of degree 9 of s like

_ P be <
f= E xPselx?, X7, xPxxy, o, x] asxit), 9))

where a, d\, and d, are fixed, d; > d> = 1, and the sum is symmetric under
all permutations of the pairs (b,, ¢3), ..., (bs, ¢s). Since the degree of the
polynomial is 9, the relation a + 2;., b; + 2i_, ¢; + d, + d» = 5 holds
among the exponents. This allowed us to compute the 14 possible differ-
ent consequences f; of kind (1) and to check whether the solution w we
had previously found could be expressed as a combination of these. This
was the case, and the expression we obtained was particularly simple: we
found that w = f; + f¢ + fi4, where f; corresponded to the values d| = 4,
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d, = 1, and all the rest were zero; f; is the symmetric sum obtained from
the valuesa = 1,d, = 2,d> = 1, ¢; = 1; and f)4 from the values d, = 2, d, =
1, ¢=c¢3 = 1.

The aim of this section is therefore to prove the following result.

THEOREM 1. Let K be a field of characteristic equal to zero. The
polyromial

_ 4
wlxy, X2, X3, X4, X5) = Se(x7, Xy, X2, X3, X4, X5)

,
+ X186(XTs X140 X2, oevy XiXTneursy X5)

5

=2

Al

i
+ > se(xd, xiy Koy e XiXpses, X4,y ol X5)

2=i<y=<8§

€ K(X)

is an essentially weak polynomial identity for My(K).
In order to prove the theorem, we need several lemmas.

LeEmMMA L. Let

g(u,, ey Usy Uy ovny U5) = M;(‘Uz + Uy — Uy + 1)5)
+ uz(—vg + vy — 123 + U])
+ us(—vg + vs — Uy + vy)
+ ug(—vs + vy — Uy + vy)
+ous(—vr + v2 — U3 + vy

be a polynomial in the commuting variables u;, v;. Then, for any n, if we
set

Xy =X = D€y + ...+ PnCnn
Yo = Yn = €

forh=2,..,5, then

—d| —d» — —
se(XT', XV, Y2, «ous ¥5)

_ d dy di . i & d
= ZSgn(U')g(Pw'iz)s v Potins Patins Potns +oor Patias Potm)
C ooty T Cotina (e

Proof. sg(xi{", xP, y2. 3. ¥4, ¥9) = Zoes(— 17 Zo)Zed " Zow)» Where
2 =x{", 22 = x{, 23 = y2. 24 = ¥3, Z5 = ¥4, 26 = ¥s. Now, the values of the
coefficients of this polynomial depend on the position of x§' and x {* in the
single monomials y,a) - x§' <+ x{ ++ yos. If we let € to be the sign of
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the permutation of S corresponding to y, + -+ x{" -+ x¥ -+ y5, we can
express sq as

4 b _ d &
se(xi', X%, 2, o ¥s) = Z Sgn(a){e(y(,f, e -’t]l' XV Yous)
= (Vo) XY XY Yars) )

where o runs over all permutations of S, acting on {2, ..., 5} and where
only positions of x{' and x%* which are not adjacent give a contribution.
Now, each summand inside the braces corresponds (in the correspon-
dence stated in point (&) of Section 1) to the polynomial in the commuta-
tive variables u;, v;, i =1, ..., 5,

g(uy, uy, Uz, Uy, Us; Uy, Uz, U3, Ug, Us) = U 1(—V2 + U3 — U4 + Us)

+ ur(—vy + vy — Uvs + Uy

+ Uy(—Us + Us — vy + V)

+ H4(_05 + v — vy + U3)

+ 115(—U] + Uy — Uy + U4),
where w; = t{", v; = t{, and the coefficient of wv; of g is exactly the
coefficient of the monomial y,) -« x{' -+ x¥ -+ - yos, where x{" and x{
are respectively in the ith and in the jth position. If we now replace x; by
the diagonal matrix ¥; = pje;; + ... + p.en,, and the y,’s by the matrix
units e, ;, = ¥, then the lemma follows from (8) of Section 1.

nin

If we now set in se(x5', X%, ya, ..oy ys), i = xBxxst, fork =2, ..., 5,
then, by (8) of Section 1, the following lemma is a simple consequence of
Lemma 1.

LEMMA 2. Let gluy, ..., us; vy, ..., Us) be the polynomial in commuting
variables of Lemma |. Then if we set xy = pien + ... + pye,, and x, = e,
for h =2, ...,5, then
xPs(x®, x®, xPxoxy, L xPxsx )

d / & . dy &
= zsgn(d)g(m('my ceor Polisss Palins Paims «ovs Palis ,ijq)

dy bati) q Cotint batizy  Catint Butig )t Bustisy o Catjs)

) Cotig
X PP i Paiy P iy P P oy
: erf(i:)rrlj:i o e:r(iq)(rush

where ¢ € S, acts on {2, ..., S}

In the notation of the previous lemmas, the following lemma then holds.

LEMMA 3. w(x, ..., x5) = 2 $gN(T)B(Poiipys - Potia. Patin) ~ Cotinrtn * "
Catinrijs)» where

@(ty, ...y t5) = galty, . t5) + g2ty ..., t5) - exlty, ..., 15),
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where g4 = g(t]', ety 1), = g(t%, e 8Bt o ts), and ex(ty, ...,
t5) is the elementary symmetric function of second degree in five vari-
ables.

We are now ready to prove the main result of this section.

Proof of Theorem 1. By the Amitsur-Levitzki theorem, s¢(x;, ..., Xq)
is a polynomial identity for M. In order to prove that w(x,, xs, ..., xs) is an
essentially weak polynomial identity for M(K), it is sufficient, by (y) of
Section 1, to prove that the polynomial &(t, ..., t;, tic1, .os 8y Ly Bisry oony
1y is divisible by 1, + 1o + t3 + 1, forall 1 =i <j =< 4, and that w(x;, ..., xs)
is not identically zero on M,. Since w is invariant with respect to cyclic
permutations of the variables, it is sufficient to prove that ¢, + 1, + 13 + 4
divides ally, th, 13, t4, ) and o), t7, 4, 13, ts) and that a (1, 1,, ta, 14, 1) is
different from zero as a function of 1,, ;, 13, t4. We show that whenever
two arguments are the same, @ is divisible by 2L, ¢.

Case I. Computation of w(ty, 1, t3, 14, 1;). We compute separately
ga=glth . td et .., ) and g2 - ety ..., s, 11), Where g2 = g(¢3,
et td o, .. 1, 1), In what follows e,, h; (i = 1, 2, 3) are respectively
the elementary symmetric function and the complete symmetric functions
in the variables ¢; and ;.

Now, g, ttz, U3, g, U15 U1, ooy Vg, U)) = Ua2{—03 F 0g) + t3(—vg + 02) +
us(—v, + v;3). Hence,

13—t + 1) + 13—ty + ) + i1, + 1)

g4 =
= (s — )6 — 606 — L3 + oy + ),
g = 13—t + 1) + 13—t + 1) + ti(—1 + 1)

= (ts — Y — B)8 — ).
From this we obtain by easy calculations

oy, 1, t3, 14, 1) = ga + g1 exlty, 2, 1, 1y, 1)
(ts — B)(12 — B3N — 1)1 + 1 + 13 + 1)

i)

This formula assures us at the same time that 2%, t; divides (¢, ..., t,
t,) and that a(t,, ..., 14, t;) is not identically zero.

Case 1I. Computation of @(ty, 12, t1, t3, 1;). Again we compute sepa-
d 2 7 2
rately gs = g(ef, 14, 01, 14, tds 01, 0o, 1 1, ) and gy = @17, 13,17, 15, 135 1y,
L, ty, ta, lg):

gy, uy, 1y, 3, My Uy, U2, Up, U3, Ug)
= 2u(vg — y) + ur(v3 — vg) + wa(2vy — U2 — v4)
+ uy(—2v) + v2 + v3)
= Qui — u)vg — v3) + wsuy — v2 — vy)
+ M4(—2U| + vy + U})
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ge= @t — Dty — 1K) + 1320 — 6 — 1) + 132 + 1+ 1)
= (ty — )27 — 21103 — 13 + 1hy + erhy)
= (13 — )20ty = 6)1, — t)(t7 + 0y + k)
—(y — 1)ty — )15 + iy + hy)l,

g2 = (21 — )ty — 13) + 132 — 1 — 1) + 13(=2t, + 62 + 13)
= (t4 - f3)[2(t% - f|h| + (’2) - (t% - t.’.hl + 6’2)],

@t b, i, By, 1) = 84+ g2 ety b, 1, 13, ty)

= (1 = )20 = 60 — 1)U+ th + ha)
— (tr — 63)(6r — t)13 + thhy + hy)
+ (205 — £5)( — L)
= (t = 1)ty — )T + 200(1a + 15 + L)
+ ity + Lty + 1)}

=(ts = H)0 + 6+ 6+ 205 — iy + )2 + hy)
— (13— bl + et + 1+ h)l.

Also in this case it is shown that ¢, + 1, + 13 + 1, divides w(ty, b2, £, 3, t1).

The proof of the theorem is completed.

Remark. By (y) from Section 1, in the proof of Theorem | we have
established not only that w(x,, ..., xs) is a weak polynomial identity for M,
but also that w(x, ..., xs) vanishes when replacing x; by an element of si,
and x,, ..., x5 by elements of M,.

3. FrRoOM WEAK POLYNOMIAL IDENTITIES TO CENTRAL POLYNOMIALS
Once we have at our disposal an essentially weak polynomial identity,
the way to obtain a central polynomial is indicated by Razmyslov in (7],
and we follow his work to show the procedure. Let f(x, x2, ..., x,) be a
multilinear polynomial identity. Then we can write f as

flxy, x2, ooy X)) = z Apg P (X2, -y X)X1G(X2, ..oy Xu), )

where p and g are monomials not depending on x,.

DEeFINITION. The polynomial
RO X2 o Xa) = 2 0@ (X2 oy X)X P (X2, ey X)

is called the Razmyslov's transform of f.

The following theorem holds.
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THEOREM 2 (Razmyslov). Let f(x,, xa, ..., x,) be multilinear. Then

(i) If fis a polynomial identity for M, then also f* is a polynomial
identity for M.
(ii) If fis a weak identity of M,, then f* is either a weak identity of M,
or central on sl.
(iit) If f is an essentially weak identity of My, then there is a central
polynomial of M.

The way to obtain the central polynomial guaranteed by the theorem is
to start with a multilinear essentially weak polynomial identity f(x;, xs,
..., X) for My such that f([ x|, x,+], x2, ..., x,) is an ordinary polynomial
identity for M. Then, if one writes fin the form (2), the polynomial f* =
2 ap,q(x1, ..oy X)X p (X2, ..., X,) is a central polynomial for M.

Let w(x,, ..., x5) be the essentially weak polynomial identity for 4 x 4
matrices that we have found in Section 2. By a complete linearization of
w(x;, ..., xs) we mean the multilinear component w'(x,, ..., x9) of the
polynomial w(x; + x¢ + ... + X9, X2, ..., X5).

THEOREM 3. Let w'(xy, X2, ..., X9) be the complete linearization of
wixy, ..., xs). If we set

Sx, xa, o xi3) = wixg, X2, X3, X4, Xs, Lx6. Xi0ls [x7, X111, [x5, x12], [x9, x13])
and write it in the form

Z apyp (X2, ..., xi3)xig(xz, ..., x13)

then the Razmyslov’s transform f*(x,, ..., x13) of fis a central polynomial
for M.
Proof. 1t is sufficient to show that f([x;, x\4], ..., x13) is an ordinary

polynomial identity for M4 and f(x,, x2, ..., xi3) is not. By the remark of
Section 2, w(xy, ..., xs) vanishesforx; = x| Esly, xp, =X, EMy, h =2, ...,
S. Hence its linearization w'(x,, ..., xo) vanishes for x, = x, € My, h = 2,
oS xi=XEsl,i=1,6,...,9. Since the commutators [ X,, ¥,] belong to
sly for any X,, X, € M,, we obtain that f([x,, x14], x2, ..., x13) is a polyno-
mial identity for M,.

Any diagonal matrix ¥ = 2., p;e; € sly can be written as a commutator
of two matrices, e.g.,

X = [pieiz + (pr + pen + (pr + pa + p3)ewns, ey + €1 + €3 + eg).

Hence we shall show that f(x,, ..., x;3) is not a polynomial identity for M,
if we establish that
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vixy, ..., xs) = w'(l, xa, ..., X5, X1, ..., X1)
Zb e A
4

is not a weak polynomial identity for M. Clearly, up to a multiplicative
constant (equal to 3!), v(x, ..., x5) is equal to the homogeneous compo-
nent of w(l + x, xa, ..., xs5) of degree 4 in x;. We shall calculate v for x; =
H=2ZhipiisXa=X2 =€, X3 = X3 = €31, X4 = X4 = €13, Xs = X5 = e34. As
in the proof of Theorem 1 it is easy to see that v(x|, ..., Xs) is equal to
v(pi, P2, P31, Pa)ers, Where v(4y, 1y, 1, ty) is the homogeneous component
of degree 4 of

4

dalty, b, h, I, ¢
u')(l-i—t,,]+12,|+,],|+,3’1+14):2 (t 2at| 3, 1)
i=1 i

Using the expression of @(ty, -, ¢, t3, t3) from Case Il of the proof of
Theorem | we obtain

p(ty, .., ) = + b+ 1+ tulty, ..., 1y)
+ (tg — K207 — tih + )2t + hy)
- (13— by + ety + 1 + k)]

for some polynomial u(t,, ..., t;). Hence t; + t» + t; + 1, does not divide
v(t), ..., t4) and v(xy, ..., xs) # O for suitably choosen p;, p2, pz and p, =
—(py + p2 + p3). This completes the proof of the theorem.
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