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We introduce a notion of R-quadratic maps between modules over
a commutative ring R which generalizes several classical notions
arising in linear algebra and group theory. On a given module
M such maps are represented by R-linear maps on a certain
module P 2

R(M). The structure of this module is described in term
of the symmetric tensor square Sym2

R (M), the degree 2 component
Γ 2

R (M) of the divided power algebra over M , and the ideal I2 of
R generated by the elements r2 − r, r ∈ R . The latter is shown
to represent quadratic derivations on R which arise in the theory
of modules over square rings. This allows to extend the classical
notion of nilpotent R-group of class 2 with coefficients in a 2-
binomial ring R to any ring R . We provide a functorial presentation
of I2 and several exact sequences embedding the modules P 2

R(M)

and Γ 2
R (M).

© 2009 Elsevier Inc. All rights reserved.

In this paper, we introduce and study quadratic maps between modules M and N over a commu-
tative ring R with 1. Quadratic forms are the most classical example of such maps; more generally,
a notion of homogenous polynomial maps from M to N has been defined in such a way that they are
represented by R-linear maps from Γ n

R (M) to N , where Γ n
R (M) is the homogenous term of degree

n of the divided power algebra over R [14]. Non-homogenous polynomial maps are then defined to
be sums of homogenous ones. This viewpoint is the basis of the recent theory of strict polynomial
functors with its numerous spectacular applications, notably allowing to compute the generic coho-
mology of general linear groups over finite fields [6]. So this definition of polynomial maps is very
satisfactory when R is a field; for general rings R , however, it is too restrictive: for R = M = N = Z,
the map assigning

(n
2

)
to n should certainly be considered as being quadratic, but does not split as

a sum of a linear and a homogenous quadratic map. This example actually comes from group theory
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where a notion of polynomial maps from groups to abelian groups was introduced by Passi [15] in the
context of dimension subgroups, but later on turned out to admit many other applications in nilpo-
tent group theory, too [8,10,11]. A more general notion of quadratic maps between arbitrary groups
[12] arises in the new field of “quadratic algebra” which furnishes an appropriate algebraic frame-
work for dealing with various quadratic phenomena arising in homotopy theory, such as metastable
homotopy, secondary homotopy groups and operations, 3-types, quadratic homology etc. This subject
is developed in work of Baues, Jibladze, Pirashvili, Muro and the second author, see e.g. [1–5].

This paper is meant to provide a bridge between the classical realm of quadratic maps and the
recent domain of quadratic algebra, with the final aim to apply methods of the latter to problems of
the former. We start out by giving a definition of quadratic maps from M to N generalizing both the
one via divided powers and the one due to Passi (for R = Z or, more generally, for 2-binomial rings
R [18]). These quadratic maps are represented by R-linear maps from a certain module P 2

R(M) to N;
the goal of this paper is to express P 2

R(M) in terms of the simpler modules Sym2
R(M), Λ2

R(M) (the
symmetric resp. exterior tensor square of M), and Γ 2

R (M). For the latter we provide in Section 2 a
neat exact sequence in terms of the Frobenius twist. Next we must determine the structure of P 2

R(R);
its study gives rise to the notion of quadratic derivations on R which actually play an important role
in commutative quadratic algebra. It turns out that they are represented by R-linear maps on the
polynomial ideal I2 of R , generated by the elements r2 − r, r ∈ R . This result provides a functorial
presentation of I2, and also leads to an interesting group theoretic application: we use quadratic
algebra to extend the classical notion of an R-group [18] (nilpotent of class 2, up to now) over 2-
binomial coefficient rings R to arbitrary rings R , thus providing a notion of 2-step nilpotent, whence
non-commutative module over R . Scalar extension for square rings now gives rise to a localization of
nilpotent groups of class 2 with respect to any ring of coefficients; this will be presented in [7]. In
Sections 4 and 6 we provide various natural exact sequences for P 2

R(M), in terms of the simpler terms
mentioned above; these sequences describe the kernels and cokernels of the canonical structure maps
of P 2

R(M). Finally we provide a presentation of the ideal I2 in terms of a given presentation of the
ring R .

1. R-quadratic maps

Let M and N be R-modules and f : M → N be a map. The cross-effect of f is the map
d f : M × M → N such that d f (x, y) := f (x + y) − f (x) − f (y). The cross-actions are the maps
fr : M → N such that fr(x) := f (rx) − r f (x) for r ∈ R , and the second cross-actions are the maps f[r]
such that f[r](x) := f (rx) − r2 f (x).

Definition 1.1. For R-modules M and N a map f : M → N is an R-quadratic map if it satisfies the
following two conditions:

1. the cross-effect of f is R-bilinear,
2. the second cross-actions of f are R-linear.

An R-quadratic map is homogeneous if its second cross-actions are 0.

Examples of homogeneous R-quadratic maps are quadratic forms or R-bilinear maps M = M1 ×
M2 → N .

Clearly, any R-linear map is R-quadratic. Moreover, the sum of an R-linear map and a homo-
geneous R-quadratic map is R-quadratic. In particular, any pointed polynomial map of degree � 2
between free R-modules is R-quadratic. More precisely, let f : Rm → Rn be given by f (x1, . . . , xm) =
(F1(x1, . . . , xm), . . . , Fn(x1, . . . , xm)) where F1, . . . , Fn ∈ R[X1, . . . , Xm] are polynomials of degree � 2
with trivial constant term. Then f is R-quadratic.

However, there are R-quadratic maps which do not decompose as a sum of an R-linear map and
a homogeneous R-quadratic map; for example, for R = Z, the map Z → Z, n �→ (n

2

)
. A sufficient

criterion for the existence of such a decomposition is given by the following:
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Proposition 1.2. Suppose that R contains an element r such that r and r − 1 are invertible. Then any R-
quadratic map f : M → N decomposes uniquely as a sum f = f1 + f2 of an R-linear map f1 and a homoge-
nous R-quadratic map f2 .

This criterion is improved in Example 4.5(2) below.

Proof. We can take f1(x) = − 1
r(r−1)

f[r](x) and f2(x) = 1
r(r−1)

fr(x) which is homogenous R-quadratic
by Remark 1.3 below. Uniqueness of f1 and f2 follows from the fact that under the hypothesis any
map which is R-linear and homogenous R-quadratic is trivial; in fact, r2 f (x) = f (rx) = r f (x) implies
f (x) = 0 as r2 − r is invertible. �

Note that the proposition applies whenever R is a field different from F2. If R = F2 any R-
quadratic map is homogenous.

Finally, we discuss the case R = Z. Passi [15] defines a map f : G → A from a group G to an
abelian group A to be (normalized) polynomial of degree � n if its linear extension f̂ : Z[G] → A to
the group ring Z[G] of G annihilates 1 + In+1(G); here In(G) is the nth power of the augmentation
ideal I(G) of Z[G]. An inductive characterization of this property [9] shows that f is polynomial of
degree � 2 iff its cross-effect d f is homomorphic in each variable. If G is abelian, this is equivalent to
f being Z-quadratic since then f (nx) = nf (x) + (n

2

)
d f (x, x) by induction, whence fn(x) = (n

2

)
d f (x, x)

which is homogenous Z-quadratic; this suffices by Remark 1.3 below.
Let us exhibit some elementary properties of R-quadratic maps. First note that if f is R-quadratic,

f (0) = 0 as d f (0,0) = 0. Next for x, y, z in M and r, s in R the first condition in 1.1 can be written as

f (x + y + z) − f (x + y) − f (y + z) − f (x + z) + f (x) + f (y) + f (z) = 0, (1.1)

f (rx + sy) − f (rx) − f (sy) − rsf (x + y) + rsf (x) + rsf (y) = 0. (1.2)

Additivity of f[r] then follows from (1.2) with s = r, and its R-linearity can be written as:

f (rsx) − r2 f (sx) − sf (rx) + r2sf (x) = 0. (1.3)

Remark 1.3. Relation (1.3) can be written as f s(rx) = r2 f s(x), that is f s is a homogeneous R-quadratic
map. Thus we see that f is R-quadratic iff its cross-effect is R-bilinear and its cross-actions are
homogeneous R-quadratic.

Clearly the set R-Quad(M, N) (resp. R-HQuad(M, N)) of the R-quadratic maps (resp. homogeneous
R-quadratic maps) from M to N is an R-module, and pre- or postcomposition of an R-quadratic map
(resp. homogeneous R-quadratic map) by an R-linear map is an R-quadratic (resp. homogeneous R-
quadratic) map.

Throughout this paper the tensor product of R-modules M and N is denoted by M ⊗ N instead of
M ⊗R N .

Lemma 1.4. For any R-modules M, M ′, N one has a natural isomorphism

R-Quad(M ⊕ M ′, N) ∼= R-Quad(M, N) ⊕ R-Quad(M ′, N) ⊕ R-Hom(M ⊗ M ′, N).

Proof. Assume f : M ⊕ M ′ → N is an R-quadratic map. Then the restriction of f to M and M ′ yields
the R-quadratic maps f1 : M → N and f2 : M ′ → N . One defines the homomorphism h : M ⊗ M ′ → N
by h(x ⊗ x′) = d f ((x,0), (0, x′)). Knowledge of these maps allows to uniquely reconstruct the map f ,
because

f (x, x′) = f
(
(x,0) + (0, x′)

) = f1(x) + f2(x′) + h(x ⊗ x′). �
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Universal R-quadratic map
Let P 2

R(M) be the R-module generated by the elements p(x), x ∈ M satisfying the relations

p(x + y + z) − p(x + y) − p(y + z) − p(x + z) + p(x) + p(y) + p(z) = 0, (1.4)

p(rx + sy) − p(rx) − p(sy) − rsp(x + y) + rsp(x) + rsp(y) = 0, (1.5)

p(rsx) − r2 p(sx) − sp(rx) + r2sp(x) = 0, (1.6)

for x, y, z ∈ M and r, s ∈ R . Assigning P 2
R(M) to M defines an endofunctor of the category R-Mod of

R-modules in the obvious way. Clearly,

Proposition 1.5. The map p : M → P 2
R(M) is universal R-quadratic, that is for any R-module N precomposi-

tion by p induces a binatural isomorphism

R-Hom
(

P 2
R(M), N

) → R-Quad(M, N).

In particular, the identity map of M induces a natural R-linear surjection

ε : P 2
R(M) � M (1.7)

which for M = R may be regarded as kind of an augmentation, cf. Section 3; its kernel is determined
in Section 4.

Corollary 1.6. Let M and M ′ be R-modules, then

P 2
R(M ⊕ M ′) 
 P 2

R(M) ⊕ P 2
R(M ′) ⊕ (M ⊗ M ′).

This is an immediate consequence of Lemma 1.4. It means that the functor P 2
R is quadratic, its

cross-effect being the tensor product.

Proposition 1.7. The functor P 2
R is compatible with filtered colimits, and for any right-exact sequence of R-

modules M1
f−→ M

g−→ M2 → 0, the sequence

P 2
R(M1) ⊕ (M1 ⊗ M)

(P 2
R ( f ),w)

P 2
R(M)

P 2
R (g)

P 2
R(M2) 0 (1.8)

is also exact, where w(m1 ⊗ m) = dp( f (m1),m) for (m1,m) ∈ M1 × M.

Proof. Suppose M = lim−→i
Mi . By Proposition 1.5 it suffices to show that for any R-module N , the map

R-Quad(M, N) → lim←−i
R-Quad(Mi, N) given by restriction from M to the Mi ’s is bijective. Injectivity

is clear. Now given a family of compatible R-quadratic maps f i : Mi → N we have to prove that they
can be glued together to an R-quadratic map from M to N , but this is routine since R-quadratic maps
are defined by algebraic relations.

Now consider the exact sequence M1
f−→ M

g−→ M2 → 0. It is easy to prove that the sequence

0 → R-Quad(M2, N)
g∗

R-Quad(M, N)

( f ∗,( f ⊗Id)∗d−)

R-Quad(M1, N) × R-Hom(M1 ⊗ M, N)

is exact for any N . Thus by Proposition 1.5 sequence (1.8) is also exact. �
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In order to determine the structure of P 2
R(M) we must first study the modules Γ 2

R (M) and P 2
R(R);

this is the contents of the next two sections.

2. Homogenous R-quadratic maps

The notion of homogenous R-polynomial map of degree n is classical; by definition such a map
admits a universal factorization through the homogenous term Γ n

R (M) of the divided power algebra
ΓR(M) on M , see [14]. This plays a crucial role in the definition of strict polynomial functors [6]. We
here provide an exact sequence for Γ 2

R (M) which degenerates to a well-known sequence for R = Z

but seems not to appear in the literature for general rings R .
Recall that Γ 2

R (M) is defined to be the degree 2 component of the divided power algebra ΓR(M).
As an R-module it is generated by elements γ2(x) and symbols γ1(x)γ1(y) which are R-bilinear in
x, y ∈ M , subject to the relations γ2(x + y) = γ2(x) + γ2(y) + γ1(x)γ1(y) and γ2(rx) = r2γ2(x).

By definition of Γ 2
R (M) we have an R-linear homomorphism

w : Sym2
R(M) → Γ 2

R (M), w(xy) = γ1(x)γ1(y) = γ2(x + y) − γ2(x) − γ2(y), (2.1)

x, y ∈ M . In order to exhibit the kernel and cokernel of w we need to recall the notion of Frobenius
twist.

Definition 2.1. Suppose that 2M = 0. Then the right Frobenius twist M[1] of M is defined to be the
R-bimodule whose left R-action is the given one on M but the right R-action is given by xr = r2x for
r ∈ R , x ∈ M .

In particular, the 2-torsion subgroup 2M = {x ∈ M|2x = 0} and M/2M admit a right Frobenius
twist.

By construction of Γ 2
R (M) it is clear that there is an isomorphism Coker w ∼= (R ⊗Z M)/U sending

γ2(x) to 1 ⊗ x, x ∈ M , where U is the submodule of the extended R-module R ⊗Z M generated by
the elements 1 ⊗ rx − r2 ⊗ x, (r, x) ∈ R × M . As U contains 2r ⊗ x = − (r ⊗ 2x − 4r ⊗ x) we see
that

(R ⊗Z M)/U ∼= (R/2R ⊗Z M)/(q ⊗ 1)U

where q : R � R/2R is the canonical projection. But U is the Z-submodule of R ⊗Z M generated by
the elements s ⊗ rx − sr2 ⊗ x, s, r ∈ R , x ∈ M , so

(R/2R ⊗Z M)/(q ⊗ 1)U ∼= (R/2R)[1] ⊗ M.

Thus there is a canonical isomorphism

Coker w ∼= (R/2R)[1] ⊗ M

sending γ2(x) to 1̄ ⊗ x, x ∈ M .
On the other hand, note that for r ∈ 2 R and x ∈ M one has w(rx2) = 0 as w(x2) = 2γ2(x). This

means that the homomorphism of R-modules

d : (2 R)[1] ⊗ M → Sym2
R(M), d(r ⊗ x) = rx2 (2.2)

has its image in Ker w . Summarizing the above observations we obtain an exact sequence of R-
modules
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Sym2
R(M)/ Im d

w̄−→ Γ 2
R (M)

ρ−→ (R/2R)[1] ⊗ M → 0 (2.3)

where ρ(γ2(x)) = 1̄ ⊗ x.

Lemma 2.2. Sequence (2.3) is short exact if M is free.

This is well known, cf. [17] or [13].
Thus taking Dold–Puppe derived functors Dn T (−) = Ln T (−,0) for endofunctors T of R-Mod we

get the following terminal of a long exact homotopy sequence

D1 Coker d(M) → D1Γ
2
R (M) → D1

(
(R/2R)[1] ⊗ −)

(M)

→ D0 Coker d(M) → D0Γ
2
R (M) → D0

(
(R/2R)[1] ⊗ −)

(M) → 0.

Let M1
u1−→ M0

u0−→ M → 0 be a partial free resolution of M . Denote by (1,1) respectively
ρi : M0 ⊕ M0 → M0 the folding map, sending (x, y) to x + y, respectively the retraction to
the ith summand; and let ∇ be the restriction of T ((1,1)) to the submodule T (M0|M1) =
Ker (T (ρ1), T (ρ2))

t : T (M0 ⊕ M0) → T (M0) ⊕ T (M0). Then

D0T (M) = Coker
(
T (M1) ⊕ T (M0|M1)

ũ1−→ T (M0)
)

where ũ1 = (T (u1),∇T (1|u1)). Thus by right exactness of the tensor product we have D0T ∼= T for
T = (2 R)[1] ⊗ − and T = Sym2

R , hence also for T = Coker d by the snake lemma. Moreover, one has
D1((R/2R)[1] ⊗ −) = TorR

1 ((R/2R)[1],−) since the functor T = (R/2R)[1] ⊗ − is additive. We thus get
the following:

Theorem 2.3. For any R-module M there is a natural exact sequence

TorR
1

(
(R/2R)[1], M

) τ−→ Sym2
R(M)/ Im d

w̄−→ Γ 2
R (M)

ρ−→ (R/2R)[1] ⊗ M → 0

where the connecting homomorphism τ is explicitely given as follows. Let (ei)i∈I and (e j) j∈ J be basis of

M0 and M1 , resp., and let u1 be represented by the matrix (aij)(i, j)∈I× J , ai j ∈ R. Let x = ∑
j r̄[1]

j ⊗ e j ∈
Ker (1 ⊗ u1), r j ∈ R. Then for all i ∈ I there exists si ∈ R such that

∑
j r ja2

i j = 2si , and we have

τ [x] =
∑

i

siu0(ei)
2 +

∑
j

∑
i1<i2

r jai1 jai2 ju0(ei1)u0(ei2) + Im d.

The explicit formula for τ is obtained by going through the snake lemma type diagram defining τ .
It is known that w is injective for R = Z; but τ is non-trivial in general, even for principal rings:

Examples 2.4. Let R = Z[√2] and M = R/
√

2R ∼= Z/2Z. Then Im d = 0 as 2 R = 0, Sym2
R(M) ∼= M and

w = 0 since w(1̄) = 2γ2(1̄) = γ2(
√

21̄) = γ2(0) = 0. Hence τ is surjective and non-trivial.

On the other hand, it is easy to deduce from Theorem 2.3 sufficient conditions forcing τ to be
trivial, as follows.

Corollary 2.5. Suppose that R is principal, and let M = ⊕
i∈I R/ai R, ai ∈ R. Then τ = 0 if for any r ∈ R and

i ∈ I , 2|ra2
i implies 2|rai . In particular, τ = 0 for all M if 2 is trivial or a product of two-by-two non-associated

primes (no powers).
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In fact, in this case we may take (aij) = Diag(ai), whence by hypothesis, each si in Theorem 2.3 is
of the form si = s′

iai , s′
i ∈ R . Thus τ [x] = ∑

i siu0(ei)
2 = ∑

i s′
iu0(aiei)u0(ei) = 0.

Note that the last condition in Corollary 2.5 is satisfied for R = Z, which reproduces the well-
known fact that w is injective for all Z-modules M .

3. Quadratic derivations and the module P 2
R(R)

Recall that the group ring Z[G] decomposes as Z[G] = η(Z) ⊕ I(G) where η : Z → Z[G] is the
unit map; correspondingly, the canonical injection G → Z[G] decomposes as g �→ 1 + (g − 1), and
the component g �→ g − 1 is the universal derivation on G . We find similar decompositions of P 2

R(R)

and of the map p, leading to the notion of quadratic derivation on a ring R . The main result of this
section computes P 2

R(R) and the range of the universal quadratic derivation. As an application, we
define a notion of nilpotent R-groups of class 2 for any, not only 2-binomial ring of coefficients R as
in the literature. Quadratic algebra then also allows to localize nilpotent groups of class 2 with respect
to any ring of coefficients.

For r ∈ R we denote by pr (resp p[r]) the element p(r) − rp(1) (resp. p(r) − r2 p(1)) in P 2
R(R).

Proposition 3.1. P 2
R(R) is generated by elements p(1) and {pr}r∈R (resp. by p(1) and {p[r]}r∈R ) subject to

the relations:

pr+s = pr + ps + rsp2 (resp. p[r+s] = p[r] + p[s] + rsp[2]), (3.1)

prs = rps + s2 pr
(
resp. p[rs] = rp[s] + s2 p[r]

)
. (3.2)

Proof. Taking x = y = 1 in relation (1.5) we get (3.1). Taking x = 1 in relation (1.6) we get (3.2).
Conversely, a simple computation shows that the relations (1.4), (1.5) and (1.6) are consequences of
(3.1) (or (3.2)). �
Remark 3.2. The relations (3.2) are not symmetric in r and s. Permuting r and s we get

(
r2 − r

)
ps = (

s2 − s
)

pr
(
resp.

(
r2 − r

)
p[s] = (

s2 − s
)

p[r]
)
. (3.3)

Corollary 3.3.

– The submodule of P 2
R(R) generated by p(1) is free and is a direct summand of P 2

R(R).
– The submodules of P 2

R(R) generated by the elements pr and by the elements p[r] are isomorphic. They
represent the R-quadratic maps vanishing on 0 and 1.

– Any R-quadratic map R → N has a unique decomposition as sum of an R-linear map (resp. a homoge-
neous R-quadratic map) and an R-quadratic map vanishing on 0 and 1.

Proof. The generator p(1) does not appear in the relations, and the relations satisfied by the elements
pr or p[r] are the same. Both decompositions are easy: f (r) = r f (1) + ( f (r) − r f (1)) and f (r) =
r2 f (1) + ( f (r) − r2 f (1)). �

These facts lead to the following structural interpretation.

Definition 3.4. A quadratic derivation on R with values in an R-module M is a map d : R → M satisfy-
ing the relations for all r, s ∈ R

d(r + s) = d(r) + d(s) + rsd(2), (3.4)

d(rs) = rd(s) + s2d(r). (3.5)
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Examples 3.5.

1. Let η : R → P 2
R(R) be the “unit map” η(r) = rp(1). Then by the foregoing, the maps D1, D2 : R →

P 2
R(R)/η(R) defined by D1(r) = pr and D2(r) = p[r] are both universal quadratic derivations.

Moreover, the canonical map p : R → P 2
R(R) = η(R) ⊕ 〈pr〉r∈R decomposes as p(r) = η(r) + D1(r).

This is the precise analogue with the situation in groups mentioned at the beginning of the sec-
tion. Also, a quadratic derivation is the same as an R-quadratic map vanishing on 0 and 1.

2. Let R be a 2-binomial ring, i.e. for all r ∈ R the element r(r − 1) is uniquely 2-divisible so that(r
2

) = r(r−1)
2 ∈ R . Then the map h : R → R , h(r) = (r

2

)
, is a quadratic derivation.

3. Quadratic derivations also occur naturally in the theory of square rings, cf. [2]. Let (R
H−→

M
P−→ R) be a square ring with P = 0 [2, 8.6]. Then M is an R-bimodule, and H satisfies re-

lation 3.4 and H(rs) = r2 H(s) + H(r)s for all r, s ∈ R . So if R is commutative and the right and
left R-actions on M coincide then H is a quadratic derivation. This situation actually generalizes

example (2) as for a 2-binomial ring R we have the square ring Rnil = (R
h−→ R

0−→ R) which has
an important interpretation: its modules are the nilpotent R-groups of class 2, see [2, 8.5], [18],
and also Remark 3.10 below.

The surprising result now is that quadratic derivations, unlike linear, i.e. classical ones, are repre-
sented by an ideal of R itself: let I2 denote the ideal of R generated by the elements r2 − r, r ∈ R .

Theorem 3.6. The map D : R → I2 , D(r) = r2 − r, is a universal quadratic derivation.

Proof. As D is a quadratic derivation it induces an R-linear map D̂ : 〈pr〉r∈R → I2 such that D̂(pr) =
r2 − r, by universality of D1. As D̂ is clearly surjective we must prove its injectivity. Let x = ∑

i λi pri

such that D̂(x) = 0, with λi, ri ∈ R . We then have y = ∑
i λi(r2

i − ri) = 0 and p y = 0. And by (3.1)

0 = p y =
∑

i

pλi(r
2
i −ri)

+
∑
i< j

λi
(
r2

i − ri
)
λ j

(
r2

j − r j
)

p2.

Using (3.3) twice we get

∑
i< j

λi
(
r2

i − ri
)
λ j

(
r2

j − r j
)

p2 = 2
∑
i< j

λiλ j
(
r2

j − r j
)

pri =
∑
i �= j

λiλ j
(
r2

j − r j
)

pri .

On the other hand, using (3.2) and (3.3) we get

∑
i

pλi(r
2
i −ri)

=
∑

i

λ2
i p(r2

i −ri)
+

∑
i

(
r2

i − ri
)

pλi =
∑

i

λ2
i p(r2

i −ri)
+

∑
i

(
λ2

i − λi
)

pri ,

and using (3.1), (3.2) et (3.3)

p(r2
i −ri)

= pr2
i
− pri − ri

(
r2

i − ri
)

p2 = (
r2

i + ri
)

pri − pri − 2ri pri = (
r2

i − ri − 1
)

pri .

Then we get

∑
i

pλi(r
2
i −ri)

=
∑

i

λ2
i

(
r2

i − ri − 1
)

pri +
∑

i

(
λ2

i − λi
)

pri = −
∑

i

λi pri +
∑

i

λ2
i

(
r2

i − ri
)

pri

and finally
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0 = p y = −x +
∑

i

λ2
i

(
r2

i − ri
)

pri +
∑
i �= j

λiλ j
(
r2

j − r j
)

pri

= −x +
∑
i, j

λiλ j
(
r2

j − r j
)

pri

= −x +
∑

i

λi

(∑
j

λ j
(
r2

j − r j
))

pri = −x.

Thus D̂ is injective. �
As an interesting ring-theoretic consequence we find that the ideal I2 admits the following func-

torial presentation as an R-module:

Corollary 3.7. The ideal I2 of R is generated by the elements 
r = r2 − r, r ∈ R, subject only to the formal
relations


r+s = 
r + 
s + rs
2, 
rs = r
s + s2
r

for r and s in R.

In Section 7 we will simplify this presentation in case R itself is given by a presentation. It would
be interesting to know which other polynomial ideals admit analogous functorial presentations.

Combining Corollary 3.3 with Theorem 3.6 furnishes the following computation of P 2
R(R):

Corollary 3.8. There is a natural R-linear isomorphism P 2
R(R) → R ⊕ I2 sending p(r) to (r, r2 − r).

In the sequel we identify P 2
R(R) and R ⊕ I2; the map p then reads p(r) = (r, r2 − r).

Examples 3.9.

1. If I2 = R , in particular if there is r ∈ R such that r2 − r is invertible (for example if R is a field
different from F2) then P 2

R(R) = R ⊕ R , with p(r) = (r, r2 − r).
2. If R is a 2-binomial ring (for example if R = Z) then I2 
 R , and we again have P 2

R(R) = R ⊕ R
but p(r) = (r,

(r
2

)
).

3. If I2 = 0, i.e. if R is a boolean ring, for example if R = F2 or R = F
n
2, we have P 2

R(R) = R with
p(r) = r.

Remark 3.10. Based on Example 3.5(3) and Theorem 3.6 we can now define a notion of nilpotent
R-group of class 2 for any (even non-2-binomial!) ring R , as being a module over the square ring

RNil = (R
D−→ I2

0−→ R). This generalizes the classical notion of a nilpotent R-group of class 2 in the
2-binomial case since then the map ×2 : R → I2, ×2(r) = 2r, is an R-linear isomorphism, whence RNil
is isomorphic with the square ring Rnil in Example 3.5(3). For example, taking R = Z/q2

Z, q prime, R
is 2-binomial unless q = 2; in this case a module over RNil is the same as a group G whose third term
G4γ2(G)2γ3(G) of the lower 2-central series of Lazard is trivial [2, 8.1]. These groups play a role in the
unstable Adams spectral sequence, and constitute algebraic models for unstable Moore-spaces whose
homology is of exponent 2 [2, 8.2]. Note that in general, an R-group has not only unary operations
parametrized by the elements of R but also binary operations paramatrized by the elements of I2;
in the special case where I2 = 2R (in particular if R is 2-binomial) the latter are all multiples of the
commutator by ring elements and thus determined by the group structure and the unary operations.



1676 H. Gaudier, M. Hartl / Journal of Algebra 322 (2009) 1667–1688
We also obtain a localization functor LR from the category Mod-Znil of nilpotent groups of class 2
to the category Mod-RNil of nilpotent R-groups of class 2, which is left adjoint to the canonical
forgetful functor; in fact, LR is given by scalar extension along the unique morphism of square rings
from Znil to RNil . This will be further investigated in [7].

Finally, these observations allow to enrich quadratic algebra so as to admit coefficients in a fixed
commutative ring R; in particular this leads to a notion of square algebras over R in the category
of which RNil is the initial object. Thus one obtains a unified framework for dealing with nilpotent
R-groups of class 2 on the one hand and with algebras over a nilpotent operad of class 2 over R on
the other hand, among others; this is work in progress.

4. The module P 2
R(M)

In this section we describe P 2
R(M) as an extension with cokernel M whose kernel is an intricate

amalgamation of the simpler modules Sym2
R(M) and Γ 2

R (M) invoking also the ideal I2. This amalga-
mation will be further analyzed in the subsequent sections.

Let M be an R-module. The kernel of the map ε defined in (1.7) contains the elements dp(x, y) =
p(x + y) − p(x) − p(y), and since dp is R-bilinear, we get a R-linear map

ϕ1 : Sym2
R(M) → P 2

R(M), ϕ1(xy) := p(x + y) − p(x) − p(y).

The kernel of ε also contains pr(x) = p(rx) − rp(x). By Remark 1.3, the map (r, x) �→ pr(x) is a homo-
geneous R-quadratic map in x and is an R-quadratic map in r vanishing on 0 and 1. We thus obtain
an R-linear map

ϕ2 : I2 ⊗ Γ 2
R (M) → P 2

R(M), ϕ2
((

r2 − r
) ⊗ γ2(x)

) = p(rx) − rp(x).

The maps ϕ1 and ϕ2, together with ε, are the main structure homomorphisms of P 2
R(M) as they

encode the cross effect and the cross actions of the map p. Clearly Kerε is generated by the images
of ϕ1 and ϕ2. Thus we get the exact sequence

Sym2
R(M) ⊕ (I2 ⊗ Γ 2

R (M))
(ϕ1,ϕ2)

P 2
R(M)

ε
M 0.

We now give a complete description of the kernel of ε.

Notations
Consider the following R-linear maps

v : Sym2
R(M) → I2 ⊗ Sym2

R(M), v(xy) = 2 ⊗ xy,

w : Sym2
R(M) → Γ 2

R (M), w(xy) = dγ2(x, y)
(
cf.(2.1)

)
,

j11 : I2 ⊗ Sym2
R(M) → Sym2

R(M), j11
((

r2 − r
) ⊗ xy

) = (
r2 − r

)
xy,

j12 : Γ 2
R (M) → Sym2

R(M), j12
(
γ2(x)

) = x2,

j21 : I2 ⊗ Sym2
R(M) → I2 ⊗ Γ 2

R (M), j21 = Id ⊗ w,

j22 : Γ 2
R (M) → I2 ⊗ Γ 2

R (M), j22
(
γ2(x)

) = 2 ⊗ γ2(x).
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Lemma 4.1. These maps satisfy the relations

j11 v = j12 w, j21 v = j22 w, ϕ1 j11 = ϕ2 j21, ϕ1 j12 = ϕ2 j22.

Proof. For the third relation we get:

ϕ1 j11
((

r2 − r
) ⊗ xy

) = ϕ1
((

r2 − r
)
xy

) = (
r2 − r

)
ϕ1(xy),

and using the relation (1.2)

ϕ2 j21
((

r2 − r
) ⊗ xy

) = ϕ2
((

r2 − r
) ⊗ (

γ2(x + y) − γ2(x) − γ2(y)
))

= p
(
r(x + y)

) − p(rx) − p(ry) − r
(

p(x + y) − p(x) − p(y)
)

= dp(rx, ry) − rdp(x, y)

= (
r2 − r

)
dp(x, y)

= (
r2 − r

)
ϕ1(xy).

The other relations are easy. �
Let K ′(M) be the pushout of the diagram

I2 ⊗ Sym2
R(M) Sym2

R(M)
v w

Γ 2
R (M) ,

with structure maps η1 and η2, and let K (M) be the pushout of the diagram

Sym2
R(M) (I2 ⊗ Sym2

R(M)) ⊕ Γ 2
R (M)

( j11, j12) ( j21, j22)

I2 ⊗ Γ 2
R (M) , (4.1)

with structure maps θ1 and θ2, see the diagram below.

Corollary 4.2. The following diagram, where j12 = j1η2 and j21 = j2η1 , is commutative:

Sym2
R(M)

w

v

Γ 2
R (M)

j22
η2

I2 ⊗ Sym2
R(M)

η1

j11

K ′(M)

j1

j2
I2 ⊗ Γ 2

R (M)

ϕ2

θ2

Sym2
R(M)

ϕ1

θ1
K (M)

ϕ

P 2
R(M)

(4.2)

and the two squares are pushouts.
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The structure of P 2
R(M) is determined by the following:

Theorem 4.3. For any R-module, the natural sequence of R-modules

0 K (M)
ϕ

P 2
R(M)

ε
M 0

is exact. More precisely, the set K (M) × M with the operations

(k, x) + (k′, y) = (
k + k′ − θ1(xy), x + y

)
,

r · (k, x) = (
rk − θ2

((
r2 − r

) ⊗ γ2(x)
)
, rx

)
is an R-module and the map p(x) �→ (0, x) defines an R-linear isomorphism between P 2

R(M) and this module.

Proof. Denote by P the set K (M)× M with the above defined operations. Straightforward calculations
using the commutativity of diagram (4.2) show that P is an R-module. Moreover the map M → P ,
x �→ (0, x) is R-quadratic. We then get an R-linear map P 2

R(M) → P , p(x) �→ (0, x). Moreover, the
following diagram is commutative with exact rows:

K (M)
ϕ

=

P 2
R(M)

ε
M

=

0

0 K (M) P M 0

Thus ϕ is injective and by the five lemma P 2
R(M) and P are isomorphic. �

Remark 4.4. As a consequence we get the exact sequence

(I2 ⊗ Sym2
R(M)) ⊕ Γ 2

R (M)

( j11 j12
− j21 − j22

)

Sym2
R(M) ⊕ (I2 ⊗ Γ 2

R (M))
(ϕ1,ϕ2)

P 2
R(M)

ε
M 0.

Examples 4.5.

1. Suppose R be a 2-binomial ring. In the diagram (4.2) we get I2 ⊗ Sym2
R(M) = Sym2

R(M), v = Id,
I2 ⊗ Γ 2

R (M) = Γ 2
R (M) and j22 = Id. We then get K ′(M) = Γ 2

R (M), η2 = Id, η1 = w , j1 = j12,
j2 = Id. Thus K (M) = Sym2

R(M), with θ1 = Id and θ2 = j12. Finally we get P 2
R(M) = Sym2

R(M)× M
with the operations

(k, x) + (k′, y) = (k + k′ − xy, x + y), r · (k, x) =
(

rk −
(

r

2

)
x2, rx

)
.

Moreover, if M is an R[1/2]-module, the 2-cocycle (x, y) �→ −xy is the coboundary of the map
x �→ x2/2, and we get the R-linear isomorphism P 2

R(M) 
 Sym2
R(M) ⊕ M , (k, x) �→ (k + x2/2, x).

Thus the map M → Sym2
R(M) ⊕ M , x �→ (x2/2, x) is universal R-quadratic.
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2. Suppose I2 = R . We then get I2 ⊗ Sym2
R(M) = Sym2

R(M), v = 2Id, I2 ⊗Γ 2
R (M) = Γ 2

R (M), j22 = 2Id
and j11 = Id. Thus η1 is injective with j1 as retraction. Then Sym2

R(M) is a direct summand of
K ′(M) and we get K ′(M) = Sym2

R(M) ⊕ Coker w , with η1 = (Id,0), η2 = ( j12,ρ). We then obtain
j1 = (Id,0) and j2 = (w,0). Hence the summand Coker w does not interfer in the computation
of K (M), and we get K (M) = Γ 2

R (M), θ2 = Id and θ1 = w . It follows that P 2
R(M) = Γ 2

R (M) × M
with the operations

(k, x) + (k′, y) = (
k + k′ − w(xy), x + y

)
, r · (k, x) = (

rk − (
r2 − r

)
γ2(x), rx

)
.

But the 2-cocycle (x, y) �→ −w(xy) is the coboundary of the map x �→ γ2(x). Thus we get an R-
linear isomorphism P 2

R(M) 
 Γ 2
R (M) ⊕ M , (k, x) �→ (k + γ2(x), x), and the map M → Γ 2

R (M) ⊕ M ,
x �→ (γ2(x), x) is universal R-quadratic. This fact generalizes Proposition 1.2.

3. Suppose now R is a boolean ring. We then get K ′(M) = Coker w = M (by Theorem 2.3) and
j1(x) = x2. Thus K (M) = Coker j1 = Λ2

R(M). We obtain P 2
R(M) = Λ2

R(M) × M with the operations

(k, x) + (k′, y) = (k + k′ − x ∧ y, x + y), r · (k, x) = (rk, rx).

It is not difficult to see that finally P 2
R(M) 
 Γ 2

R (M). (This also is an easy consequence of the
exact sequence (6.4) below.)

5. Kernels and cokernels of some maps related to P 2
R(M)

This section is of purely technical nature; in order to further analyze the module K (M) = Kerε in
Section 6 we here compute the kernels and cokernels of most of the maps appearing in diagram (4.2),
at least in the case where M is free.

Proposition 5.1. In diagram (4.2) we get the following cokernels:

Coker v 
 Cokerη2 
 (I2/2R) ⊗ Sym2
R(M), (5.1a)

Coker w 
 Cokerη1 
 (R/2R)[1] ⊗ M, (5.1b)

Coker j11 
 (R/I2) ⊗ Sym2
R(M), (5.1c)

Coker j12 
 (R/2R) ⊗ Λ2
R(M), (5.1d)

Coker j21 
 I2 ⊗ (R/2R)[1] ⊗ M 
 (I2/2I2)
[1] ⊗ M, (5.1e)

Coker j22 
 (I2/2R) ⊗ Γ 2
R (M), (5.1f)

Coker j1 
 Coker θ2 
 (R/I2) ⊗ Λ2
R(M), (5.1g)

Coker j2 
 Coker θ1 
 (I2/2R)[1] ⊗ M. (5.1h)

Proof. Since in the diagram the squares are pushouts the cokernels of each pair of opposite maps are
isomorphic. The isomorphisms (5.1a), (5.1c), (5.1d) and (5.1f) are easy. The isomorphisms (5.1b) and
(5.1e) are consequences of 2.2. Since Coker j1 is isomorphic to the cokernel of the map Cokerη1 →
Coker j11 induced by j1 we get

Coker j1 
 Coker
(
(R/2R)[1] ⊗ M → (R/I2) ⊗ Sym2

R(M)
) 
 (R/I2) ⊗ Λ2

R(M)

and (5.1g) is proved. For (5.1h) we use the same argument
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Coker j2 
 Coker
(
(I2/2R) ⊗ Sym2

R(M) → (I2/2R) ⊗ Γ 2
R (M)

)

 (I2/2R) ⊗ (R/2R)[1] ⊗ M 
 (I2/2R)[1] ⊗ M. �

Proposition 5.2. Suppose M is a free R-module, M = ⊕
i R. Recall that 2N is the 2-torsion submodule of N

for any R-module N. Then in diagram (4.2) we have the following kernels:

Ker v =
⊕
i′�i′′

2 R = 2Sym2
R(M), Ker w =

⊕
i

2 R 
 2 R[1] ⊗ M, (5.2a)

Ker j11 = 0, Ker j12 =
⊕
i′<i′′

2 R 
 2Λ
2
R(M), (5.2b)

Ker j21 =
⊕

i

2 I2 
 2 I [1]
2 ⊗ M, Ker j22 =

⊕
i′�i′′

2 R = 2Γ
2
R (M), (5.2c)

Kerη1 = 0, Kerη2 =
⊕
i′<i′′

2 R 
 2Λ
2
R(M), (5.2d)

Ker j1 =
⊕

i

I2/2R 
 (I2/2R)[1] ⊗ M, Ker j2 =
⊕

i

(2 R ⊕ I2/2R) 
 (2 R ⊕ I2/2R)[1] ⊗ M,

(5.2e)

Ker θ1 =
⊕

i

2 R 
 2 R[1] ⊗ M, Ker θ2 = 0. (5.2f)

Proof. Suppose first that M = R . Then diagram (4.2) becomes

R
w

v

R
j22

η2

I2
η1

j11

K ′(R)

j1

j2
I2

θ2

R
θ1

K (R)

(5.3)

with the maps

v(x) = 2x, w = 2Id, j11(x) = x, j12 = Id, j21 = 2Id, j22(x) = 2x.

We then get the following kernels:

Ker v = Ker w = Ker j22 = 2 R, Ker j21 = 2 I2,

Ker j12 = Ker j11 = 0, Kerη1 = Kerη2 = 0.

Since j12 = Id, R is a summand of K ′(R), and K ′(R) = R ⊕ Ker j1. Now we have Ker j1 = {η1(x) −
η2(x)|x ∈ I2}, hence j2 Ker j1 = 0. Thus j2(x, y) = 2x for (x, y) ∈ R × Ker j1, whence
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Ker j2 = 2 R ⊕ Ker j1, K (R) = I2, θ2 = Id, θ1(x) = 2x.

So finally Ker θ1 = 2 R and Ker θ2 = 0.
Now let M be a free R-module with basis {ei}i∈I . The module Sym2

R(M) (resp. Γ 2
R (M)) is also free

with basis {e2
i }i∈I ∪{ei′ei′′ }i′<i′′ (resp. {γ2(ei)}i∈I ∪{γ1(ei′)γ1(ei′′)}i′<i′′ ). Since any map in diagram (4.2)

acts diagonally with respect to these bases, it is sufficient to consider the effect of the maps on one
square term, that is the case M = R above, and the effect of the maps on one rectangular term, that
is ei′ei′′ (resp. γ1(ei′)γ1(ei′′)). In the latter case we have the same diagram as in (5.3), but the maps
are:

v(x) = 2x, w = Id, j11(x) = x, j12 = 2Id, j21 = Id, j22(x) = 2x.

We then obtain K ′ = I2, η1 = Id, η2 = v , j2 = Id, K = R , θ1 = Id and j1 = θ2 = j11. Thus for a rectan-
gular term we get

Ker v = Ker j12 = Ker j22 = Kerη2 = 2 R,

and the other kernels are zero. Summarizing the results above we obtain the proposition. �
Remark 5.3. As a byproduct of the proof we get that for a free R-module M:

K ′(M) =
(⊕

i

(
R ⊕ (I2/2R)

))
⊕

( ⊕
i′<i′′

I2

)
, K (M) =

(⊕
i

I2

)
⊕

( ⊕
i′<i′′

R

)
.

6. Exact sequences for P 2
R(M)

We are now ready to compute the kernels and cokernels of the structure maps ϕ1 and ϕ2, thus
providing natural exact sequences expressing P 2

R(M) in terms of the ideal I2 and the simpler functors
Sym2

R , Λ2
R and Γ 2

R .

6.1. The map ϕ1 : Sym2
R(M) → P 2

R(M)

Lemma 6.1. Let M be an R-module and d be the map defined in 2.2. Then the sequence

Sym2
R(M)/ Im d

ϕ̄1
P 2

R(M)
q1

Cokerϕ1 0 (6.1)

is exact. It is short exact if M is free.

Proof. For r ⊗ x in (2 R)[1] ⊗ M we have using (1.6) for r = 2 and s = r

ϕ1
(
d(r ⊗ x)

) = ϕ1
(
rx2) = rϕ1

(
x2) = r

(
p(2x) − 2p(x)

) = rp(2x) = −4p(rx) = 0,

hence Im d ⊂ Kerϕ1, the map ϕ̄1 is defined and the first part is proved. Suppose moreover M is free.
Since ϕ is injective, Kerϕ1 = Ker θ1 = Im d by (5.2f). �
Theorem 6.2. Let ψ1 : (I2/2R)[1] ⊗ M → Cokerϕ1 be the map defined by ψ1(r2 − r ⊗ x) = q1ϕ2((r2 − r) ⊗
γ2(x)) and let ε1 : Cokerϕ1 → M be the map induced by ε. We have the following two natural exact se-
quences:
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0 (I2/2R)[1] ⊗ M
ψ1

Cokerϕ1
ε1

M 0,

TorR
1 ((I2/2R)[1], M)

τ1
Sym2

R(M)/ Im d
ϕ̄1

P 2
R(M)

q1
Coker(ϕ1) 0 (6.2)

with τ1 = τ ◦ TorR
1 (ι[1], Id), where τ is defined in Theorem 2.3 and ι : I2/2R → R/2R is the inclusion.

Taking R = Z we rediscover the exact sequence 0 → Sym2
Z
(M) → P 2

Z
(M) → M → 0 due to

Passi [16].

Proof. Since K (M) is the kernel of ε and ε = ε1q1 we get Coker θ1 = Kerε1, so by (5.1h) the first
sequence is exact. Now since the exact sequence (6.1) is short exact when M is free, we can left-
complete it by the first derived functor D1(Cokerϕ1) with connecting morphism τ ′ . But applying the
long exact homotopy sequence to the sequence (6.2) we obtain

0 = D2(Id) → D1((I2/2R)[1] ⊗ −) D1(ψ1)−−−−−→ D1(Cokerϕ1) → D1(Id) = 0

hence D1(ψ1) is an isomorphism, so τ1 = τ ′ ◦ D1(ψ1). Now consider the diagram

D1(Cokerϕ1)

D1(ḡ2)

τ ′
Sym2

R(M)/ Im d
ϕ̄1

=

P 2
R(M)

q1

g2

Coker(ϕ1)

ḡ2

0

TorR
1 ((R/2R)[1], M)

τ
Sym2

R(M)/ Im d
w̄

Γ 2
R (M)

ρ
(R/2R)[1] ⊗ M 0

Its lines are exact and the central square commutes, thus the diagram is commutative, and τ1 =
τ ◦ D1(ḡ2) ◦ D1(ψ1). This implies the assertion since a simple computation shows that ḡ2 ◦ ψ1 =
ι[1] ⊗ Id. �
6.2. The map ϕ2 : I2 ⊗ Γ 2

R (M) → P 2
R(M)

Theorem 6.3. Let ψ2 : (R/I2) ⊗ Λ2
R(M) → Cokerϕ2 be the map defined by ψ2(r̄ ⊗ x ∧ y) = q2ϕ1(rxy) and

ε2 : Cokerϕ2 → M be the map induced by ε. We have the following two natural exact sequences:

0 (R/I2) ⊗ Λ2
R(M)

ψ2
Cokerϕ2

ε2
M 0,

TorR
1 ((R/I2),Sym2

R(M))
τ2

I2 ⊗ Γ 2
R (M)

ϕ2
P 2

R(M)
q2

Coker(ϕ2) 0

where τ2 is the composite of the connecting morphism TorR
1 ((R/I2),Sym2

R(M)) → I2 ⊗ Sym2
R(M) and of the

morphism j21 : I2 ⊗ Sym2
R(M) → I2 ⊗ Γ 2

R (M).
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Proof. By definition (4.1) of K (M) we have the pushout

(I2 ⊗ Sym2
R(M)) ⊕ Γ 2

R (M)

( j11, j12)

( j21, j22)

I2 ⊗ Γ 2
R (M)

θ2

Sym2
R(M)

θ1
K (M)

It follows that

Ker θ2 = ( j21, j22)Ker( j11, j12).

One has the exact sequence

0 Ker j11 Ker( j11, j12) Ker j̄12 0

where j̄12 is the composite map

Γ 2
R (M)

j12
Sym2

R(M) (R/I2) ⊗ Sym2
R(M)

and where the first map is induced by the inclusion and the second one by the projection to the
second factor. Note that w takes values in Ker j̄12 since j12 w = 2Id and 2 ∈ I2. From the commutative
diagram

Sym2
R(M)

=

(v,−w)

Sym2
R(M)

w

0 Ker j11 Ker( j11, j12) Ker j̄12 0

we deduce the exact sequence of cokernels:

Ker j11 Ker( j11, j12)/ Im (v,−w) Ker j̄12/ Im w 0

where Ker j̄12/ Im w can be identified with the kernel of the map

j′12 : (R/2R)[1] ⊗ M → (R/I2) ⊗ Sym2
R(M)r̄ ⊗ x �→ r̄ ⊗ x2.

Clearly this kernel contains the image of (I2/2R)[1] ⊗ M . Now this map (I2/2R)[1] ⊗ M → Ker j′12 lifts
to an R-linear map

ζ : (I2/2R)[1] ⊗ M → Ker( j11, j12)/ Im (v,−w),(
r2 − r

) ⊗ x �→ ((
r2 − r

)
γ2(x),−(

r2 − r
) ⊗ x2

)
.
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We then get the commutative diagram

(I2/2R)[1] ⊗ M
=

ζ

(I2/2R)[1] ⊗ M

Ker j11 Ker( j11, j12)/ Im (v,−w) Ker j′12 0

which leads to the exact sequence of cokernels:

Ker j11 (Ker( j11, j12)/ Im (v,−w))/ Im ζ Ker j′′12 0

where j′′12 is the map (R/I2) ⊗ M → (R/I2) ⊗ Sym2
R(M) such that j′′12(r̄ ⊗ x) = r̄ ⊗ x2. Now, by the

following Lemma 6.4, j′′12 is injective. We then obtain a surjection

Ker j11 �
(
Ker( j11, j12)/ Im (v,−w)

)
/ Im ζ. (6.3)

On the other hand Im (v,−w) is contained in Ker( j21, j22), thus the surjection Ker( j11, j12) onto
Ker θ2 induced by ( j21, j22) factors by a surjection of Ker( j11, j12)/ Im (v,−w) onto Ker θ2. But Im ζ

is also annihilated by ( j21, j22), so we get a surjection

(
Ker( j11, j12)/ Im (v,−w)

)
/ Im ζ � Ker θ2.

By composition of this surjection with the one of equation (6.3) we obtain a surjection Ker j11 �
Ker θ2 = Kerϕ2 given by restriction of j21.

We then can conclude the proof, since, tensoring the exact sequence I2 � R � R/I2 by Sym2
R(M)

we get an isomorphism TorR
1 (R/I2,Sym2

R(M)) → Ker j11. �
Lemma 6.4. Let R be a boolean ring. Then for any R-module M the R-linear map M → Sym2

R(M), x �→ x2 is
injective.

Proof. Suppose first R is of finite type over Z. Then it is well known that R is a finite product of
copies of F2, and M is a finite product of F2-vector spaces. We then must only prove that the map
M → Sym2

F2
(M) is injective when M is an F2-vector space, which is clear.

In the general case, since M is a filtered direct limit of finitely presented modules, we can suppose
that M is of finite presentation over R . So M is the quotient of an Rm by a finite number of relations
ρ j , and in these relations we have only a finite number of coefficients in R . Let x = ∑

i riei ∈ M such
that x2 = 0, with {ei}i being the canonical basis of Rm . We can then write this equality over a finitely
generated subring of R , generated by the elements ri , by the coefficients of the relations ρ j , and by
the coefficients ri j of the R-linear combination

∑
ri jeiρ j in Sym2

R(Rm) trivializing x2 in Sym2
R(M). We

then can conclude that x = 0. �
6.3. The map I2 ⊗ M → P 2

R(M)

The canonical map γ2 : M → Γ 2
R (M) is R-quadratic, so it factors through P 2

R(M). We thus ob-
tain a surjective R-linear map g2 : P 2

R(M) → Γ 2
R (M), g2(p(m)) = γ2(m). On the other hand, the

map R × M → P 2
R(M), (r,m) �→ p[r](m) = p(rm) − r2 p(m) is R-linear in m, and is R-quadratic in r

and vanishes if r = 0 or 1; whence it factors through an R-linear map χ : I2 ⊗ M → P 2
R(M),

χ((r2 − r) ⊗ m) := p(rm) − r2 p(m). Clearly we get
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Proposition 6.5. The sequence

I2 ⊗ M
χ

P 2
R(M)

g2
Γ 2

R (M) 0 (6.4)

is exact.

We are not able to compute the kernel of χ so far; this would be an easy consequence of a
computation of the first derived functor of Γ 2

R which doesn’t seem to be known. So we content
ourselves of two easy remarks: if m ∈ 2M then 2 ⊗ m ∈ Kerχ , and if A is the image of TorR

1 (R/I2, M)

in I2 ⊗ M by the connecting homomorphism of the exact sequence I2 � R � R/I2, then Kerχ ⊂ A
(use the map ε). In particular, if I2 = 2R , we get Kerχ = A = Im(2R ⊗ 2M → 2R ⊗ M) 
 2M/2 RM .

7. Generators and relations for I2

As the ideal I2 plays a key role in all our results, in particular as a factor in torsion products, it is
convenient to dispose of a more economic presentation of I2 than the functorial one in Corollary 3.7.
This is provided here in case R itself is given by a presentation as a quotient of a polynomial ring.
We start by the following immediate calculation where we write 
(x) = 
x .

Lemma 7.1. For any monomial M = ∏
k=1...n xmk

k , xk ∈ R we get

D(M) = M2 − M =
n∑

k=1

(
x2m1

1 . . . x
2mk−1
k−1

( 2mk−2∑
j=mk−1

x j
k

)
x

mk+1
k+1 . . . xmn

n

)

(xk),

and for P = ∑n
k=1 āk Mk, with ak ∈ Z and the Mk’s unitary monomials in the elements xi , we get

D(P ) = P 2 − P =
n∑

k=1

āk D(Mk) +
∑
k=1

n

(
ak

2

)
M2

k
(2) +
∑

1�k′<k′′�n

āk′ āk′′ Mk′ Mk′′
(2).

In particular for a polynomial ring Z[Xi]i∈I , D(P ) is a Z-linear combination of the elements 
(Xi)

and 
(2).

Proof. By relation (3.5) we have D(x2) = (x + x2)
(x) and by induction we obtain D(xm) =
(
∑2m−2

j=m−1 x j)
(x). The same relation also implies that D(xm1
1 xm2

2 ) = x2m1
1 D(xm2

2 ) + xm2
2 D(xm1

1 ); using
induction we get the first formula of the lemma.

Let M be a unitary monomial and a ∈ Z. Relation (3.4) and induction on a give D(āM) =
āD(M)+(a

2

)
M2
(2) if a is positive; this formula also holds for negative a as follows from the identity

D(−M) = −D(M)+ M2
(2) again due to relation (3.4). The latter also shows that D(a1 M1 +a2M2) =
D(a1M1)+ D(a2 M2)+a1a2M1M2
(2), so the second formula of the lemma follows by induction. �

Now let S = Z[Xi]i∈I , a =< Pα(X) >α∈A and R = S/a. Let I∗ = I � {∗} and X∗ := 2, and for i ∈ I∗ ,
denote by xi the class of Xi in R , and πi = 
(xi) = x2

i − xi . Then the desired presentation of I2 is
given by the following:

Proposition 7.2. The ideal I2 of the ring R = Z[xi], is generated by elements πi , i ∈ I∗ , subject to the relations

(
x2

i − xi
)
π j = (

x2
j − x j

)
πi, (i, j) ∈ I2∗, i < j for some total ordering,

D S(Q α) = 0, α ∈ A,
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where D S (Q α) is the image of D S (Q α) by the canonical map I2(S) → I2(R) sending 
S(Xi) (resp. 
S(2))
to 
R(xi) = πi (resp. 
R(2̄) = π∗ = 2̄2 − 2̄ = 2̄).

The proof requires some more notation. Let R∗ := R − {0}, R∗∗ := R − {0,1}, J ′(R) := (R∗)2,
J ′′(R) := (R∗∗)2 and J (R) := J ′(R) � J ′′(R). We denote by {[x]} the canonical basis of R(R∗∗) and
by {[x, y]1} and {[x, y]2} the basis of R( J ′(R)) and R( J ′′(R)) , and we consider the elements

ρ1(x, y) := [x + y] − [x] − [y] − xy[2],
ρ2(x, y) := [xy] − x[y] − y2[x],

in R(R∗∗) with [0] = [1] := 0.

Lemma 7.3. We have the following relations:

ρ1(x + y, z) = ρ1(x, y + z) − ρ1(x, y) + ρ1(y, z), (7.1a)

ρ1(x, y + z) = ρ1(y, x + z) + ρ1(x, z) − ρ1(y, z), (7.1b)

ρ1

(
n∑

i=1

xi, y

)
=

n∑
i=1

ρ1

(
xi, y +

i−1∑
j=1

x j

)
−

n∑
i=2

ρ1

(
xi,

i−1∑
j=1

x j

)
, (7.1c)

ρ2(x + y, z) = ρ2(x, z) + ρ2(y, z) + ρ1(xz, yz) − z2ρ1(x, y), (7.1d)

ρ2

(
n∑

i=1

xi, y

)
=

n∑
i=1

ρ2(xi, y) +
n−1∑
i=1

(
ρ1

(
i∑

j=1

x j y, xi+1 y

)
− y2ρ1

(
i∑

j=1

x j, xi+1

))
, (7.1e)

ρ2(x, y + z) = ρ2(x, y) + ρ2(x, z) + yz
(
ρ2(x,2) − ρ2(2, x)

) + ρ1(xy, xz) − xρ1(y, z), (7.1f)

ρ2

(
x,

n∑
i=1

yi

)
=

n∑
i=1

ρ2(x, yi) +
( ∑

1�i< j�n

yi y j

)(
ρ2(x,2) − ρ2(2, x)

)

+
n−1∑
i=1

(
ρ1

(
x

i∑
j=1

y j, xy j+1

)
− xρ1

(
i∑

j=1

y j, y j+1

))
, (7.1g)

ρ2(xy, z) = ρ2(x, yz) + xρ2(y, z) − z2ρ2(x, y), (7.1h)

ρ2(x, yz) = ρ2(y, xz) + z2(ρ2(x, y) − ρ2(y, x)
) + yρ2(x, z) − xρ2(y, z), (7.1i)

ρ2

(
n∏

i=1

xi, y

)
=

n∑
i=1

(
i−1∏
j=1

x j

)
ρ2

(
xi,

n∏
j=i+1

x j y

)
− y2

n−1∑
i=1

(
i−1∏
j=1

x j

)
ρ2

(
xi,

n∏
j=i+1

x j

)
. (7.1j)

Proof. By simple computation for the relations (7.1a), (7.1d), (7.1f) and (7.1h). Using (7.1a) to compute
ρ1(x + y, z) and ρ1(y + x, z) wet get (7.1b). Using (7.1h) to compute ρ2(xy, z) and ρ2(yx, z) we get
(7.1i). Relations (7.1c), (7.1e), (7.1g) and (7.1j) are obtained by induction respectively from the relations
(7.1a), (7.1d), (7.1f) and (7.1h). �
Proof of Proposition 7.2. By Corollary 3.7 we have the exact sequence:

R( J (R)) t−−−−→ R(R∗∗) 
−−−−→ I −−−−→ 0 (7.2)
2
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where 
([x]) := 
x = x2 − x for x ∈ R∗∗ , t([x, y]1) := ρ1(x, y) for (x, y) ∈ J ′(R) and t([x, y]2) :=
ρ2(x, y) for (x, y) ∈ J ′′(R). Let K := {(i, i′) | i < i′ ∈ I∗} and J1(R) := J (R) � K . We can extend the
map t to a map t1 : R( J1(R)) �→ R(R∗∗) such that Im t = Im t1, by putting

t1((i, i′)) := ρ2(xi, xi′) − ρ2(xi′ , xi) for (i, i′) ∈ K .

Clearly t1((i, i′)) is in Im t .
Obviously we can now replace the exact sequence 7.2 by the following:

R( J2) t2−−−−→ R(S∗∗) 
−−−−→ I2 −−−−→ 0

with J2 := J1(S) � A1 where A1 := {(x, y) ∈ (S∗∗)2 | x ≡ y mod a}. The map t2 is defined by

t2((x, y)) = [x] − [y] for (x, y) ∈ A1,

and by the composition of t1 and the canonical map S(S∗∗) → R(S∗∗) on J1(S).
First we will reduce step by step the set A1.

– If x ∈ S and a ∈ a then (x+a, x) ∈ A1. We have t2((x+a, x)) = t2(x,0)+ρ1(x,a). Without changing
the image of t2 we can then replace A1 by A2 = a × {0} 
 a.

– By the relations ρ1(x, y) we can suppose a to be a multiple of one of the polynomials Pα .
– By the relations ρ2(x, y) we then can suppose a to be one of the polynomials Pα .

Taking J3 := J ′(S) � J ′′(S) � K S � A we obtain the exact sequence

R( J3) t3−−−−→ R(S∗∗) 
−−−−→ I2 −−−−→ 0

with t3(α) = [Pα].
We will now reduce step by step the sets J ′(S) and J ′′(S).

– By relation (7.1e) it suffices to take those elements (x, y) ∈ J ′′(S) where x is a unitary monomial.
– By relation (7.1j) it suffices to take those elements (x, y) ∈ J ′′(S) where x is a generator.
– By the relation (7.1g) it suffices to take those elements (x, y) ∈ J ′′(S) where x is a generator and

y is a unitary monomial.
– By relation (7.1c) it suffices to take those elements (x, y) ∈ J ′(S) where x is a unitary monomial.

We can order all the unitary monomials by total degree and by lexicographic order.

– By relation (7.1b) it suffices to take those elements (x, y) ∈ J ′(S) where x is a unitary monomial
greater or equal to any monomial in y.

– By relation (7.1i) it suffices to take those elements (x, y) ∈ J ′′(S) where x is a variable greater or
equal to any variable in the unitary monomial y.

Denote by J ′
4 the set of elements (x, y) of J ′(S) where x is a unitary monomial greater or equal

to any monomial in y, and by J ′′
4 the set of elements (x, y) of J ′′(S) where y is a unitary monomial

and x is a variable greater or equal to any variable in y. Let J4 := J ′
4 � J ′′

4 � K � A and let t4 be the
restriction of t3. We then get the exact sequence

R( J4) t4−−−−→ R(S∗∗) 
−−−−→ I −−−−→ 0.
2
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Now because each polynomial has a unique biggest monomial and each monomial has a unique
biggest variable, we can cancel J ′

4 and J ′′
4 in J4 and replace the central term R(S∗∗) by R(I∗) . We

then obtain the exact sequence

R(K�A) t4−−−−→ R(I∗) 
−−−−→ I2 −−−−→ 0

and the proposition is proved. �
Perspectives

Beyond this paper, we will use quadratic algebra to show that any quadratic map between mod-
ules can be identified with a morphism in a certain monoidal, complete and cocomplete homological
category MR , whose objects are of explicit algebraic nature and whose morphisms are families of R-
linear maps. This allows to carry out constructions with quadratic maps which do not make sense in
classical algebra: in particular, they admit kernels, cokernels, tensor powers etc. Moreover, quadratic
algebraic K-theory K quad

0 (R) of R can be defined from MR . All of this is work in progress and will be
presented elsewhere.
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