A Central Polynomial of Low Degree for 4 × 4 Matrices

VESSELIN DRENSKY*

Institute of Mathematics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

AND

GIULIA MARIA PIACENTINI CATTANEO†

Department of Mathematics, II University of Rome, Tor Vergata, 00133 Rome, Italy

Communicated by Susan Montgomery

Received November 23, 1992

We have found a central polynomial of degree 13 for the 4×4 matrix algebra over a field of characteristic 0. This result agrees with the conjecture that the minimal degree of such polynomials for $n \times n$ matrices is $(n^2 + 3n - 2)/2$. The polynomial has been obtained by explicitly exhibiting an essentially weak polynomial identity of degree 9 for 4×4 matrices. © 1994 Academic Press, Inc.

Introduction

Let K(X) be the free associative algebra over a field K of characteristic 0. An element $f(x_1, x_2, ..., x_n) \in K(X)$ is called a *central polynomial* for a K-algebra R is $f(r_1, r_2, ..., r_n)$ lies in the center of R for all $r_1, r_2, ..., r_n \in R$, and f is not a polynomial identity for R. The first central polynomials for the matrix algebras $M_n = M_n(K)$ for any n were constructed by Formanek and Razmyslov in [3, 7] with two different methods. The construction of Formanek yields a central polynomial of degree n^2 . The original Razmyslov polynomial was of higher degree but Halpin [6] showed that the method of [7] also gives rise to a central polynomial of degree n^2 . For a

^{*} Partially supported by a grant of C.N.R. of Italy.

[†] Partially supported by M.U.R.S.T. and C.N.R.

long time this value was thought to be the minimal value for the degree of central polynomials for $n \times n$ matrices, and this is in fact the case for n = 1 and n = 2. But Drensky and Kasparian in [1] found a central polynomial of degree 8 for 3×3 matrices. Formanek in [4] stated the problem to determine the minimal degree of the central polynomials for $M_n(K)$. In [5] he also conjectured that this minimal degree is $(n^2 + 3n - 2)/2$. The main result of this paper is that we determine a central polynomial for 4×4 matrices of degree 13. We have not established that 13 is the minimal degree of the central polynomials for $M_4(K)$. Nevertheless, since $13 = (n^2 + 3n - 2)/2$ for n = 4, this agrees with the conjecture. To obtain the central polynomial of degree 13 we have explicitly given the following essentially weak polynomial identity of degree 9 for 4×4 matrices,

$$w(x_1, x_2, x_3, x_4, x_5) = s_6(x_1^4, x_1, x_2, x_3, x_4, x_5)$$

$$+ \sum_{i=2}^5 x_i s_6(x_1^2, x_1, x_2, ..., x_i x_1, ..., x_5)$$

$$+ \sum_{2 \le i \le j \le 5} s_6(x_1^2, x_1, x_2, ..., x_i x_1, ..., x_j x_1, ..., x_5),$$

where $s_6(x_1, ..., x_6)$ is the standard polynomial of degree 6. By the Razmyslov approach in [7] this gives rise to a central polynomial of the right degree. Initially we have found $w(x_1, x_2, x_3, x_4, x_5)$ by computer. It turns out that it has so simple a form that we have been able to prove directly without using any computer that $w(x_1, x_2, x_3, x_4, x_5)$ is an essentially weak polynomial identity for $M_4(K)$.

1. Preliminaries

Let K be a field of characteristic zero. By $K(x_1, x_2, ..., x_m)$ we mean the subalgebra of rank m of K(X). We shall also use other variables, e.g., x, $y_1, ..., y_k$, to denote the free generators. The aim of the paper is to find a new central polynomial for $M_4(K)$, the algebra of 4×4 matrices. We refer to [4, 8] for a background on polynomial identities for matrices. We recall some basic facts.

(a) Let $K[t_1, t_2, ..., t_{k+1}]$ be the polynomial ring in k+1 commuting variables. To any polynomial

$$g(t_1, ..., t_{k+1}) = \sum_{\alpha_p} \alpha_p t_1^{p_1} \cdots t_{k+1}^{p_{k+1}} \in K[t_1, ..., t_{k+1}],$$

we associate the polynomial

$$\phi(g) = \phi(g)(x, y_1, ..., y_k)$$

$$= \sum_{n} \alpha_n x^{p_1} y_1 x^{p_2} y_2 \cdots x^{p_k} y_k x^{p_{k+1}} \in K\langle x, y_1, ..., y_k \rangle.$$

Suppose we start with an element $f(x, y_1, ..., y_k) \in K(x, y_1, ..., y_k)$ which is multilinear in the y_i 's. Then f may be written as

$$f(x, y_1, ..., y_k) = \sum_{i} \alpha_{rp} x^{\rho_1} y_{r_1} x^{\rho_2} y_{r_2} \cdots x^{\rho_k} y_{r_k} x^{\rho_{k+1}}$$

= $\sum_{i} \phi(g_r)(x, y_{r_1}, ..., y_{r_k}).$

(β) Let n be fixed and let $\overline{y}_1 = e_{i,j_1}, \overline{y}_2 = e_{i,j_2}, ..., \overline{y}_k = e_{i,j_k}$ be matrix units from $M_n(K)$. We relate to the set $\{\overline{y}_1, \overline{y}_2, ..., \overline{y}_k\}$ an oriented graph with n vertices 1, 2, ..., n and edges $(i_1, j_1), (i_2, j_2), ..., (i_k, j_k)$. In order to decide whether $\phi(g)$ is a polynomial identity or a central polynomial for $M_n(K)$, it is sufficient to set $x = \overline{x} = \rho_1 e_{11} + \cdots + \rho_n e_{nn}$, where $\rho_1, ..., \rho_n$ are commuting variables and $y_1 = \overline{y}_1 = e_{i,j_1}, y_2 = \overline{y}_2 = e_{i,j_2}, ..., y_k = \overline{y}_k = e_{i,j_k}$ for all possible $(i_1, j_1), (i_2, j_2), ..., (i_k, j_k)$. Then $\overline{x}e_{ij} = \rho_i e_{ij}$ and $e_{ij}\overline{x} = \rho_j e_{ij}$, imply that

$$\phi(g)(\bar{x}, e_{i_1j_1}, ..., e_{i_kj_k}) = \delta g(\rho_{i_1}, \rho_{i_2}, ..., \rho_{i_k}, \rho_{j_k})e_{i_1j_k},$$

where δ equals 1 or 0, depending on whether $(i_1, j_1), (i_2, j_2), ..., (i_k, j_k)$ is or is not a path in the graph.

DEFINITION. A polynomial $f(x_1, ..., x_n) \in K(X)$ is called a weak polynomial identity for M_k if it is zero when evaluted on all elements of the Lie algebra sl_k of all traceless matrices of M_k . An essentially weak polynomial identity is a weak polynomial identity for M_k which is not a polynomial identity for M_k .

Keeping in mind the definition of weak identities and the previous paragraphs, we can make this last observation.

 (γ) As in (β) , in order to prove that $f(x, y_1, y_2, ..., y_k)$ is a weak polynomial identity for M_k it is sufficient to consider $x = \bar{x} = \rho_1 e_{11} + ... + \rho_k e_{kk}$, where $\rho_1, ..., \rho_k$ are commuting variables satisfying $\rho_1 + ... + \rho_k = 0$. Let $g_r(t_1, ..., t_{k+1}) \in K[t_1, ..., t_{k+1}]$ be such that $f(x, y_1, ..., y_k) = \sum \phi(g_r)(x, y_{r_1}, ..., y_{r_k})$ is a polynomial identity for M_{k-1} . Then $f(\bar{x}, \bar{y}_1, ..., \bar{y}_k) = 0$ if $\bar{y}_1 = e_{i,j_1}, ..., \bar{y}_k = e_{i,j_k}$ and in the related graph all the possible paths go through k-1 vertices only. Hence, if $f(\bar{x}, \bar{y}_1, ..., \bar{y}_k) \neq 0$ then the graph contains an oriented path $(i_{r_1}, j_{r_1}), (i_{r_2}, j_{r_2}), ..., (i_{r_k}, j_{r_k})$ going through all the k vertices. Up to a permutation of the indices 1, ..., n, this is one of the paths (1, 2), ..., (i, i + 1), ..., (j - 1, j), (j, i), (i, j + 1), ..., (k - 1, k), where $i \leq j$. Now, if $g_r(t_1, ..., t_i, t_{i+1}, ..., t_j, t_i, t_{j+1}, ..., t_k)$ is divisible by $t_1 + t_2 + ... + t_k$ for all i < j, this means that $f(\bar{x}, \bar{y}_1, ..., \bar{y}_k)$ vanishes on

 $\bar{x} \in sl_k$ and $\bar{y}_1, ..., \bar{y}_k \in M_k$. In particular, $f(x, y_1, ..., y_k)$ is a weak polynomial identity for M_k .

2. THE WEAK POLYNOMIAL IDENTITY

In order to obtain a central polynomial for 4×4 matrices, we looked for essentially weak polynomial identities. In the beginning of our search we followed the method used by Drensky and Rashkova in [2]. Using a computer they found in [2] all the weak polynomial identities of degree 8 for M_3 . One of these weak identities gives rise to the central polynomial of degree 8 from [1]. We sketch the way to find $w(x_1, ..., x_5)$ because it may be used for other computations with polynomial identities. We refer to [2] for details. We looked for a possible weak polynomial identity $w(x_1, ..., x_5)$ of degree 9 which is a highest weight vector of an irreducible $GL_m(K)$ -submodule W of $K(x_1, ..., x_m)$ corresponding to the partition $(5, 1^4)$. For each standard tableau of shape $(5, 1^4)$ we associated a highest weight vector $w_i(x_1, ..., x_5)$, i = 1, ..., d, where d = 70 is the number of the standard $(5, 1^4)$ -tableaux. Then the polynomial $w(x_1, ..., x_5)$ can be written uniquely as a linear combination $\sum_{i=1}^{d} \xi_i w_i(x_1, ..., x_5)$ with unknown coefficients ξ_i .

To this end we wrote a computer program which calculated all 70 highest weight vectors $w_1, ..., w_{70}$ corresponding to the given shape; we then calculated $w_i(\bar{x}_1, \bar{x}_2, ..., \bar{x}_5)$ for different values of $\bar{x}_i \in sl_4$. Since the 4^2 entries of the matrix $f(\bar{x}_1, ..., \bar{x}_5)$ are equal to 0, we obtain a homogeneous linear system in the 70 unknowns ξ_i . The number of equations equals $4^2 \cdot (number\ of\ ``experiments'`')$, where by ''experiment'' we mean a complete set of replacements of the five variables with elements of sl_4 . By making eight experiments we obtained a system which gave a nontrivial solution, which was expressed as a combination of 38 heighest weight vectors; hence it was intractable. So we tried to express this solution as a consequence of the standard identity $s_6(x_1, x_2, x_3, x_4, x_5, x_6)$. We thus looked at consequences of degree 9 of s_6 like

$$f = \sum_{a} x_1^a s_6(x_1^{d_1}, x_1^{d_2}, x_1^{b_2} x_2 x_1^{c_2}, \dots, x_1^{b_n} x_5 x_1^{c_n}), \tag{1}$$

where a, d_1 , and d_2 are fixed, $d_1 > d_2 \ge 1$, and the sum is symmetric under all permutations of the pairs (b_2, c_2) , ..., (b_5, c_5) . Since the degree of the polynomial is 9, the relation $a + \sum_{i=2}^{5} b_i + \sum_{i=2}^{5} c_i + d_1 + d_2 = 5$ holds among the exponents. This allowed us to compute the 14 possible different consequences f_i of kind (1) and to check whether the solution w we had previously found could be expressed as a combination of these. This was the case, and the expression we obtained was particularly simple: we found that $w = f_3 + f_6 + f_{14}$, where f_3 corresponded to the values $d_1 = 4$,

 $d_2 = 1$, and all the rest were zero; f_6 is the symmetric sum obtained from the values a = 1, $d_1 = 2$, $d_2 = 1$, $c_2 = 1$; and f_{14} from the values $d_1 = 2$, $d_2 = 1$, $c_2 = c_3 = 1$.

The aim of this section is therefore to prove the following result.

THEOREM 1. Let K be a field of characteristic equal to zero. The polynomial

$$w(x_1, x_2, x_3, x_4, x_5) = s_6(x_1^4, x_1, x_2, x_3, x_4, x_5)$$

$$+ \sum_{i=2}^5 x_1 s_6(x_1^2, x_1, x_2, ..., x_i x_1, ..., x_5)$$

$$+ \sum_{2 \le i < j \le 5} s_6(x_1^2, x_1, x_2, ..., x_i x_1, ..., x_j x_1, ..., x_5)$$

$$\in K\langle X \rangle$$

is an essentially weak polynomial identity for $M_4(K)$.

In order to prove the theorem, we need several lemmas.

LEMMA 1. Let

$$g(u_1, ..., u_5; v_1, ..., v_5) = u_1(-v_2 + v_3 - v_4 + v_5) + u_2(-v_3 + v_4 - v_5 + v_1) + u_3(-v_4 + v_5 - v_1 + v_2) + u_4(-v_5 + v_1 - v_2 + v_3) + u_5(-v_1 + v_2 - v_3 + v_4)$$

be a polynomial in the commuting variables u_i , v_i . Then, for any n, if we set

$$x_1 = \bar{x}_1 = \rho_1 e_{11} + \dots + \rho_n e_{nn}$$

 $y_h = \bar{y}_h = e_{i_h j_h}$

for h = 2, ..., 5, then

$$\begin{split} s_{6}(\overline{x}_{1}^{d_{1}}, \, \overline{x}_{1}^{d_{2}}, \, \overline{y}_{2}, \, \dots, \, \overline{y}_{5}) \\ &= \sum_{sgn(\sigma)} g(\rho_{\sigma(i_{2})}^{d_{1}}, \, \dots, \, \rho_{\sigma(i_{5})}^{d_{1}}, \, \rho_{\sigma(j_{5})}^{d_{1}}; \, \rho_{\sigma(i_{2})}^{d_{2}}, \, \dots, \, \rho_{\sigma(i_{5})}^{d_{2}}, \, \rho_{\sigma(j_{5})}^{d_{2}}) \\ & \cdot e_{\sigma(i_{2})\sigma(j_{2})} \cdots e_{\sigma(i_{5})\sigma(j_{5})}. \end{split}$$

Proof. $s_6(x_1^{d_1}, x_1^{d_2}, y_2, y_3, y_4, y_5) = \sum_{\sigma \in S_6} (-1)^{\sigma} z_{\sigma(1)} z_{\sigma(2)} \cdots z_{\sigma(6)}$, where $z_1 = x_1^{d_1}, z_2 = x_1^{d_2}, z_3 = y_2, z_4 = y_3, z_5 = y_4, z_6 = y_5$. Now, the values of the coefficients of this polynomial depend on the position of $x_1^{d_1}$ and $x_1^{d_2}$ in the single monomials $y_{\sigma(2)} \cdots x_1^{d_1} \cdots x_1^{d_2} \cdots y_{\sigma(5)}$. If we let ε to be the sign of

the permutation of S_6 corresponding to $y_2 \cdots x_1^{d_1} \cdots x_1^{d_2} \cdots y_5$, we can express s_6 as

$$s_6(x_1^{d_1}, x_1^{d_2}, y_2, ..., y_5) = \sum_{\epsilon} \operatorname{sgn}(\sigma) \{ \epsilon(y_{\sigma(2)} \cdots x_1^{d_1} \cdots x_1^{d_2} \cdots y_{\sigma(5)}) - \epsilon(y_{\sigma(2)} \cdots x_1^{d_2} \cdots x_1^{d_1} \cdots y_{\sigma(5)}) \},$$

where σ runs over all permutations of S_4 acting on $\{2, ..., 5\}$ and where only positions of $x_1^{d_1}$ and $x_2^{d_2}$ which are not adjacent give a contribution. Now, each summand inside the braces corresponds (in the correspondence stated in point (α) of Section 1) to the polynomial in the commutative variables u_i , v_i , i = 1, ..., 5,

$$g(u_1, u_2, u_3, u_4, u_5; v_1, v_2, v_3, v_4, v_5) = u_1(-v_2 + v_3 - v_4 + v_5) + u_2(-v_3 + v_4 - v_5 + v_1) + u_3(-v_4 + v_5 - v_1 + v_2) + u_4(-v_5 + v_1 - v_2 + v_3) + u_5(-v_1 + v_2 - v_3 + v_4),$$

where $u_i = t_i^{d_1}$, $v_i = t_i^{d_2}$, and the coefficient of $u_i v_j$ of g is exactly the coefficient of the monomial $y_{\sigma(2)} \cdots x_1^{d_1} \cdots x_1^{d_2} \cdots y_{\sigma(5)}$, where $x_1^{d_1}$ and $x_1^{d_2}$ are respectively in the ith and in the jth position. If we now replace x_1 by the diagonal matrix $\bar{x}_1 = \rho_1 e_{11} + \ldots + \rho_n e_{nn}$, and the y_h 's by the matrix units $e_{i_h j_h} = \bar{y}_h$, then the lemma follows from (β) of Section 1.

If we now set in $s_6(x_1^{d_1}, x_1^{d_2}, y_2, ..., y_5)$, $y_k = x_1^{b_k} x_k x_1^{c_k}$, for k = 2, ..., 5, then, by (β) of Section 1, the following lemma is a simple consequence of Lemma 1.

LEMMA 2. Let $g(u_1, ..., u_5; v_1, ..., v_5)$ be the polynomial in commuting variables of Lemma 1. Then if we set $x_1 = \rho_1 e_{11} + ... + \rho_n e_{nn}$ and $x_h = e_{i_h j_h}$ for h = 2, ..., 5, then

$$\begin{split} x_{1}^{d_{0}}s_{6}(x_{1}^{d_{1}}, x_{1}^{d_{2}}, x_{1}^{b_{2}}x_{2}x_{1}^{c_{2}}, \dots, x_{1}^{b_{s}}x_{5}x_{1}^{c_{s}}) \\ &= \sum_{sgn}(\sigma)g(\rho_{\sigma(i_{2})}^{d_{1}}, \dots, \rho_{\sigma(i_{s})}^{d_{1}}, \rho_{\sigma(i_{s})}^{d_{1}}, \rho_{\sigma(i_{2})}^{d_{2}}, \dots, \rho_{\sigma(i_{s})}^{d_{2}}, \rho_{\sigma(i_{s})}^{d_{2}}) \\ &\times \rho_{\sigma(i_{2})}^{d_{0}}\rho_{\sigma(i_{2})}^{b_{\sigma(i_{2})}}\rho_{\sigma(i_{3})}^{c_{\sigma(i_{2})}+b_{\sigma(i_{3})}}\rho_{\sigma(i_{4})}^{c_{\sigma(i_{1})}+b_{\sigma(i_{2})}}\rho_{\sigma(i_{5})}^{c_{\sigma(i_{2})}+b_{\sigma(i_{5})}}\rho_{\sigma(i_{5})}^{c_{\sigma(i_{5})}+b_{\sigma(i_{5})}} \\ &\quad \cdot e_{\sigma(i_{2})\sigma(j_{2})}\cdots e_{\sigma(i_{5})\sigma(j_{5})}, \end{split}$$

where $\sigma \in S_4$ acts on $\{2, ..., 5\}$.

In the notation of the previous lemmas, the following lemma then holds.

LEMMA 3. $w(x_1, ..., x_5) = \sum \operatorname{sgn}(\sigma)\tilde{\omega}(\rho_{\sigma(i_2)}, ..., \rho_{\sigma(i_5)}, \rho_{\sigma(j_5)}) \cdot e_{\sigma(i_2)\sigma(j_2)} \cdot ...$ $e_{\sigma(i_5)\sigma(j_5)}$, where

$$\tilde{\omega}(t_1, ..., t_5) = g_4(t_1, ..., t_5) + g_2(t_1, ..., t_5) \cdot e_2(t_1, ..., t_5),$$

where $g_4 = g(t_1^4, ..., t_5^4; t_1, ..., t_5)$, $g_2 = g(t_1^2, ..., t_5^2; t_1, ..., t_5)$, and $e_2(t_1, ..., t_5)$ is the elementary symmetric function of second degree in five variables.

We are now ready to prove the main result of this section.

Proof of Theorem 1. By the Amitsur-Levitzki theorem, $s_6(x_1, ..., x_6)$ is a polynomial identity for M_3 . In order to prove that $w(x_1, x_2, ..., x_5)$ is an essentially weak polynomial identity for $M_4(K)$, it is sufficient, by (γ) of Section 1, to prove that the polynomial $\tilde{\omega}(t_1, ..., t_i, t_{i+1}, ..., t_j, t_i, t_{j+1}, ..., t_4)$ is divisible by $t_1 + t_2 + t_3 + t_4$ for all $1 \le i < j \le 4$, and that $w(x_1, ..., x_5)$ is not identically zero on M_4 . Since $\tilde{\omega}$ is invariant with respect to cyclic permutations of the variables, it is sufficient to prove that $t_1 + t_2 + t_3 + t_4$ divides $\tilde{\omega}(t_1, t_2, t_3, t_4, t_1)$ and $\tilde{\omega}(t_1, t_2, t_1, t_3, t_4)$ and that $\tilde{\omega}(t_1, t_2, t_3, t_4, t_1)$ is different from zero as a function of t_1, t_2, t_3, t_4 . We show that whenever two arguments are the same, $\tilde{\omega}$ is divisible by $\sum_{i=1}^4 t_i$.

Case I. Computation of $\tilde{\omega}(t_1, t_2, t_3, t_4, t_1)$. We compute separately $g_4 = g(t_1^4, \dots, t_4^4, t_1^4; t_1, \dots, t_4, t_1)$ and $g_2 \cdot e_2(t_1, \dots, t_4, t_1)$, where $g_2 = g(t_1^2, \dots, t_4^2, t_1^2; t_1, \dots, t_4, t_1)$. In what follows e_2 , h_i (i = 1, 2, 3) are respectively the elementary symmetric function and the complete symmetric functions in the variables t_3 and t_4 .

Now, $g(u_1, u_2, u_3, u_4, u_1; v_1, ..., v_4, v_1) = u_2(-v_3 + v_4) + u_3(-v_4 + v_2) + u_4(-v_2 + v_3)$. Hence,

$$g_4 = t_2^4(-t_3 + t_4) + t_3^4(-t_4 + t_2) + t_4^4(-t_2 + t_3)$$

$$= (t_4 - t_3)(t_2 - t_3)(t_2 - t_4)(t_2^2 + t_2h_1 + h_2),$$

$$g_2 = t_2^2(-t_3 + t_4) + t_3^2(-t_4 + t_2) + t_4^2(-t_2 + t_3)$$

$$= (t_4 - t_3)(t_2 - t_3)(t_2 - t_4).$$

From this we obtain by easy calculations

$$\tilde{\omega}(t_1, t_2, t_3, t_4, t_1) = g_4 + g_2 \cdot e_2(t_1, t_2, t_3, t_4, t_1) \\
= (t_4 - t_3)(t_2 - t_3)(t_2 - t_4)(t_1 + t_2 + t_3 + t_4)^2.$$

This formula assures us at the same time that $\sum_{i=1}^{4} t_i$ divides $\tilde{\omega}(t_1, ..., t_4, t_1)$ and that $\tilde{\omega}(t_1, ..., t_4, t_1)$ is not identically zero.

Case II. Computation of $\tilde{\omega}(t_1, t_2, t_1, t_3, t_4)$. Again we compute separately $g_4 = g(t_1^4, t_2^4, t_1^4, t_3^4, t_4^4; t_1, t_2, t_1, t_3, t_4)$ and $g_2 = g(t_1^2, t_2^2, t_1^2, t_3^2, t_4^2; t_1, t_2, t_1, t_3, t_4)$:

$$g(u_1, u_2, u_1, u_3, u_4; v_1, v_2, v_1, v_3, v_4)$$

$$= 2u_1(v_4 - v_3) + u_2(v_3 - v_4) + u_3(2v_1 - v_2 - v_4)$$

$$+ u_4(-2v_1 + v_2 + v_3)$$

$$= (2u_1 - u_2)(v_4 - v_3) + u_3(2v_1 - v_2 - v_4)$$

$$+ u_4(-2v_1 + v_2 + v_3)$$

$$g_{4} = (2t_{1}^{4} - t_{2}^{4})(t_{4} - t_{3}) + t_{3}^{4}(2t_{1} - t_{2} - t_{4}) + t_{4}^{4}(-2t_{1} + t_{2} + t_{3})$$

$$= (t_{4} - t_{3})(2t_{1}^{4} - 2t_{1}h_{3} - t_{2}^{4} + t_{2}h_{3} + e_{2}h_{2})$$

$$= (t_{4} - t_{3})[2(t_{1} - t_{3})(t_{1} - t_{4})(t_{1}^{2} + t_{1}h_{1} + h_{2})$$

$$- (t_{2} - t_{3})(t_{2} - t_{4})(t_{2}^{2} + t_{2}h_{1} + h_{2})],$$

$$g_{2} = (2t_{1}^{2} - t_{2}^{2})(t_{4} - t_{3}) + t_{3}^{2}(2t_{1} - t_{2} - t_{4}) + t_{4}^{2}(-2t_{1} + t_{2} + t_{3})$$

$$= (t_{4} - t_{3})[2(t_{1}^{2} - t_{1}h_{1} + e_{2}) - (t_{2}^{2} - t_{2}h_{1} + e_{2})],$$

$$\tilde{\omega}(t_{1}, t_{2}, t_{1}, t_{3}, t_{4}) = g_{4} + g_{2} \cdot e_{2}(t_{1}, t_{2}, t_{1}, t_{3}, t_{4})$$

$$= (t_{4} - t_{3})\{2(t_{1} - t_{3})(t_{1} - t_{4})(t_{1}^{2} + t_{1}h_{1} + h_{2})$$

$$- (t_{2} - t_{3})(t_{2} - t_{4})(t_{2}^{2} + t_{2}h_{1} + h_{2})$$

$$+ [(2(t_{1} - t_{3})(t_{1} - t_{4})$$

$$- (t_{2} - t_{3})(t_{2} - t_{4})][t_{1}^{2} + 2t_{1}(t_{2} + t_{3} + t_{4})$$

$$+ t_{2}t_{3} + t_{2}t_{4} + t_{3}t_{4}]\}$$

$$= (t_{4} - t_{3})(t_{1} + t_{2} + t_{3} + t_{4})[2(t_{1}^{2} - t_{1}h_{1} + e_{2})(2t_{1} + h_{1})$$

$$- (t_{2}^{2} - t_{2}h_{1} + e_{2})(t_{1} + t_{2} + h_{1})].$$

Also in this case it is shown that $t_1 + t_2 + t_3 + t_4$ divides $\tilde{\omega}(t_1, t_2, t_1, t_3, t_4)$. The proof of the theorem is completed.

Remark. By (y) from Section 1, in the proof of Theorem 1 we have established not only that $w(x_1, ..., x_5)$ is a weak polynomial identity for M_4 but also that $w(x_1, ..., x_5)$ vanishes when replacing x_1 by an element of sl_4 and $x_2, ..., x_5$ by elements of M_4 .

3. From Weak Polynomial Identities to Central Polynomials

Once we have at our disposal an essentially weak polynomial identity, the way to obtain a central polynomial is indicated by Razmyslov in [7], and we follow his work to show the procedure. Let $f(x_1, x_2, ..., x_n)$ be a multilinear polynomial identity. Then we can write f as

$$f(x_1, x_2, ..., x_n) = \sum_{n} \alpha_{pq} p(x_2, ..., x_n) x_1 q(x_2, ..., x_n), \qquad (2)$$

where p and q are monomials not depending on x_1 .

DEFINITION. The polynomial

$$f^*(x_1, x_2, ..., x_n) = \sum_{n} \alpha_{nq} q(x_2, ..., x_n) x_1 p(x_2, ..., x_n)$$

is called the Razmyslov's transform of f.

The following theorem holds.

THEOREM 2 (Razmyslov). Let $f(x_1, x_2, ..., x_n)$ be multilinear. Then

- (i) If f is a polynomial identity for M_k then also f^* is a polynomial identity for M_k .
- (ii) If f is a weak identity of M_k , then f^* is either a weak identity of M_k or central on sl_k .
- (iii) If f is an essentially weak identity of M_k , then there is a central polynomial of M_k .

The way to obtain the central polynomial guaranteed by the theorem is to start with a multilinear essentially weak polynomial identity $f(x_1, x_2, ..., x_n)$ for M_k such that $f([x_1, x_{n+1}], x_2, ..., x_n)$ is an ordinary polynomial identity for M_k . Then, if one writes f in the form (2), the polynomial $f^* = \sum \alpha_{nn} q(x_2, ..., x_n) x_1 p(x_2, ..., x_n)$ is a central polynomial for M_k .

Let $w(x_1, ..., x_5)$ be the essentially weak polynomial identity for 4×4 matrices that we have found in Section 2. By a complete linearization of $w(x_1, ..., x_5)$ we mean the multilinear component $w'(x_1, ..., x_9)$ of the polynomial $w(x_1 + x_6 + ... + x_9, x_2, ..., x_5)$.

THEOREM 3. Let $w'(x_1, x_2, ..., x_9)$ be the complete linearization of $w(x_1, ..., x_5)$. If we set

$$f(x_1, x_2, ..., x_{13}) = w'(x_1, x_2, x_3, x_4, x_5, [x_6, x_{10}], [x_7, x_{11}], [x_8, x_{12}], [x_9, x_{13}])$$

and write it in the form

$$\sum \alpha_{pq} p(x_2, ..., x_{13}) x_1 q(x_2, ..., x_{13})$$

then the Razmyslov's transform $f^*(x_1, ..., x_{13})$ of f is a central polynomial for M_4 .

Proof. It is sufficient to show that $f([x_1, x_{14}], ..., x_{13})$ is an ordinary polynomial identity for M_4 and $f(x_1, x_2, ..., x_{13})$ is not. By the remark of Section 2, $w(x_1, ..., x_5)$ vanishes for $x_1 = \bar{x}_1 \in sl_4$, $x_h = \bar{x}_h \in M_4$, h = 2, ..., 5. Hence its linearization $w'(x_1, ..., x_9)$ vanishes for $x_h = \bar{x}_h \in M_4$, h = 2, ..., 5, $x_i = \bar{x}_i \in sl_4$, i = 1, 6, ..., 9. Since the commutators $[\bar{x}_p, \bar{x}_q]$ belong to sl_4 for any \bar{x}_p , $\bar{x}_q \in M_4$, we obtain that $f([x_1, x_{14}], x_2, ..., x_{13})$ is a polynomial identity for M_4 .

Any diagonal matrix $\bar{x} = \sum_{i=1}^{4} \rho_i e_{ii} \in sl_4$ can be written as a commutator of two matrices, e.g.,

$$\bar{x} = [\rho_1 e_{12} + (\rho_1 + \rho_2) e_{23} + (\rho_1 + \rho_2 + \rho_3) e_{34}, e_{14} + e_{21} + e_{32} + e_{43}].$$

Hence we shall show that $f(x_1, ..., x_{13})$ is not a polynomial identity for M_4 if we establish that

$$v(x_1, ..., x_5) = w'(1, x_2, ..., x_5, \underbrace{x_1, ..., x_1}_{4})$$

is not a weak polynomial identity for M_4 . Clearly, up to a multiplicative constant (equal to 3!), $v(x_1, ..., x_5)$ is equal to the homogeneous component of $w(1 + x_1, x_2, ..., x_5)$ of degree 4 in x_1 . We shall calculate v for $x_1 = \bar{x}_1 = \sum_{i=1}^4 \rho_i e_{ii}$, $x_2 = \bar{x}_2 = e_{12}$, $x_3 = \bar{x}_3 = e_{21}$, $x_4 = \bar{x}_4 = e_{13}$, $x_5 = \bar{x}_5 = e_{34}$. As in the proof of Theorem 1 it is easy to see that $v(\bar{x}_1, ..., \bar{x}_5)$ is equal to $\bar{\nu}(\rho_1, \rho_2, \rho_3, \rho_4)e_{14}$, where $\bar{\nu}(t_1, t_2, t_3, t_4)$ is the homogeneous component of degree 4 of

$$\tilde{\omega}(1+t_1, 1+t_2, 1+t_1, 1+t_3, 1+t_4) = \sum_{i=1}^{4} \frac{\partial \tilde{\omega}(t_1, t_2, t_1, t_3, t_4)}{\partial t_i}$$

Using the expression of $\tilde{\omega}(t_1, t_2, t_1, t_3, t_4)$ from Case II of the proof of Theorem 1 we obtain

$$\bar{\nu}(t_1, ..., t_4) = (t_1 + t_2 + t_3 + t_4)u(t_1, ..., t_4) + (t_4 - t_3)[2(t_1^2 - t_1h_1 + e_2)(2t_1 + h_1) - (t_2^2 - t_2h_1 + e_2)(t_1 + t_2 + h_1)]$$

for some polynomial $u(t_1, ..., t_4)$. Hence $t_1 + t_2 + t_3 + t_4$ does not divide $\bar{\nu}(t_1, ..., t_4)$ and $v(\bar{x}_1, ..., \bar{x}_5) \neq 0$ for suitably choosen ρ_1, ρ_2, ρ_3 and $\rho_4 = -(\rho_1 + \rho_2 + \rho_3)$. This completes the proof of the theorem.

REFERENCES

- 1. V. Drensky and A. K. Kasparian. A new central polynomial for the 3 × 3 matrices, Comm. Algebra 13 (1985), 745–752.
- 2. V. Drensky and T. G. Rashkova, Weak polynomial identities for the matrix algebras, preprint.
- 3. E. FORMANEK, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132.
- 4. E. FORMANEK, The polynomial identities of matrices, Contemp. Math. 13 (1982), 41-79.
- E. FORMANEK, "The Polynomial Identities and Invariants of n × n Matrices," published for the Conference Board of Math. Sci., Washington, DC, CBMS Regional Conference Series in Math., Vol. 78, Amer. Math. Soc., Providence, RI, (1991).
- P. Halpin, Central and weak identities for matrices, Comm. Algebra 11 (1983), 2237– 2248.
- 7. Ju. P. RAZMYSLOV, On a problem of Kaplansky, Izv. Akad. Nauk SSSR Ser Mat. 37 (1973), 483-501 [Russian]; Math. USSR-Izv. 7 (1973), 479-496.
- 8. L. H. ROWEN, "Polynomial Identities in Ring Theory," Academic Press, New York, 1979.